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Abstract7

(Abstract word count: 245.)8

Background. Constitutive models of the mechanical response of soft tissues9

have been established and are widely accepted, but models of soft tissues re-10

modeling are more controversial. Specifically for growth, one important ques-11

tion arises pertaining to residual stresses: existing growth models inevitably12

introduce residual stresses, but it is not entirely clear if this is physiological13

or merely an artifact of the modeling framework. As a consequence, in sim-14

ulating growth, some authors have chosen to keep growth-induced residual15

stresses, and others have chosen to remove them.16

Methods. In this paper, we introduce a novel “relaxed growth” framework17

allowing for a fine control of the amount of residual stresses generated dur-18

ing tissue growth. It is a direct extension of the classical framework of the19

multiplicative decomposition of the transformation gradient, to which an ad-20

ditional sub-transformation is introduced in order to let the original unloaded21

configuration evolve, hence relieving some residual stresses. We provide mul-22

tiple illustrations of the framework mechanical response, on time-driven con-23

strained growth as well as the strain-driven growth problem of the artery24

under internal pressure, including the opening angle experiment.25

Findings. The novel relaxed growth modeling framework introduced in this26

paper allows for a better control of growth-induced residual stresses compared27

to standard growth models based on the multiplicative decomposition of the28

transformation gradient.29
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Interpretation. Growth-induced residual stresses should be better handled1

in soft tissues biomechanical models, especially in patient-specific models2

of diseased organs that are aimed at augmented diagnosis and treatment3

optimization.4

Keywords:5

Finite growth, Residual stresses, Relaxation, Finite element method6

(Total word count: ca. 3000.)7

1. Introduction8

Biomechanical models are widely considered as good candidates to im-9

prove patient diagnosis and treatment of various diseases, for instance in10

vascular [Taylor and Figueroa, 2009], cardiac [Smith et al., 2011; Krishna-11

murthy et al., 2013], or respiratory [Roth et al., 2017] mechanics. To do so,12

these models must first be formulated with patient-agnostic constitutive laws13

and parameters that are developed alongside with experiments. And once14

these generic models are set up, clinical data must be assimilated into to15

personalize them and hence produce diagnosis [Xi et al., 2011; Genet et al.,16

2015a] and/or perform in silico treatment optimization [Sermesant et al.,17

2012].18

Today, most personalized modeling pipelines focus on the current state19

of the tissue/organ, and few work focused on predicting the long term evo-20

lution of the system of interest, i.e., prognosis [Clatz et al., 2005; Rausch21

et al., 2017]. Similarly, constitutive models of the mechanical response of22

soft tissues have been established and are widely accepted in the community,23

but models of soft tissues remodeling are more controversial [Witzenburg24

and Holmes, 2017]. This is explained by the increased complexity and as-25

sociated decreased understanding of the physical mechanisms at play during26

remodeling. Specifically for growth, a remodeling mechanism associated with27

the addition and/or removal of matter with unchanged properties [Taber,28

1995; Kuhl, 2014], there are competing approaches for the very description29

of growth (multiplicative decomposition of the transformation gradient [Ro-30

driguez et al., 1994; Kuhl, 2014] vs. constrained mixture theory [Humphrey31

and Rajagopal, 2002; Valent́ın and Holzapfel, 2012; Cyron et al., 2016]), the32

growth driving force (chemistry vs. mechanics [Maillet et al., 2013; Kuhl,33

2014], strain vs. stress [Rodriguez et al., 1994; Göktepe et al., 2010; Kerck-34

hoffs et al., 2012], static vs. oscillatory loading [Maillet et al., 2013; Lee et al.,35
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2015], etc.). Nevertheless, the next generation of personalized modeling-1

based clinical tools might include remodeling mechanisms such as growth for2

prognosis and treatment optimization.3

One important question associated with the modeling of growth is about4

the induced residual stresses, or equivalently, prestrain. On the one hand5

they are present in living tissues [Fung, 1993], on the other hand growth nat-6

urally induces residual stresses [Rodriguez et al., 1994; Skalak et al., 1996];7

however it is still largely unknown how much of the residual stresses in-8

duced by the physiological or pathological growth remain, and how much are9

relaxed away by some relaxation mechanism [Fung, 1993; Taber, 1995]. Ac-10

tually, it was found experimentally, in studies involving hypertension-induced11

pathological growth of cardiovascular tissues, that opening angle, and hence12

residual stresses, were only very little correlated with growth [Liu and Fung,13

1989; Omens et al., 1996]. As a consequence, in growth models of the lit-14

erature, some authors have chosen to keep growth-induced residual stresses15

[Rodriguez et al., 1994; Lee et al., 2014; Genet et al., 2015b], and others have16

