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A comparison of harmonic modeling methods with application to
control of switched systems with active filtering

Nicolas Blin1,2, Pierre Riedinger1, Jamal Daafouz1, Louis Grimaud2 and Philippe Feyel2

Abstract— Many harmonic modeling approaches have been
introduced in the literature, such as generalized state-space
averaging, dynamic phasors, extended harmonic domain, and
harmonic state-space. They are capable of capturing both the
transient evolution and the steady-state of harmonics. They
model the frequency coupling nature of a system and can expose
the frequency couplings within interconnected components. By
these modeling techniques, a linear time-periodic system can
be converted into a linear time-invariant system, which allows
the use of traditional analysis and control methods. This paper
presents a state of the art of harmonic modeling approaches.
Its contribution is to clearly establish the links between the
different approaches, in particular through the specification of
the decomposition of non-periodic signals in generalized Fourier
series with time-varying coefficients. This paper also shows the
advantages of harmonic modeling to analyse the frequency
couplings within associated systems and to the control with
active filtering.

I. INTRODUCTION

Transmission and conversion of electric power is an
essential element of modern society. To meet the new needs
the power systems are more and more complex, which
leads to several challenges. The non-linear components
introduce couplings between frequencies. In particular, high-
frequency converters inherently generate harmonics and can
interact with each other. These interactions may cause
unpredicted instability problems involving many different
frequencies, like in the Swiss locomotives case [14]. This
has motivated the researches for an analysis approach capable
of characterizing the frequency interactions in both transient
and steady state.

A review of the literature in this area shows that
various frequency domain based approaches have been
introduced. Generalized State-Space Averaging (GSSA)
[18] and Dynamic Phasors (DP) [12] are generalized
averaging approaches to model the harmonic content of
general linear systems. They employ Fourier series of time-
varying coefficients and have been widely used in power
system modeling and control, e.g. [9], [12], [19]. Extended
Harmonic Domain (EHD) [11] and Dynamic Harmonic
Domain (DHD) [3] have been introduced to analyse Linear
Time-Periodic (LTP) systems. They convert LTP systems into
Linear Time-Invariant (LTI) systems in the harmonic domain.
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Most LTI systems are easy to analyse since they can be
characterized entirely by their impulse response, allowing
traditional analysis methods. These approaches have also
been widely used, e.g. [10], [17]. Meanwhile, Harmonic State
Space (HSS) has been introduced for LTP system analysis
[20]. The HSS approach makes it possible to represent a
LTP system as a LTI state space of infinite dimension in the
harmonic domain by the use of the concept of Exponentially
Modulated Periodic (EMP) signals.

The main contribution of this paper is to clearly establish
the links between the various harmonic modeling techniques,
in particular through the specification of the decomposition
in generalized Fourier series with time-varying coefficients.
Especially, it is important to determinate the links between
HSS and averaging approaches. As a result, these methods
are different in their writing but they can be derived from a
unique state-space representation which is introduced in this
article. One more contribution of the paper is to incorporate
harmonic modeling techniques into the control of a switched
affine system to act on its state harmonics.

II. HARMONIC MODELING

In this section, we discuss the various harmonic modeling
approaches that have been introduced in the literature. To
clearly state the links between them, we present a harmonic
model from which they can all be derived. We also propose
a clear proof for the use of time-varying Fourier coefficients.
In this context, let us consider a linear time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

(1)

with x(t) ∈ Rnx , y(t) ∈ Rny , u(t) ∈ Rnu , and where
A(t), B(t), C(t), D(t) are some real-valued matrices of
appropriate dimension. If the matrices A(t), B(t), C(t), D(t)
are T -periodic, the system is a LTP system. If they are
constant, the system is a LTI system.

A. State-space averaging
The SSA approach is a signal average over a specified

period T , first introduced by Middlebrook and Cuk to model
switching converters [13]. They have chosen the period T
equal to the switching period of the converter to obtain a
simple state-space whose matrices only depend on the duty
cycle. To capture the transient evolution of the state variables,
this average is computed on a sliding window

x̄(t) = 1
T

∫ t
t−T x(p)dp (2)

The SSA approach can describe the signals accurately under
the linear ripple assumption and the small ripple assumption.



