
HAL Id: hal-02069076
https://hal.science/hal-02069076

Submitted on 15 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling the Compatibility of Licenses
Benjamin Moreau, Patricia Serrano-Alvarado, Matthieu Perrin, Emmanuel

Desmontils

To cite this version:
Benjamin Moreau, Patricia Serrano-Alvarado, Matthieu Perrin, Emmanuel Desmontils. Modelling
the Compatibility of Licenses. 16th Extended Semantic Web Conference (ESWC2019), Jun 2019,
Portorož, Slovenia. �hal-02069076�

https://hal.science/hal-02069076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Modelling the Compatibility of Licenses

Benjamin Moreau1,2, Patricia Serrano-Alvarado1, Matthieu Perrin1, and
Emmanuel Desmontils1

1 Nantes University, LS2N, CNRS, UMR6004, 44000 Nantes, France
{Name.LastName@}univ-nantes.fr

2 OpenDataSoft {Name.Lastname}@opendatasoft.com

Abstract. Web applications facilitate combining resources (linked data,
web services, source code, documents, etc.) to create new ones. For a
resource producer, choosing the appropriate license for a combined re-
source is not easy. It involves choosing a license compliant with all the
licenses of combined resources and analysing the reusability of the result-
ing resource through the compatibility of its license. The risk is either, to
choose a license too restrictive making the resource difficult to reuse, or
to choose a not enough restrictive license that will not sufficiently protect
the resource. Finding the right trade-off between compliance and com-
patibility is a difficult process. An automatic ordering over licenses would
facilitate this task. Our research question is: given a license li, how to au-
tomatically position li over a set of licenses in terms of compatibility and
compliance? We propose CaLi, a model that partially orders licenses. Our
approach uses restrictiveness relations among licenses to define compati-
bility and compliance. We validate experimentally CaLi with a quadratic
algorithm and show its usability through a prototype of a license-based
search engine. Our work is a step towards facilitating and encouraging
the publication and reuse of licensed resources in the Web of Data.

1 Introduction

Web applications facilitate combining resources (linked data, web services, source
code, documents, etc.) to create new ones. To facilitate reuse, resource producers
should systematically associate licenses with resources before sharing or publish-
ing them [1]. Licenses specify precisely the conditions of reuse of resources, i.e.,
what actions are permitted, obliged and prohibited when using the resource.

For a resource producer, choosing the appropriate license for a combined
resource or choosing the appropriate licensed resources for a combination is a
difficult process. It involves choosing a license compliant with all the licenses of
combined resources as well as analysing the reusability of the resulting resource
through the compatibility of its license. The risk is either, to choose a license
too restrictive making the resource difficult to reuse, or to choose a not enough
restrictive license that will not sufficiently protect the resource.

Relations of compatibility, compliance and restrictiveness on licenses could
be very useful in a wide range of applications. Imagine license-based search en-

2 Benjamin Moreau et al.

gines for services such as GitHub3, APISearch4, LODAtlas5, DataHub6, Google
Dataset Search7 or OpenDataSoft8 that could find resources licensed under li-
censes compatible or compliant with a specific license. Answers could be partially
ordered from the least to the most restrictive license. We argue that a model for
license orderings would allow the development of such applications.

We consider simplified definitions of compliance and compatibility inspired
by works like [2–5]: a license lj is compliant with a license li if a resource licensed
under li can be licensed under lj without violating li. If a license lj is compliant
with li then we consider that li is compatible with lj and that resources licensed
under li are reusable with resources licensed under lj . In general, if li is compat-
ible with lj then lj is more (or equally) restrictive than li. We also consider that
a license lj is more (or equally) restrictive than a license li if lj allows at most
the same permissions and has at least the same prohibitions/obligations than li.

Fig. 1: Three Creative Commons licenses described in RDF.

Usually but not always, when li is less restrictive than lj then li is compat-
ible with lj . For instance, see Fig. 1 that shows an excerpt of three Creative
Commons (CC)9 licenses described in RDF and using the ODRL vocabulary10.
Notice that there exists a restrictiveness order among these licenses, (a) is less
restrictive than (b) and (b) is less restrictive than (c). By transitivity (a) is less
restrictive than (c). Notice also that (a) is compatible with (b) and (c), but (b)

3https://github.com/
4http://apis.io/
5http://lodatlas.lri.fr/
6https://datahub.io/
7https://toolbox.google.com/datasetsearch
8https://data.opendatasoft.com/
9https://creativecommons.org/

10The term duty is used for obligations https://www.w3.org/TR/odrl-model/

https://github.com/
http://apis.io/
http://lodatlas.lri.fr/
https://datahub.io/
https://toolbox.google.com/datasetsearch
https://data.opendatasoft.com/
https://creativecommons.org/
https://www.w3.org/TR/odrl-model/

Modelling the Compatibility of Licenses 3

is not compatible with (c). This is due to the semantics of the prohibited action
DerivativeWorks that forbids the distribution of a derivation (remix, transform
or build upon) of the protected resource under a different license. Thus, de-
pending on the semantics of their actions, a restrictiveness relation between two
licenses does not imply a compatibility relation.