chosen to remove them [Kroon et al., 2009; Lee et al., 2015, 2016]. Other17

approaches have been proposed to better deal with growth-induced resid-18

ual stresses, notably a recent growth modeling framework that include some19

“fluid-like” growth [Böl and Bolea Albero, 2014; Bolea Albero et al., 2014].20

In this paper, we introduce a novel “relaxed growth” model, in the gen-21

eral framework of the multiplicative decomposition of the transformation22

gradient, which allows one to control the amount of growth-induced resid-23

ual stresses. The general idea is to add another sub-transformation in the24

decomposition, which relaxes the tissue by transforming its unloaded config-25

uration. Illustrations are provided on time-driven constrained growth as well26

as the strain-driven growth problem of the artery under internal pressure.27

2. Methods28

2.1. Review of classical growth modeling29

2.1.1. Kinematics30

In this part, we review the standard formulation of finite growth model-31

ing based on the multiplicative decomposition of the transformation gradient,32

originally proposed by [Rodriguez et al., 1994], and illustrated on Figure 1.33

Thus, let us consider a physical body B that initially occupies a domain34

Ω0 and that, after deformation and growth, occupies a domain Ω. The ge-35

ometrical transformation between material neighborhoods of B in Ω0 and36
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Figure 1: Schematic of the multiplicative decomposition of the transforma-
tion gradient into growth, prestrain and loading parts, revealing the elastic
part of the transformation [Rodriguez et al., 1994]. Because the growth part
represents the transformation of material neighborhoods independently from
each others and hence is incompatible (i.e., does not derive from a contin-
uous mapping), the grown configuration is incompatible (i.e., discontinuous
everywhere). Consequently, the prestrain and elastic parts of the transfor-
mation are also incompatible. Conversely, both the full transformation and
the loading part of the transformation are compatible, though if the load-
ing part does represent a continuous mapping between material points, the
full transformation only represents a continuous mapping between material
neighborhoods, in which mass has potentially been added or removed. This
decomposition is generally represented without initial prestrain, i.e., with
F0 = 1, in which case Fg0 = 1 and Fp0 = F p, such that F e = F ′.
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Ω is denoted Φ. Following the classical scheme of Figure 1, the transfor-1

mation gradient F := Grad (Φ) is multiplicatively decomposed into growth,2

prestrain, and load-induced parts:3

F = F l · F p · F g, (1)

where, in general, both F g (the internal variable describing tissue growth)4

and F p (the prestrain) are incompatible second order tensor fields, and5

F l := Grad
(

Φl
)

is the gradient of the (compatible) transformation induced6

by mechanical loading. The prestrain and load-induced parts can be multi-7

plicatively combined to form the elastic part of the transformation:8

F ′ := F l · F p, (2)

such that the full transformation gradient can be multiplicatively decomposed9

into growth and elastic parts:10

F = F ′ · F g. (3)

Equivalently, the elastic part of the transformation can be expressed from11

the full transformation gradient and the growth internal variable:12

F ′ = F · F g−1. (4)

The full right Cauchy-Green dilatation tensor is denoted C := tF ·F . As13

for the transformation gradient, the elastic part of the dilatation tensor can14

be expressed from the full dilatation tensor and the growth internal variable:15

16

C ′ :=
t
F ′ · F ′ =

t
F g−1 · C · F g−1. (5)

2.1.2. Free energy and Stresses17

The elastic response is governed by the strain energy potential, W e. Any18

hyperelastic potential can be used. The main modeling assumption is that19

in fine the free energy ρ0Ψ is not a function of the total transformation but20

only its elastic part F e [Rodriguez et al., 1994; Göktepe et al., 2010]:21

ρ0Ψ
(

C, F g
)

= W e
(

Ce := tF e · F e
)

. (6)

Consequently, the second Piola-Kirchhoff stress tensor can be expressed as22

Σ =
∂ρ0Ψ

∂E
= 2

∂ρ0Ψ

∂C
= 2

∂W e

∂Ce
:
∂Ce

∂C
. (7)
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In the canonical case described so far, we have1