In other words, the signal waveforms should be linear
functions of time over the observation intervals and the
signals should be dominated by their dc term [13]. The
model needs higher order harmonics to describe large-signals
accurately [4]. By extension, the SSA approach has resulted
in the GSSA.

B. Generalized averaging

The GSSA approach is a general Fourier series
development with time-varying coefficients, first introduced
by Sanders [18]. The DP (Dynamic Phasors) approach has
been introduced by Mattavelli, Verghese, and Stankovic
[12] to emphasize the time-varying nature of the Fourier
coefficients, but GSSA and DP approaches essentially share
the same formulation. This section provides a clear statement
of this averaging methods and the decomposition in time-
varying Fourier coefficients is specified for non-periodic
signals. The links with EHD and DHD approaches are also
discussed and a more general model is introduced from
which any previous model can be easily derived.

Proposition 1: Any piecewise C0 signal x(·) with
bounded variations can be represented using a general
Fourier series of arbitrary period T = 2π

w by

x(t) = 2
∞∑

k=−∞
Xk(t)ejkwt − x(t− T ) a.e. (3)

and for a real number δ ∈]0, T [, by the non-causal relation

x(t− δ) =
∞∑

k=−∞
Xk(t)ejkw(t−δ) a.e. (4)

with time-varying coefficients

Xk(t) = 1
T

∫ t
t−T x(p)e−jkwpdp (5)

Proof: Let x(·) be a piecewise continuous signal with
bounded variations. This signal is locally integrable in the
sense of Lebesgue. Let us introduce the intermediate signal

x̃T (t, τ) =
∞∑

k=−∞
Xk(t)ejkwτ (6)

with time-varying coefficients

Xk(t) = 1
T

∫ t
t−T x(p)e−jkwpdp (7)

This signal depends on two time scales expressed by the two
variables t and τ and is T -periodic with respect to τ . It is
plotted for two different values of t in Fig. 1.

By application of Dirichlet’s theorem on Fourier series
convergence: for any fixed real number t and for any τ ∈
]t− T, t[,

x̃T (t, τ) = x(τ−)+x(τ+)
2

(8)

where x(τ−) and x(τ+) stands for the left and right limits
of x(·) in τ . Otherwise, for τ = t,

x̃T (t, t) =
x(t−)+x((t−T )+)

2
(9)

So that (3) holds almost everywhere, except at the
discontinuities of x(·).

Fig. 1. The signal x(τ) is plotted in blue and the signal x̃T (t, τ) is plotted
for t = t1 in red and for t = t2 in green versus its second time scale τ .

For a fixed real number δ ∈]0, T [, by writting (8) for
τ = t− δ,

x̃T (t, t− δ) =
x((t−δ)−)+x((t−δ)+)

2
(10)

So that (4) holds almost everywhere, except at the
discontinuities of x(·).

The coefficients Xk(t) are called generalized Fourier
coefficients in GSSA but also referred to as phasors in
DP. They are functions of time since the interval under
consideration slides as a function of time. Xk(t) is the
kth coefficient (or k−phasor) at time t. If the signal x(·)
is T -periodic after a certain time tr, then we can see
by Proposition 1 that the general Fourier coefficients are
constant: Xk(t) = Xk(tr + T ) for t ≥ tr + T . So the
signal is directly defined by its Fourier series: x(t) =
∞∑

k=−∞
Xk(tr + T )ejkwt for t ≥ tr + T . This is the reason

why a good suggestion to analyse the harmonic content of
DC-DC switching converters is to choose the period T equal
to the switching period. However, it is important to highlight
that the proposition holds for any period T .

Proposition 2: The harmonic dynamics of a C0,
piecewise C1 signal x(·) of derivative of bounded variations
can be described as

Ẋk(t) = < ẋ >k (t)− jkwXk(t) a.e. (11)

where Ẋk(·) stands for the derivative of the kth general
Fourier coefficient of x(·) (the kth harmonic dynamic) and
< ẋ >k (·) stands for the kth general Fourier coefficient of
the derivative of x(·).