Our research question is: given a license li, how to automatically position li
over a set of licenses in terms of compatibility and compliance? The challenge we
face is how to generalise the automatic definition of the ordering relations among
licenses while taking into account the influence of the semantics of actions.

Inspired by lattice-based access control models [6,7], we propose CaLi (ClAs-
sification of LIcenses), a model for license orderings that uses restrictiveness rela-
tions and constraints among licenses to define compatibility and compliance. We
validate experimentally CaLi with a quadratic algorithm and show its usability
through a prototype of a license-based search engine. Our work is a step towards
facilitating and encouraging the publication and reuse of licensed resources in
the Web of Data. However, it is not intended to provide legal advice.

This paper is organised as follows. Section 2 discuses related works, Section 3
introduces the CaLi model, Section 4 illustrates the usability of our model, Sec-
tion 5 shows experiments of the implemented algorithm as well as the prototype
of a license-based search engine, and Section 6 concludes.

2 Related work

Automatic license classification requires machine-readable licenses. License ex-
pression languages such as CC REL11, ODRL, or L4LOD12 enable fine-grained
RDF description of licenses. Works like [8] and [9] use natural language process-
ing to automatically generate RDF licenses from licenses described in natural
language. Other works such as [10–12] propose a set of well-known licenses in
RDF described in CC REL and ODRL. Thereby, in this work, we suppose that
there exist consistent licenses described in RDF.

There exist some tools to facilitate the creation of license compliant resources.
TLDRLegal13, CC Choose14 and ChooseALicense15 help users to choose actions
to form a license for their resources. CC search16 allows users to find images
licensed under Creative Commons licenses that can be commercialized, modi-
fied, adapted, or built upon. Web2rights proposes a tool to check compatibility
among Creative Commons licenses17. DALICC [12] allows to compose arbitrary
licenses and provides information about equivalence, similarity and compatibility
of licenses. Finally, Licentia18, based on deontic logic to reason over the licenses,

11https://creativecommons.org/ns
12https://ns.inria.fr/l4lod/
13https://tldrlegal.com/
14https://creativecommons.org/choose/
15https://choosealicense.com/
16https://ccsearch.creativecommons.org/
17http://www.web2rights.com/creativecommons/
18http://licentia.inria.fr/

https://creativecommons.org/ns
https://ns.inria.fr/l4lod/
https://tldrlegal.com/
https://creativecommons.org/choose/
https://choosealicense.com/
https://ccsearch.creativecommons.org/
http://www.web2rights.com/creativecommons/
http://licentia.inria.fr/

4 Benjamin Moreau et al.

proposes a web service to find licenses compatible with a set of permissions, obli-
gations and prohibitions chosen by the user. From these tools, only Licentia and
DALICC use machine-readable licenses19,20 in RDF. But unfortunately, these
works do not order licenses in terms of compatibility or compliance.

The easiest way to choose a license for a combined resource is to create a
new one by combining all resource licenses to combine. Several works address
the problem of license compatibility and license combination. In web services, [2]
proposes a framework that analyses compatibility of licenses to verify if two
services are compatible and then generates the composite service license. [13]
addresses the problem of license preservation during the combination of digital
resources (music, data, picture, etc.) in a collaborative environment. Licenses of
combined resources are combined into a new one. In the Web of Data, [3] proposes
a framework to check compatibility among CC REL licenses. If licenses are
compatible, a new license compliant with combined ones is generated. [4] formally
defines the combination of licenses using deontic logic. [14] proposes PrODUCE,
an approach to combine usage policies taking into account the usage context.
These works focus on combining operators for automatic license combination
but do not propose to position a license over a set of licenses.

Concerning the problem of license classification to facilitate the selection of a
license, [15] uses Formal Concept Analysis (FCA) to generate a lattice of actions.
Once pruned and annotated, this lattice can be used to classify licenses in terms
of features. This classification reduces the selection of a license to an average
of three to five questions. However, this work does not address the problem of
license compatibility. Moreover, FCA is not suitable to generate compatibility
or restrictiveness relations among licenses. FCA defines a derivation operator on
objects that returns a set of attributes shared by the objects. We consider that
the set of actions in common of two licenses is not enough to infer these relations.
If applied to our introductory example, FCA can only work with permissions but
not with obligations and prohibitions. That is because li is less restrictive than lj
if permissions of li are a superset of permissions of lj , but regarding obligations
and prohibitions, li is less restrictive than lj if they are a subset of those of lj .
In the context of Free Open Source Software (FOSS), [5] proposes an approach,
based on a directed acyclic graph, to detect license violations in existing software
packages. It considers that license li is compatible with lj if the graph contains a
path from li to lj . However, as such a graph is build from a manual interpretation
of each license, its generalisation and automation is not possible.