F e = F ′ = F · F g−1, (8)

such that2

Ce = C ′ =
t
F g−1 · C · F g−1, (9)

and3

Σ = F g−1 · 2
∂W e

∂Ce
·
t
F g−1. (10)

2.1.3. Growth evolution law4

An evolution law must be formulated for the growth tensor to close the5

system. Several types have been proposed, including simple rates [Kuhl,6

2014], strain- [Göktepe et al., 2010; Kerckhoffs et al., 2012; Genet et al.,7

2016] and stress- [Göktepe et al., 2010] driven laws. See for instance [Kuhl,8

2014] for a recent review, and [Witzenburg and Holmes, 2017] for a detailed9

comparison of existing laws.10

In case of tissues subjected to cyclic loading, it is necessary to uncouple11

the temporal scales of loading and remodeling, by alternating between load-12

ing (i.e., fast time scale) and growth (i.e., slow time scale) steps [Kerckhoffs13

et al., 2012; Lee et al., 2016]. Thus, for a given growth step, the driving14

force for growth must be computed from the previous loading step. Aver-15

age [Lee et al., 2015] and maximum [Kerckhoffs et al., 2012] values of stress16

and strain over a cycle have been proposed, in agreement with experimental17

analysis [Holmes, 2004].18

2.1.4. Case of initially prestrained material19

For the sake of completeness, let us consider the case where the initial20

configuration Ω0 has some potentially incompatible initial prestrain, denoted21

F0, or, equivalently, some autobalanced initial prestress σ0 =
1

J0
F0 ·Σ0 ·F0

−1
22

with J0 := det
(

F0

)

and Σ0 = 2
∂ρ0W

e

∂Ce

(

Ce = C0

)

where C0 :=
tF0 ·F0 (See23

Figure 1). Note that here, the prestrain must be seen as a local tensor state24

variable more than a gradient of some mapping. And in this case, the full25

elastic transformation, F e, contains both F ′ and the prestrain F0:26

F e = F · F0 · F
g−1, (11)
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such that the free energy is1

ρ0Ψ
(

C, F g, F0

)

= W e
(

Ce =
t
F g−1 · tF0 · C · F0 · F

g−1
)

, (12)

and the second Piola-Kirchhoff stress tensor is2

Σ = F0 · F
g−1 · 2

∂W e

∂Ce
·
t
F g−1 · tF0. (13)

It is also interesting to express the prestrain in the grown configuration3

Ωg:4

Fg0 := F g · F0 · F
g−1, (14)

such that the full elastic transformation can also be expressed as5

F e = F ′ · Fg0. (15)

Similarly, the total prestrain in the new grown unloaded configuration Ωp is6

Fp0 := F p · Fg0 = F p · F g · F0 · F
g−1, (16)

such that the full elastic transformation can also be expressed as7

F e = F l · Fp0. (17)

2.2. Relaxed growth modeling8

2.2.1. Kinematics9

We now describe a new formulation for finite growth, involving an ad-10

ditional internal sub-transformation for local relaxation. The associated11

schematic is represented on the Figure 2. The total transformation gradient12

is now decomposed into growth, relaxation, prestrain and loading parts:13

F = F l · F p · F r · F g, (18)

where, again, both F g (the internal variable describing tissue growth), F r
14

(the internal variable describing tissue relaxation) and F p (the prestrain) are15

incompatible second order tensor fields, and F l := Grad
(

Φl
)

is the gradi-16

ent of the (compatible) transformation induced by mechanical loading. The17

elastic part of the transformation is still18

F ′ := F l · F p, (19)

7
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such that1

F = F ′ · F r · F g. (20)

Thus, here the elastic part of the transformation can be expressed from the2

full transformation gradient, and both the growth and relaxation internal3

variables:4

F ′ := F · F g−1 · F r−1. (21)

Let us point out that the order of the decomposition is arbitrary.5

The role of the relaxation is to update the unloaded configuration of6

the grown body in order to control the amount of growth-induced residual7

stresses. Thus, the updated unloaded configuration is now Ωp, with prestrain8

9

Fp0 := F p · Fr0, (22)

where10

Fr0 := F r · Fg0 · F
r−1, (23)

and11

Fg0 := F g · F0 · F
g−1. (24)