Proof: Let the signal x(·) be continuous and
differentiable with piecewise continuous derivative and let
its derivative have bounded variations. Since x(·) is C0, for
a real positive number T and a given δ ∈]0, T [, (4) holds for
any time. Differentiation of (4) with respect to time gives
the state dynamic according to all its harmonic dynamics

ẋ(t− δ) =
∞∑

k=−∞
(Ẋk(t) + jkwXk(t))ejkw(t−δ)

(12)



By Proposition 1, since ẋ(·) is piecewise C0 with bounded
variations:

ẋ(t− δ) =
∞∑

k=−∞
< ẋ >k (t) ejkw(t−δ) a.e. (13)

Then, by identifying (12) and (13):

< ẋ >k (t) = Ẋk(t) + jkwXk(t) a.e. (14)

Proposition 3: The harmonics of a product of two
piecewise C0 signals y(·) and x(·) can be expressed using
the following convolution-based procedure

< yx >k (t) =
∞∑

i=−∞
Yk−i(t)Xi(t) a.e. (15)

where Yk(t), Xk(t) are the kth general Fourier coefficients
of y(t), x(t).

Proof: It can be easily proved using (4) for both signals.

In the literature, GSSA has been applied by taking few
harmonics into account, althought it was acknowledged that
higher order harmonics could also be included and must be
incorporated for a more accurate model of a large-signal
switching converter. This is because GSSA equations does
not allow to add harmonics easily, which has led to EHD
approach that systematically describes a LTP system by its
state space in the harmonic domain with an arbitrary number
of harmonics, possibly infinite [11], [17]. The term DHD
has also been introduced in [3] but it shares an identical
formulation. However, it is proposed on the following to take
into account an infinite number of harmonics but not to be
limited to LTP systems. Basically, GSSA equations are used
to generate systematically the state-space of a general linear
system in a harmonic basis. This requires to introduce the
concept of Toeplitz form presented in [20] and generalized
here to time-varying Fourier coefficients.

Definition 1: The Toeplitz form of a piecewise C0 matrix
A(t) is the infinite block matrix of the form

A(t) =


A0(t) A−1(t) A−2(t) ..
A1(t) A0(t) A−1(t) ..
A2(t) A1(t) A0(t) ..

: : : ..

 (16)

that contains all its generalized Fourier coefficients Ak(t).
Proposition 4: A linear time-varying system (1) with

piecewise C0 input signal and matrices can be represented
in the harmonic basis of period T as a state space model of
the form

Ẋ(t) = (A(t)−N )X(t) + B(t)U(t)
Y (t) = C(t)X(t) +D(t)U(t)

(17)

with

X(t) = [... X−k(t) ... X0(t) ... Xk(t) ...]T

Y (t) = [... Y−k(t) ... Y0(t) ... Yk(t) ...]T

U(t) = [... U−k(t) ... U0(t) ... Uk(t) ...]T

N = diag(... −jkw ... 0 ... jkw ...)

(18)

where Xk(t), Yk(t), Uk(t) are the generalized Fourier
coefficients of x(t), y(t), u(t) and A(t),B(t), C(t),D(t) are
the Toeplitz form of A(t), B(t), C(t), D(t).

Proof: Let us consider (1) with piecewise C0 input
signal and matrices. The kth coefficient of ẋ(·) and y(·) are
expressed as

< ẋ >k (t) = < Ax >k (t)+ < Bu >k (t)
Yk(t) = < Cx >k (t)+ < Du >k (t)

(19)

By the GSSA convolution-based procedure (15),

< ẋ >k (t) =
∞∑

i=−∞
Ak−i(t)Xi(t) +

∞∑
i=−∞

Bk−i(t)Ui(t)

Yk(t) =
∞∑

i=−∞
Ck−i(t)Xi(t) +

∞∑
i=−∞

Dk−i(t)Ui(t)

(20)
Then, the infinite vectors of the harmonics of ẋ(t) and y(t)
can be written with the Toeplitz form of matrices as

< ẋ > (t) = A(t)X(t) + B(t)U(t)
Y (t) = C(t)X(t) +D(t)U(t)

(21)