In the domain of access control, [6] proposes a lattice model of secure infor-
mation flow. This model classifies security classes with associated resources. Like
in the compatibility graph of [5], security class sci is compatible with scj if the
lattice contains a path from sci to scj . Thus, this path represents the authorized
flow of resources (e.g., resource ri protected with sci can flow to a resource pro-
tected by scj without violating sci.). The lattice can be generated automatically
through a pairwise combination of all security classes if sci combined with sck

19http://rdflicense.appspot.com/rdflicense
20https://www.dalicc.net/license-library

http://rdflicense.appspot.com/rdflicense
https://www.dalicc.net/license-library

Modelling the Compatibility of Licenses 5

gives scj where sci and sck are both compatible with scj . [7] describes several
models based on this approach but none focuses on classifying licenses.

None of these works answers our research question. They do not allow to
automatically position a license over a set of licenses in terms of compatibility
or compliance. In our work we propose a lattice-based model inspired by [6]. This
model is independent of any license description language, application context and
licensed resource so that it can be used in a wide variety of domains.

3 CaLi: a lattice-based license model

The approach we propose to partially order licenses in terms of compatibility and
compliance passes through a restrictiveness relation. In a license, actions can be
distributed in what we call status, e.g., permissions, obligations and prohibitions.
To decide if a license li is less restrictive than lj , it is necessary to know if an
action in a status is considered as less restrictive than the same action in another
status. In the introductory example (Fig. 1), we consider that permissions are
less restrictive than obligations, which are less restrictive than prohibitions, i.e.,
Permission 6 Duty 6 Prohibition. This relation can be seen in Fig 2b.

We remark that if two licenses have a restrictiveness relation then it is pos-
sible that they have a compatibility relation too. The restrictiveness relation
between the licenses can be automatically obtained according to the status of
actions without taking into account the semantics of the actions. Thus, based
on lattice-ordered sets [16], we define a restrictiveness relation among licenses.

To identify the compatibility among licenses, we refine the restrictiveness re-
lation with constraints. The goal is to take into account the semantics of actions.
Constraints also distinguish valid licenses from non-valid ones. We consider a li-
cense li as non-valid if a resource can not be licensed under li, e.g., a license that
simultaneously permits the Derive action21 and prohibits DerivativeWorks22.

This approach is based on:

1. a set of actions (e.g., read, modify, distribute, etc.);
2. a restrictiveness lattice of status that defines (i) all possible status of an ac-

tion in a license (i.e., permission, obligation, prohibition, recommendation,
undefined, etc.) and (ii) the restrictiveness relation among status; a restric-
tiveness lattice of licenses is obtained from a combination of 1 and 2;

3. a set of compatibility constraints to identify if a restrictiveness relation be-
tween two licenses is also a compatibility relation; and

4. a set of license constraints to identify non-valid licenses.

Next section introduces formally the CaLi model and Section 3.2 introduces
a simple example of a CaLi ordering.

21https://www.w3.org/TR/odrl-vocab/#term-derive
22https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

https://www.w3.org/TR/odrl-vocab/#term-derive
https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

6 Benjamin Moreau et al.

3.1 Formal model description

We first define a restrictiveness lattice of status. We use a lattice structure be-
cause it is necessary, for every pair of status, to know which status is less (or
more) restrictive than both.

Definition 1 (Restrictiveness lattice of status LS).
A restrictiveness lattice of status is a lattice LS = (S,6S) that defines all possi-
ble status S for a license and the relation 6S as the restrictiveness relation over
S. For two status si, sj, if si 6S sj then si is less restrictive than sj.

(a) (b) (c) (d)

Fig. 2: Examples of restrictiveness lattices of status (LS). Dashed arrows represent
restrictiveness, e.g., in (a) Permission is less restrictive than Prohibition.

Different LSs can be defined according to the application domain. Fig. 2a
shows the diagram of a LS inspired by file systems where actions can be either
prohibited or permitted. With this lattice, prohibiting to read a file is more
restrictive than permitting to read it. Fig. 2b illustrates a LS for CC licenses
where actions are either permitted, required (Duty) or prohibited. Fig. 2c shows a
LS inspired by the ODRL vocabulary. In ODRL, actions can be either permitted,
obliged, prohibited or not specified (i.e., undefined). In this lattice, the undefined
status is the least restrictive and the prohibited one the most restrictive. Fig. 2d
shows a LS where a recommended or permitted action is less restrictive than
the same action when it is permitted and recommended.