2.2.2. Free energy and Stresses12

As for simple growth, we assume that the free energy ρ0Ψ is only a func-13

tion of the elastic part of the transformation F e, see Equation (6). However,14

in the case of relaxed growth, we have15

F e = F ′ · Fr0 = F · F0 · F
g−1 · F r−1, (25)

such that16

Ce =
t
F r−1 ·

t
F g−1 · tF0 · C · F0 · F

g−1 · F r−1, (26)

and17

Σ = F0 · F
g−1 · F r−1 · 2

∂W e

∂Ce
·
t
F r−1 ·

t
F g−1 · tF0. (27)

Similarly, for the unloaded configuration the total elastic deformation is sim-18

ply19

Fp0 = F u · F0 · F
g−1 · F r−1, (28)

such that20

Cp0 :=
tFp0 · Fp0 =

t
F r−1 ·

t
F g−1 · tF0 · C

u · F0 · F
g−1 · F r−1, (29)

9



and1

Σu = F0 · F
g−1 · F r−1 · 2

∂W e

∂Cp0

·
t
F r−1 ·

t
F g−1 · tF0. (30)

2.2.3. Relaxation evolution law2

As for the growth evolution, many choices can be made for the evolution3

of the relaxation internal variable. Since the role of the relaxation is to4

regulate the prestrain, in this article we will consider the simplest possible5

evolution law, directly based on the current prestrain level:6

Ḟ r =
1

τ r
· Ep0, (31)

where τ r is a characteristic time for relaxation, and Ep0 :=
1

2

(

Cp0 − 1
)

is7

the Green-Lagrange prestrain. The underlying hypothesis is that the tissue is8

somehow able to sense the current level of prestrain. This is analogous to the9

hypothesis made in constrained mixture theory-based growth models, where10

newly deposited matter has its own reference state that can be the one of11

the surrounding matter, the current state of deformation, or a combination12

of both [Valent́ın et al., 2013; Cyron et al., 2016].13

2.3. Numerical resolution14

The relaxed growth problem can be solved like any nonlinear problem15

with internal variables in mechanics. The only subtlety here is induced by16

the choice of the relaxation evolution law, which requires the computation17

of the new unloaded configuration together with the loaded configuration.18

We propose a mixed formulation of the problem, the unknowns being U (the19

total displacement), Uu (the displacement of the unloaded configuration),20

F g (the growth tensor) and F r (the relaxation tensor). After quasi-static21

assumption, and implicit, mid-point rule temporal discretization, the mixed22

10



variational formulation of the problem to solve at each time step is:1



















































∫

Ω0

Σ : dU ;U∗E dΩ0 = We (U ;U∗) ∀U∗ (32a)

∫

Ω0

Σu : dUu;Uu∗Eu dΩ0 = 0 ∀Uu∗ (32b)

∫

Ω0

(

F g −
(

F g,old + Ḟ g,mid∆t
))

: F g∗ dΩ0 = 0 ∀F g∗ (32c)

∫

Ω0

(

F r −
(

F r,old + Ḟ r,mid∆t
))

: F r∗ dΩ0 = 0 ∀F r∗ (32d)

where dU ;U∗E and dUu;Uu∗Eu denote the first variations of the total and un-2

loaded Green-Lagrange strain tensors with respect to the total and unloaded3

displacements, and We denotes the virtual work (semi-linear form) associ-4

ated to external loads. Ḟ g,mid will be specified for each growth evolution law,5

and relaxation evolution law (31) leads to:6

Ḟ r,mid =
1

τ r
Emid

p0 (33)

with Emid
p0 =

1

2

(

Eold
p0 + Ep0

)

.7

In case of incompressible elastic deformation, two new unknowns are8

introduced: p (the Lagrange multiplier associated to the incompressibility9

constraint of the elastic strain, equal to the hydrostatic pressure within the10

tissue) and pu (the Lagrange multiplier/hydrostatic pressure in the unloaded11

configuration), and the full mixed variational formulation becomes:12























































































∫

Ω0

(

Σ− pJeCe−1
)

: dU ;U∗E dΩ0 = We (U ;U∗) ∀U∗ (34a)

∫

Ω0

(Je − 1) p∗ dΩ0 = 0 ∀p∗ (34b)

∫

Ω0

(

Σu − puJp0Cp0
−1
)

: dUu;Uu∗Eu dΩ0 = 0 ∀Uu∗ (34c)

∫

Ω0

(Jp0 − 1) pu∗ dΩ0 = 0 ∀pu∗ (34d)