By (11), we can write

< ẋ > (t) = Ẋ(t)−NX(t) (22)

so that the derivative of the infinite vector X(t) of the
harmonics of x(t) can be expressed as

Ẋ(t) = (A(t)−N )X(t) + B(t)U(t) (23)

The state-space formulation (17) is an extension of GSSA
approach to an infinite number of harmonics. It provides the
state space of a general linear system in a harmonic basis of
chosen period T . The Fourier series must be truncated for
computation and the choice of period T becomes a crucial
criterion for model accuracy. If the investigated system is
LTP of period T , then by choosing T or a natural integer
multiple of T as the harmonic basis period, the Fourier
coefficients of the matrices appear to be time-invariant, so
are their Toeplitz form. In other words, a LTP system of
period T is converted into a LTI system of the form (17)
with A(t) = A, B(t) = B, C(t) = C, D(t) = D in
such a harmonic basis. Similar results are presented in EHD
and DHD approaches for which the harmonic basis period
is almost always equal to the system period. The modeling
approach introduced in this article gives the same results than
EHD for the analysis of LTP systems but it is more general
since it can also model non-periodic systems.

C. Harmonic state-space

The fundamental notion behind the development of
the traditional analysis tools like Bode diagram or pole
placement for LTI systems is that a sinusoidal input at a
given frequency is mapped by the LTI transfer function into
a sinusoidal output of the same frequency, but with possibly
different amplitude and phase. In contrast, if a sinusoid is
input to a LTP system, several sinusoids may appear in the
output signal at the frequency of the input sinusoid plus
integer multiples of the LTP system fundamental frequency



[21]. As a result, the Laplace domain used for LTI system
analysis cannot be used as it stands in LTP analysis context
and an analogous approach is required to define a LTP
transfer function and use traditional analysis tools. In that
context, HSS approach has been introduced by Wereley [20].

Definition 2: A geometrically periodic (GP) signal x(·),
with fundamental period T , has the property that

x(t+ nT ) = znx(t) (24)

where z ∈ C and n ∈ N.
Definition 3: An exponentially modulated periodic (EMP)

signal x(·) can be expressed as the complex Fourier series of
a periodic signal of fundamental period T = 2π

w modulated
by a complex exponential

x(t) = est
∞∑

k=−∞
Xke

jkwt (25)

where s ∈ C. It can be written on compact form

x(t) = estΓ(t)X (26)

where
Γ(t) = [... e−jkwt ... 1 ... ejkwt ...]
X = [... X−k ... X0 ... Xk ...]

T (27)

Proposition 5: GP and EMP signal spaces defined for a
period T are fundamental signal spaces for LTP systems of
period T .

Proof: The proof is essentially based on the study of
the state transition matrix over one period called monodromy
matrix in Floquet theory [5] and can be found in [20].

Proposition 5 means that a LTP system maps a GP (or
EMP) signal to a GP (or EMP) signal of same fundamental
frequency in steady state. This allows the definition of a LTP
transfer function. EMP signals have been introduced by Hill
[7] through periodic extension to kernel function of Laplace
to make the connection with the assumed Floquet solution.
A strong analogy proposed is that EMP signals are to LTP
systems as complex exponential signals are to LTI systems.
More details about Floquet theory and EMP signals can be
found in [2].

Proposition 6: A LTP system (1) of matrices A(t), B(t),
C(t), D(t) of period T can be written in the harmonic basis
of period T as an infinite LTI system of the form

sX = (A−N )X + BU
Y = CX +DU (28)

with
X = [... X−k ... X0 ... Xk ...]

T

Y = [... Y−k ... Y0 ... Yk ...]
T

U = [... U−k ... U0 ... Uk ...]
T

N = diag(... −jkw ... 0 ... jkw ...)

(29)

where A,B, C,D are the Toeplitz matrices of
A(t), B(t), C(t), D(t) and s ∈ C.