Now we formally define a license based on the status of its actions.

Definition 2 (License).
Let A be a set of actions and LS = (S,6S) be a restrictiveness lattice of status.
A license is a function l : A → S. We denote by LA,LS the set of all licenses.

For example, consider A = {read ,modify , distribute}, LS the lattice of Fig.
2c and two licenses: li which permits read and distribute but where modify is
undefined and lj where modify is also undefined but which permits read and
prohibits distribute. We define li and lj as follows:

Modelling the Compatibility of Licenses 7

∀a ∈ A:
li(a) =

{
Undefined if a ∈ {modify};
Permission if a ∈ {read , distribute}.

lj(a) =


Undefined if a ∈ {modify};
Permission if a ∈ {read};
Prohibition if a ∈ {distribute}.

A restrictiveness lattice of status and a set of licenses make possible to par-
tially order licenses in a restrictiveness lattice of licenses.

Definition 3 (Restrictiveness relation over licenses).
Let A be a set of actions and LS = (S,6S) be a restrictiveness lattice of status
associated to the join and meet operators ∨S and ∧S, and li, lj ∈ LA,LS be two
licenses. We say that li is less restrictive than lj, denoted li 6R lj, if for all
actions a ∈ A, the status of a in li is less restrictive than the status of a in lj.
That is, li 6R lj if ∀a ∈ A, li(a) 6S lj(a).

Moreover, we define the two operators ∨ and ∧ as follows. For all actions
a ∈ A, the status of a in li ∨ lj (resp. li ∧ lj) is the join (resp. meet) of the
status of a in li and the status of a in lj. That is, (li ∨ lj)(a) = li(a) ∨S lj(a)
and (li ∧ lj)(a) = li(a) ∧S lj(a).

For example, consider LS the lattice of Fig. 2c, and licenses li and lj defined
previously; li 6R lj because li(read) 6S lj(read), li(modify) 6S lj(modify) and
li(distribute) 6S lj(distribute). In this example, li ∨ lj = lj because ∀a ∈ A,
(li∨ lj)(a) = lj(a), e.g., (li∨ lj)(distribute) = lj(distribute) = Prohibition. If for
an action, it is not possible to say which license is the most restrictive then the
compared licenses are not comparable by the restrictiveness relation.

Remark 1 The pair (LA,LS ,6R) is a restrictiveness lattice of licenses, whose
∨ and ∧ are respectively the join and meet operators.

In other words, for two licenses li and lj , li ∨ lj (resp. li ∧ lj) is the least (resp.
most) restrictive license that is more (resp. less) restrictive than both li and lj .

Remark 2 For an action a ∈ A, we call (L{a},LS ,6R) the action lattice of
a. Remark that (LA,LS , 6R) and

∏
a∈A(L{a},LS ,6R) are isomorphic. That is,

a restrictiveness lattice of licenses can be generated through the coordinatewise
product [16] of all its action lattices. The total number of licenses in this lattice
is |LS||A|.

For example, consider A = {read ,modify}, LS the lattice of Fig. 2a,
(LA,LS ,6R) is isomorphic to (L{read},LS ,6R)×(L{modify},LS ,6R). Figure 3a,b,c
illustrates the product of these action lattices and the produced restrictiveness
lattice of licenses.

To identify the compatibility relation among licenses and to distinguish valid
licenses from non-valid ones it is necessary to take into account the semantics of
actions. Thus, we apply two types of constraints to the restrictiveness lattice of
licenses: license constraints and compatibility constraints.

8 Benjamin Moreau et al.

Definition 4 (License constraint).
Let LA,LS be a set of licenses. A license constraint is a function
ωL : LA,LS → Boolean which identifies if a license is valid or not.

For example, the license constraint ωL1
considers a license li ∈ LA,LS non-valid

if read is prohibited but modification is permitted (i.e., a modify action implies
a read action):

ωL1(li) =

{
False if li(read) = Prohibition and li(modify) = Permission;
True otherwise.

Definition 5 (Compatibility constraint).
Let (LA,LS ,6R) be a restrictiveness lattice of licenses. A compatibility constraint
is a function ω→ : LA,LS × LA,LS → Boolean which constraints the restrictive-
ness relation 6R to identify compatibility relations among licenses.

For example, consider that a license prohibits the action modify. In the spirit
of DerivativeWork, we consider that the distribution of the modified resource
under a different license is prohibited. Thus, the compatibility constraint ω→1

,
considers that a restrictiveness relation li 6R lj can be also a compatibility re-
lation if li does not prohibit modify. This constraint is described as:

For li, lj ∈ LA,LS ,

ω→1(li, lj) =

{
False if li(modify) = Prohibition;
True otherwise.