∫

Ω0

(

F g −
(

F g,old + Ḟ g,mid∆t
))

: F g∗ dΩ0 = 0 ∀F g∗ (34e)

∫

Ω0

(

F r −
(

F r,old + Ḟ r,mid∆t
))

: F r∗ dΩ0 = 0 ∀F r∗ (34f)

11



Problems (32) and (34) are spatially discretized using the standard finite1

element method. Second order elements are used for displacement unknowns2

(both U & Uu), and first order elements for pressure unknowns (both p3

& pu), preventing numerical locking in the incompressible limit [Hughes,4

2000; Chapelle and Bathe, 2010]. First order elements are used for internal5

variables (both F g & F r) as well.6

The full scheme has been implemented in python, based on the FEniCS7

library [Logg et al., 2012; Alnæs et al., 2015], and is freely available1.8

3. Results9

We will now present multiple illustrations of the relaxed growth response10

in 2D.11

3.1. Model response: constrained growth12

Let us first illustrate the constitutive behavior described by the relaxed13

growth model. To do so, we consider a single material point for which the14

total deformation is blocked to zero, and subjected to time-driven isotropic15

growth:16










F g = (1 + θg) 1

θg (t = 0) = 0

θ̇g = 1
τg

, (35)

where τ g is a characteristic time for growth. This growth evolution law leads,17

after temporal discretization, to the following expression:18

Ḟ g,mid =
1

τ g
1 (36)

For the sake of simplicity, and to focus on the relaxed growth framework19

introduced in this paper, we consider a simple compressible neo-hookean20

strain energy potential under the plane strain assumption [Ciarlet and Gey-21

monat, 1982]:22

W e
(

Ce
)

=
λ

4

(

Je2 − 1− 2 ln Je
)

+
µ

2

(

tr
(

Ce
)

− 2− 2 ln Je
)

, (37)

1https://gitlab.inria.fr/mgenet/dolfin_cm
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where λ & µ are the bulk and shear modulus, taken as unity. Compressible1

mixed variational formulation (32) is used, with evolution laws (33) & (36).2

This is the purest example of constrained growth. In case of simple3

growth, this would lead to the development of compressive residual stresses,4

which arise from constraining the grown tissue to its original volume. This5

is also what happens in the relaxed growth framework; however, here the6

amount of growth-induced stresses is controlled by the ratio of the charac-7

teristic time of relaxation to the characteristic time of growth. If relaxation8

is much slower than growth, the response is similar to simple growth; con-9

versely, if relaxation is much faster than growth, then constrained growth10

happens with almost no induced residual stress. This is well illustrated on11

the Figure 3, which shows the normalized (with respect to shear modulus)12

hydrostatic pressure within the material point as a function of normalized13

(with respect to growth time constant) time, for various ratios of relaxation14

over growth characteristic times. The relaxed growth framework allows to15

control the amount of growth-induced residual stresses in constrained growth.16

3.2. A time-driven relaxed growth example: constrained vs. unconstrained17

growth18

Let us now illustrate the relaxed growth response in a first structural19

case, inspired from [Kuhl, 2014]. Here we consider a simple square geometry,20

with three fixed boundaries (left, bottom and right) and one free boundary21

(top), subjected to the same time-driven growth (35). This case contains22

both constrained (toward the bottom, where the total strain is restricted,23

thus developing compressive residual stresses), and unconstrained (toward24

the top, where the free edge limits the stress level, and large strains will25

develop) growth [Kuhl, 2014]. In terms of elasticity, we now consider a simple26

incompressible neo-hookean strain energy potential under the plane strain27

assumption:28

W e
(

Ce
)

=
µ

2

(

tr
(

Ce
)

− 2
)

, (38)

where µ is the shear modulus, taken as unity, and use the incompressible29

mixed variational formulation (34) is used with evolution laws (33) & (36).30

Figure 4 shows the response of the tissue modeled by relaxed growth, as a31

function of normalized (with respect to growth time constant) time, and for32

various ratios of relaxation over growth characteristic times. Since growth is33

purely time-driven, the growth pattern is very similar in all cases. However,34

13
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Figure 3: Relaxed growth material response under constrained growth: nor-
malized (with respect to shear modulus) hydrostatic pressure within a mate-
rial point as a function of normalized (with respect to growth time constant
τ g) time, for various ratios of relaxation over growth characteristic times. For
slow relaxation (i.e., for large relaxation time constant τ r), the model behaves
as standard growth, with the development of residual stresses; conversely,
for fast relaxation (i.e., for small relaxation time constant τ r), constrained
growth happens with almost no induced residual stresses.
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the level of growth-induced residual stresses varies drastically with the re-1