Proof: As EMP signal space is a fundamental signal
space for LTP systems, we consider

x(t) = estΓ(t)X
y(t) = estΓ(t)Y
u(t) = estΓ(t)U

(30)

The new state vector X contains an infinite number of
time-invariant coefficients. As the matrices are T -periodic,
they are equal to their Fourier series with classical Fourier
coefficients

A(t) =
∞∑

n=−∞
Ane

jnwt (31)

so that

A(t)x(t) = (
∞∑

n=−∞
Ane

jnwt)(est
∞∑

m=−∞
Xme

jmwt)

= est
∞∑

k=−∞
(
∞∑

m=−∞
XmAk−m)ejkwt

(32)
which can be written in compact form

A(t)x(t) = estΓ(t)AX (33)

where A is the Toeplitz matrix of A(t). Similar results are
obtained:

B(t)u(t) = estΓ(t)BU
C(t)x(t) = estΓ(t)CX
D(t)u(t) = estΓ(t)DU

(34)

Otherwise, let us note that

Γ̇(t) = NΓ(t) (35)

So, on the one hand,

ẋ(t) = sestΓ(t)X + estΓ̇(t)X
= estΓ(t)(sX +NX)

y(t) = estΓ(t)Y
(36)

And on the other hand, from (33) and (34) we write

A(t)x(t) +B(t)u(t) = estΓ(t)(AX + BU)
y(t) = estΓ(t)(CX +DU)

(37)

Finally, we can identify (36) and (37) and let the exponential
terms est and Γ(t) as they never go to zero, so that we get
to the state-space form (28).

Definition 4: The harmonic transfer function of a LTP
system (28) of period T is the infinite matrix

G(s) = C((sI − (A−N ))−1B +D (38)
The state-space form (28) allows the use of traditional

LTI analysis techniques, as pole-zero map [15]. The main
contribution is that it is possible to analyze harmonic
couplings by using the harmonic transfer function (38). This
time-invariant matrix is a linear operator of the harmonic
domain. Another strong analogy is given: HSS domain is
to LTP systems as Laplace domain is for LTI systems.
As opposed to the Laplace domain of unique reference
frame est, this representation contains an infinite range
of reference frames e(s+jkw)t. The term "−NX" in (28)
can be interpreted as a constrained rotation of the kth

component of the harmonic state variable at e−jkw. The
complex exponential est of EMP signals is related to their
non-periodic evolution on direction s, i.e. the transient
evolution of harmonics. Their derivative is sest so that
the multiplication by s denotes differentiation over time on
direction s. The product sX stands for the dynamic of the
state harmonics in direction s. The links between averaging
techniques and HSS are discussed on the following part.



D. Discussion

Many publications have focused on harmonic content,
resulting in several methods. The literature has not described
precisely the links between these different approaches
because of the differences in their writing and in their goals
[8]. DP and GSSA are essentially identical, as they are based
on same generalized Fourier representation (4) with time-
varying coefficients (5) and generate the same equations
(11) and (15). In the literature, these approaches have only
been developed for few harmonics. Mostly, only the first
harmonic at fundamental frequency is incorporated [18],
[19], or some known harmonics of the system are selected
to write the state-space and design a controller [6]. However,
it could have been developed for an arbitrary large number
of harmonics [9]. What is not clearly stated in the literature
is that EHD and DHD approaches are equivalent and that
they are a systematical writing of the LTI state space model
that one can get by applying GSSA equations to analyze
a LTP system with an arbitrary, possibly infinite number
of harmonics. The link becomes apparent by means of the
model proposed in Proposition 4 which is a systematical
writing of the state space model that one can get by applying
GSSA equations with an infinite number of harmonics. HSS
is a purely frequential release of EHD state space (28). It
is a frequential analysis domain for LTP systems that is
analogous to the Laplace domain for LTI system analysis.
Let us remark that HSS model can be derived from EHD
model by Laplace transform, which makes sense since EHD
model is LTI.

The model presented in this article in Proposition 4 is
a generalization of all the harmonic modeling approaches
as we can not only choose the number of harmonics to
take into account but also consider general linear (time-
varying) systems, including non-periodic systems. From this
model can be derived all the averaging models by truncation
or selection of harmonics, and HSS by Laplace transform.
The links between the different harmonic approaches are
summarized on Fig. 2.

Fig. 2. Links between the different harmonic modeling approaches. All
models can be derived from the state space of Proposition 4.