Now we are able to define a CaLi ordering from a restrictiveness lattice of
licenses and constraints defined before.

Definition 6 (CaLi ordering).
A CaLi ordering is a tuple 〈A,LS, CL, C→〉 such that A and LS form a restric-
tiveness lattice of licenses (LA,LS ,6R), CL is a set of license constraints and
C→ is a set of compatibility constraints. For two licenses li 6R lj ∈ LA,LS , we
say that li is compatible with lj, denoted by li → lj, if ∀ωL ∈ CL, ωL(li) =
ωL(lj) = True and ∀ω→ ∈ C→, ω→(li, lj) = True.

Remark 3 We define the compliance relation as the opposite of the compati-
bility relation. For two licenses li, lj, if li → lj then lj is compliant with li.

A CaLi ordering is able to answer our research question, given a license li, how
to automatically position li over a set of licenses in terms of compatibility and
compliance? It allows to evaluate the potential reuse of a resource depending on
its license. Knowing the compatibility of a license allows to know to which extent
the protected resource is reusable. On the other hand, knowing the compliance of
a license allows to know to which extent other licensed resources can be reused.
Next section shows an example of CaLi ordering.

Modelling the Compatibility of Licenses 9

3.2 Example 1

Consider a CaLi ordering 〈A,LS, {ωL1
}, {ω→1

}〉 such that:

– A is the set of actions {read, modify},
– LS is a restrictiveness lattice of status where an action can be either per-

mitted or prohibited, and Permission 6S Prohibition (cf Fig. 2a),
– ωL1

is the license constraint introduced in the example of Def. 4, and
– ω→1

is the compatibility constraint introduced in the example of Def. 5.

Fig. 3: (a) and (b) are the action latices (L{read},LS ,6R) and (L{modify},LS ,6R),
where A = {read ,modify} and LS is the lattice of Fig. 2a (Pr=Prohibition and
P=Permission). The product of these action lattices gives the restrictiveness lattice
of licenses (c) (LA,LS ,6R) (reflexive relations are not represented). (d) is the CaLi or-
dering 〈A,LS, {ωL1}, {ω→1}〉.

Fig. 3d shows a visual representation of this CaLi ordering. Licenses in grey
are identified as non-valid by ωL1

. They are part of the ordering but cannot
protect resources. Dashed arrows represent restrictiveness relations 6R. Black
arrows represent restrictiveness relations that are also compatibility relations.

Consider a set of resources R = {r1, r2, r3, r4, r5}. ⇀ is the has license rela-
tion such that {r1, r2}⇀ l1; r3 ⇀ l3; {r4, r5}⇀ l4. Thanks to our CaLi ordering,
next questions can be answered.

– Which licensed resources can be reused in a resource that has as license l3?
Those resource whose licenses are compatible with l3: r1 and r2 that have
license l1 which precedes l3, as well as r3 that has the license l3 itself.

– Which licensed resources can reuse a resource that has as license l1? Those
resource whose licenses are compliant with l1: r3, r4 and r5 that have licenses
l3 and l4 which follow l1, as well as r1 and r2 that have the license l3 itself.

Resulting licenses can be returned ordered in a graph of compatibility.
We illustrated CaLi with a simple restrictiveness lattice of status, next sec-

tion introduces a more realistic CaLi ordering inspired by licenses of Creative
Commons.

10 Benjamin Moreau et al.

4 A CaLi ordering for Creative Commons

Creative Commons proposes 7 licenses that are legally verified, free of charge,
easy-to-understand and widely used when publishing resources on the Web.
These licenses use 7 actions that can be permitted, required or prohibited. In
this CaLi example, we search to model a complete compatibility ordering of all
possible valid licenses using these 7 actions.

4.1 Description of a CC ordering based on CaLi

Consider CC_CaLi, a CaLi ordering 〈A,LS, CL, C→〉 such that:

– A is the set of actions {cc:Distribution, cc:Reproduction, cc:DerivativeWorks,
cc:CommercialUse, cc:Notice, cc:Attribution, cc:ShareAlike},

– LS is the restrictiveness lattice of status depicted in 2b23, and
– CL, C→ are the sets of constraints defined next.

CL = {ωL2
, ωL3

} allows to invalidate a license (1) when cc:CommercialUse is
required and (2) when cc:ShareAlike is prohibited:

ωL2(li) =

{
False if li(cc:CommercialUse) = Duty;
True otherwise.

ωL3(li) =

{
False if li(cc:ShareAlike) = Prohibition;
True otherwise.