laxation characteristic time: for very fast relaxation (compared to growth),2

the muffin grows without developing large residual stresses, even in the con-3

strained region.4

3.3. A strain-driven relaxed growth example: the artery5

The final example is the canonical case of residual stresses in pressurized6

arteries. We start from a simple disc representing an unloaded, stress-free7

artery. The artery is loaded with some internal pressure, and allowed to grow8

and relax for some time while the internal pressure is maintained. Then, the9

loading is removed, and an opening angle experiment is simulated by making10

a radial cut in the model, and letting the artery spring open by releasing11

some residual stresses. Here we consider the simplest form of strain-driven12

growth evolution law:13










F g = (1 + θg) 1

θg (t = 0) = 0

θ̇g =
‖Ee‖

τg

, (39)

where τ g still represents the growth time constant, and Ee :=
1

2

(

Ce − 1
)

14

is the Green-Lagrange elastic strain. This growth evolution law leads, after15

temporal discretization, to the following expression:16

Ḟ g,mid =
‖Ee,mid‖

τ g
1 (40)

We use the incompressible neo-hookean strain energy potential (38), and the17

incompressible mixed variational formulation (34) with evolution laws (33)18

& (40).19

Figure 5 shows the response of the artery over time, for various levels of20

relaxation characteristic times: it first inflates due to the applied pressure,21

grows, deflates as the pressure is removed, and springs open. Note that since22

residual stresses are here induced by heterogeneous, strain-driven growth de-23

scribed by growth evolution low (39), only a small amount of growth (with24

respect to the pressure-induced deformation) is required to generate realistic25

residual stresses, leading to physiological opening angles. This last example26

illustrates the fact that the relaxed growth model allows to control the open-27

ing angle (i.e., the residual stresses) induced by a given amount of growth.28

15
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Figure 4: Relaxed growth structural response under constrained and un-
constrained growth: norm of Cauchy stress tensor superimposed onto the
deformed domain as a function of normalized (with respect to growth time
constant τ r) time, for various ratios of relaxation over growth characteristic
times. The faster the relaxation, the less residual stresses develop for the
same amount of growth.
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Figure 5: Relaxed growth response of a growing artery under pressure: cir-
cumferential strain superimposed onto the deformed artery at each step of
the simulation (initial, after applying the internal pressure, after growth
and relaxation, after removing the internal pressure, and after making a
radial cut and letting the artery spring open), for various ratios of relaxation
over growth characteristic times. The faster the relaxation, the less residual
stresses, and hence a smaller opening angle develops for the same amount of
growth.
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4. Discussion1

In this paper, we introduced a novel “relaxed growth” framework allowing2

for a fine control of the amount of residual stresses generated during tissue3

heterogeneous growth. It is a direct extension of the classical multiplicative4

decomposition of the transformation gradient framework [Rodriguez et al.,5

1994], to which an additional sub-transformation is introduced in order to let6

the original unloaded configuration to evolve, hence relaxing away some of7

the residual stresses. To solve it numerically, we proposed here a monolithic8

mixed formulation, but a standard displacement formulation with internal9

variables could be used equivalently.10

This work could be extended in multiple directions. Most and foremost,11

experimental characterization of the amount of residual stresses induced di-12

rectly by physiological and/or pathological growth is required to provide13

elements of validation to relaxed growth models. Moreover, other relaxation14

evolution laws could be formulated and tested, especially in case of cyclic15

loading. 3D simulations could be run. More generally, since in the current16

numerical procedure both the deformed and unloaded configurations are com-17

puted at once, it is straightforward to stop the simulation, for instance when18

the total deformation becomes too important and the mesh too distorted,19

transfer all the fields to the new unloaded configuration, and restart from20

here. That way problems with extreme growth, for instance in organogene-21

sis, could be tackled, with a clear control in both growth and growth-induced22

residual stresses. Finally, relaxed growth could be added personalized model-23

ing pipelines, at both modeling and estimation steps, in order to make more24

objective and quantitative the handling of longitudinal clinical data, and25

design the next generation of diagnosis and treatment optimization tools.26
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