C→ = {ω→2
, ω→3

} allows to identify (1) when cc:ShareAlike is required and
(2) when cc:DerivativeWorks is prohibited. That is because cc:ShareAlike re-
quires that the distribution of derivative works be under the same license only,
and cc:DerivativeWorks, when prohibited, does not allow the distribution of a
derivative resource, regardless of the license.

ω→2(li, lj) =

{
False if li(cc:ShareAlike) = Duty;
True otherwise.

ω→3(li, lj) =

{
False if li(cc:DerivativeWorks) = Prohibition;
True otherwise.

Other constraints could be defined to be closer to the CC schema24 but for the
purposes of this compatibility ordering these constraints are enough.

4.2 Analysis of CC_CaLi

The size of the restrictiveness lattice of licenses is 37 but the number of valid
licenses of CC_CaLi is 972 due to CL. That is, 5 actions in whatever status
and 2 actions (cc:CommercialUse and cc:ShareAlike) in only 2 status: 35 ∗ 22.

23To simplify, we consider that a requirement is a duty.
24https://creativecommons.org/ns

https://creativecommons.org/ns

Modelling the Compatibility of Licenses 11

The following CC_CaLi licenses are like the official CC licenses.

CCBY (a) =


Permission if a ∈ {cc:Distribution, cc:Reproduction

cc:DerivativeWorks, cc:CommercialUse
cc:ShareAlike};

Duty if a ∈ {cc:Notice, cc:Attribution}.

CCBY NC(a) =


Permission if a ∈ {cc:Distribution, cc:Reproduction

cc:DerivativeWorks, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution};
Prohibition if a ∈ {cc:CommercialUse}.

The following CC_CaLi licenses are not part of the official CC licenses.
License CC l1 is like CC BY-NC but without the obligation to give credit to
the copyright holder/author of the resource. CC l2 is like CC BY but with the
prohibition of making multiple copies of the resource. License CC l3 allows only
exact copies of the original resource to be distributed. CC l4 is like CC l3 with
the prohibition of commercial use.

CC l1(a) =


Permission if a ∈ {cc:Distribution, cc:Reproduction,

cc:DerivativeWorks, cc:ShareAlike,
cc:Notice, cc:Attribution};

Prohibition if a ∈ {cc:CommercialUse}.

CC l2(a) =


Permission if a ∈ {cc:Distribution, cc:DerivativeWorks,

cc:CommercialUse, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution};
Prohibition if a ∈ {cc:Reproduction}.

CC l3(a) =


Permission if a ∈ {cc:Distribution, cc:ShareAlike, cc:CommercialUse};
Duty if a ∈ {cc:Notice, cc:Attribution, cc:Reproduction};
Prohibition if a ∈ {cc:DerivativeWorks}.

CC l4(a) =


Permission if a ∈ {cc:Distribution, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution, cc:Reproduction};
Prohibition if a ∈ {cc:DerivativeWorks, cc:CommercialUse}.

In CC_CaLi, the minimum is the license where all actions are permitted
(i.e., CC Zero) and the maximum is the license where all actions are prohibited.

Fig. 4 shows two subgraphs of CC_CaLi with only the compatibility re-
lations. Fig. 4a shows only the 7 official CC licenses and Fig. 4b includes also
CC l1 to CC l4. These graphs can be generated using the CaLi implementation
(cf Section 5). Thanks to ω→2

, the restrictiveness relation between CC BY-SA
and CC BY-NC-SA is not identified as a compatibility relation and thanks to
ω→3 , the restrictiveness relation between CC BY-ND and CC BY-NC-ND is
not identified as a compatibility relation. We recall that a license that prohibits
cc:DerivativeWorks is not compatible even with itself.

The compatibility relations of Fig. 4a are conform to the ones obtained from
the Web2rights tool. This example shows the usability of CaLi with a real set of
licenses.

12 Benjamin Moreau et al.

Fig. 4: Compatibility subgraphs of CC_CaLi: (a) contains the 7 official CC licenses
and (b) contains CC l1 to CC l4 in addition to the 7 official CC licenses.

5 Implementation of CaLi orderings

The goal of this section is twofold, to analyse the algorithm we implemented
to produce CaLi orderings and to illustrate the usability of CaLi through a
prototype of a license-based search engine.

5.1 Experimental validation

The size growth of CaLi orderings is exponential, i.e., |LS||A|. Nevertheless, it
is not necessary to explicitly build a CaLi ordering to use it. Sorting algorithms
like insertion sort can be used to produce subgraphs of a CaLi ordering.

We implemented an algorithm that can sort any set of licenses using the LS
of Fig. 2c in

∑n−1
i=0 i = n(n−1)

2 comparisons of restrictiveness (approx. n2/2), n
being the number of licenses to sort, i.e., O(n2). The goal is to be able to insert
a license in a graph in linear time O(n) without sorting again the graph.

We use a heuristic, based on the restrictiveness of the new license, to chose
between two strategies, 1) to insert a license traversing the graph from the
minimum or 2) from the maximum. To do this, our algorithm calculates the
relative position of the new license (node) from the number of actions that it
obliges and prohibits. The median depth (number of levels) of the existing graph
is calculated from the median of the number of prohibited and obliged actions of
existing licenses. Depending on these numbers, a strategy is chosen to find the
place of the new license in the graph.

Results shown in Fig. 5 demonstrate that our algorithm sorts a set of licenses
with at most n2/2 comparisons. We used 20 subsets of licenses of different sizes
from the CC_CaLi ordering. Size of subsets was incremented by 100 up to 2187
licenses. Each subset was created and sorted 3 times randomly. The curve was
produced with the average of the number of comparisons to sort each subset.

A comparison of restrictiveness takes on average 6 milliseconds25, thus to
insert a license in a 2000 licenses graph takes an average of 12 seconds. Building

25With a 160xIntel(R) Xeon(R) CPU E7-8870 v4 2.10GHz 1,5 Tb RAM.

Modelling the Compatibility of Licenses 13

Fig. 5: Performance of the implemented insertion sort algorithm in number of compar-
isons of restrictiveness with incremental size of subsets of licenses.

a whole graph is time consuming (a 2000 licenses graph takes on average 8 hours
to sort) but this time can be reduced with further optimisations of the process
to compare the restrictiveness of two licenses. The implementation in Python of
our algorithm and details of our experiments are available on GitHub26.

5.2 A search engine based on an ODRL CaLi ordering

We implemented a prototype of a search engine that allows to find linked data27

and source code repositories28 based on the compatibility or the compliance
of their licenses. We use licenses described with the ODRL vocabulary. ODRL
proposes properties to define semantic dependencies among actions29 that we
translate as CaLi constraints. Included In is defined as “An Action transitively
asserts that another Action encompasses its operational semantics”. Implies is
defined as “An Action asserts that another Action is not prohibited to enable its
operational semantics”. Thereby we consider that if an action ai is included in
another action aj then ai implies aj . For example, CommercialUse is included
in use, therefore we consider that CommercialUse implies use. That means that
if CommercialUse is permitted then use should be permitted too. To preserve
this dependency we implemented the constraint ωL4

.

ωL4(li) =


False if ai odrl:includedIn aj

AND (li(ai) = Permitted OR li(ai) = Obliged)
AND li(aj) = Prohibited;

True otherwise.

We use ODRL_CaLi, a CaLi ordering 〈A,LS, CL, C→〉 such that:

– A is the set of 72 actions of ODRL,
– LS is the restrictiveness lattice of status of Fig. 2c,
– CL = {ωL2

, ωL3
, ωL4

}, and
26https://github.com/benjimor/CaLi-Search-Engine
27http://cali.priloo.univ-nantes.fr/ld/
28http://cali.priloo.univ-nantes.fr/rep/
29https://www.w3.org/TR/odrl-vocab/#actionConcepts

https://github.com/benjimor/CaLi-Search-Engine
http://cali.priloo.univ-nantes.fr/ld/
http://cali.priloo.univ-nantes.fr/rep/
https://www.w3.org/TR/odrl-vocab/#actionConcepts

14 Benjamin Moreau et al.

– C→ = {ω→2 , ω→3}.

The size of this ordering is 472 and it is not possible to build it. This search
engine illustrates the usability of ODRL_CaLi through two subgraphs. On the
one side, there is a subgraph with the most used licenses in DataHub30 and
OpenDataSoft. Licenses in this graph are linked to some RDF datasets such
that it is possible to find datasets whose licenses are compatible (or compliant)
with a particular license. On the other side, there is a subgraph with the most
used licenses in GitHub. Here, licenses are linked to some GitHub repositories
and it is possible to find repositories whose licenses are compatible (or compliant)
with a particular license.

Discussion The model we propose uses restrictiveness as the basis to define
compatibility and compliance among licenses. This strategy works most of the
time, as we have shown in this paper, but it has certain limitations. In particular,
CaLi is not designed to define the compatibility of two licences if it is not coherent
with their restrictiveness relation. As an example consider two versions of MPL
licenses. Version 2.0 relaxes some obligations compared to version 1.1. Thus,
MPL-2.0 is less restrictive than MPL-1.1. With CaLi constraints, it can only be
possible to say that MPL-2.0 is compatible with MPL-1.1. But in the legal texts
it is said the opposite, i.e., MPL-1.1 is compatible with MPL-2.0.

Thereby, particularities in the usage of compatibility of licenses, the granu-
larity of the semantisation of licenses and the understanding of some actions (like
ShareAlike) are the main reasons of the difference between CaLi orderings and
other classifications. This is the case, for instance, of our compatibility graph
devoted to licenses of GitHub and the graph presented in [5].

6 Conclusions and perspectives

We proposed a lattice-based model to define compatibility and compliance rela-
tions among licenses. Our approach is based on a restrictiveness relation that is
refined with constraints to take into account the semantics of actions existing in
licenses. We have shown the feasibility of our approach through two CaLi order-
ings, one using the Creative Commons vocabulary and the second using ODRL.
We experimented the production of CaLi orderings with the implementation of
an insertion sort algorithm whose cost is n2/2. We implemented a prototype of
a license-based search engine that highlights the feasibility and usefulness of our
approach. Our compatibility model does not intent to provide a legal advice but
it allows to exclude those licenses that would contravene a particular license.

A perspective of this work is to take into account other aspects of licenses
related to usage contexts like jurisdiction, dates of reuse, etc. Another perspective
is to analyse how two compatibility orderings can be compared. That is, given
two CaLi orderings, if there is an alignment between their vocabularies and their
restrictiveness lattices of status are homomorphic then find a function to pass
from a CaLi ordering to another.

30https://old.datahub.io/

https://old.datahub.io/

Modelling the Compatibility of Licenses 15

Acknowledgments Authors thank Margo Bernelin and Sonia Desmoulin-Canselier
(laboratory of Droit et Changement Social - UMR CNRS 6297) for our helpful
discussions on this work.

References

1. O. Seneviratne, L. Kagal, and T. Berners-Lee, “Policy-Aware Content Reuse on
the Web,” in International Semantic Web Conference (ISWC), 2009.

2. G. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella, “Service License Com-
position and Compatibility Analysis,” in International Conference on Service-
Oriented Computing (ICSOC), 2007.

3. S. Villata and F. Gandon, “Licenses Compatibility and Composition in the Web of
Data,” in Workshop Consuming Linked Data (COLD) collocated with ISWC, 2012.

4. G. Governatori, A. Rotolo, S. Villata, and F. Gandon, “One License to Compose
Them All. A Deontic Logic Approach to Data Licensing on the Web of Data,” in
International Semantic Web Conference (ISWC), 2013.

5. G. M. Kapitsaki, F. Kramer, and N. D. Tselikas, “Automating the License Com-
patibility Process in Open Source Software With SPDX,” Journal of Systems and
Software, vol. 131, 2017.

6. D. E. Denning, “A Lattice Model of Secure Information Flow,” Communications
of the ACM, vol. 19, no. 5, 1976.

7. R. S. Sandhu, “Lattice-Based Access Control Models,” Computer, vol. 26, no. 11,
1993.

8. N. Sadeh, A. Acquisti, T. D. Breaux, L. F. Cranor, and et.al., “Towards Usable
Privacy Policies: Semi-Automatically Extracting Data Practices from Websites’
Privacy Policies,” in Symposium on Usable Privacy and Security (SOUPS), 2014.
Poster.

9. E. Cabrio, A. P. Aprosio, and S. Villata, “These Are Your Rights,” in European
Semantic Web Conference (ESWC), 2014.

10. V. Rodríguez Doncel, A. Gómez-Pérez, and S. Villata, “A Dataset of RDF Li-
censes,” in Legal Knowledge and Information Systems Conference (ICLKIS), 2014.

11. “Creative Commons licenses in RDF.” https://github.com/creativecommons/
cc.licenserdf. Accessed: 2018-11-26.

12. G. Havur, S. Steyskal, O. Panasiuk, A. Fensel, V. Mireles, T. Pellegrini, T. Thurner,
A. Polleres, and S. Kirrane, “DALICC: A Framework for Publishing and Con-
suming Data Assets Legally,” in International Conference on Semantic Systems
(SEMANTICS),Poster&Demo, 2018.

13. M. Mesiti, P. Perlasca, and S. Valtolina, “On the Composition of Digital Licenses
in Collaborative Environments,” in Conference on Database and Expert Systems
Applications (DEXA), 2013.

14. V. Soto-Mendoza, P. Serrano-Alvarado, E. Desmontils, and J. A. Garcia-Macias,
“Policies Composition Based on Data Usage Context,” in Workshop Consuming
Linked Data (COLD) collocated with ISWC, 2015.

15. E. Daga, M. d’Aquin, E. Motta, and A. Gangemi, “A Bottom-up Approach for
Licences Classification and Selection,” in Workshop on Legal Domain and Semantic
Web Applications collocated with ESWC, 2015.

16. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge
university press, 2002.

https://github.com/creativecommons/cc.licenserdf
https://github.com/creativecommons/cc.licenserdf

	Modelling the Compatibility of Licenses