In practise, the Fourier series have to be truncated so that
they can be computed. Then, the accuracy of the truncated
model highly relies on the choice of the harmonic basis
period and the number of harmonics. The impact of the

basis period has been weakly developed so far. The bigger
the period of a harmonic basis is, the more precise it is, as
the frequencies represented in the basis are separated from
1
T . Practically speaking, we should choose the period large
enough to capture the low frequencies and include enough
harmonics to capture the high frequencies. As an example,
let’s consider the waveform x(t) = a1sin(wt)+a3sin(3wt).
By choosing T = 2π

w , only three constant harmonics at
w, 2w, and 3w would be needed to model perfectly the
signal. More generally, by choosing T = 2πN

w , N ∈ N∗,
we need 3N harmonics. However, by choosing T arbitrarily
(maybe if we don’t know w), we may need much more
harmonics, possibly an infinite number, and the harmonics
have no reason to be constant. The better choice to model and
analyze a DC-DC switched system seems to be a harmonic
basis of period equal to the switching period, so that the
resulting state-space model is LTI in steady state and only a
few harmonics are needed for accuracy.

Harmonic modeling has proved to be an interesting
tool to analyse the harmonic content of a system or
associated systems. It is valuable to make good choices
when associating components by analysing their frequency
interactions. In a control context, harmonic modeling allows
to directly control the harmonics and include harmonic
control specifications. This point has not been much explored
yet and it is considered in the next part.

III. CONTROL AND ACTIVE FILTERING OF SWITCHED
SYSTEMS

The harmonic modeling can be employed to improve the
control of industrial systems. Not only does it allow the
analysis of frequency couplings, but it also extends the notion
of equilibrium points. Indeed, a T -periodic signal is constant
in the harmonic basis of period T , so that it can be viewed
as an equilibrium point. It also enables to act separately on
these harmonics, to analyse their interactions and to control
them. These advantages have been used to design a LQ
controller for a full-bridge type rectifier in [6]. The harmonic
state-space model has been linearized and a LQR feedback
control synthesis in the harmonic domain has given harmonic
rejection criteria. We develop on the following a globally
asymptotically stable control law for switched affine systems
with periodic input perturbation rejection. This control takes
advantage of harmonic modeling without linearization and
we show that we can use it to eliminate input periodic
perturbations on the output voltage of a Boost converter.

A. Switched affine system

A switched system can be described by a state-space
model of the form

ẋ(t) = A(d(t))x(t) +B(d(t))u(t) (39)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
input vector and d(t) is the switching (piecewise continuous)
signal. The time-varying matrices can be decomposed as

A(d(t)) = Aind +Adep ⊗ d(t)
B(d(t)) = Bind +Bdep ⊗ d(t)

(40)



where ⊗ stands for the kronecker product. Our interest
is about time-varying input signals with some unwanted
harmonics. This input signal is assumed to be T -periodic,
so that it is constant in the harmonic basis of period T . By
Proposition 4, the corresponding state space in the harmonic
basis of period T is

Ẋ(t) = A(D(t))X(t) + B(D(t))U (41)

with
X(t) = [X{1}(t) ... X{nx}(t)]

T

U = [U{1} ... U{nu}]
T

A(D(t)) = Aind ⊗ I − Ñ +Adep ⊗DT (t)
B(D(t)) = Bind ⊗ I +Bdep ⊗DT (t)

Ñ = diag(N , ...,N )

(42)

where I is the identity matrix, X{j}(t) is the harmonic vector
of the jth state variable and U{l} is the harmonic vector of
the lth input variable. nx is the number of states and nu is
the number of inputs.

Definition 5: The set of harmonic equilibrium points is

E = {(Xe, De) | Xe = −A(De)−1B(De)U} (43)
Harmonic equilibrium points are not necessarely classical

equilibrium points as they contain harmonics of fundamental
period T . We are interested in accessible harmonic
equilibrium points for which A(De) is Hurwitz. Their set
is noted Ea.

Proposition 7: Considering the system (41), any
accessible equilibrium point (Xe, De) ∈ Ea is globally
asymptotically stable by the control law

D(t) = De −KBT (X(t), U)P(X(t)−Xe) (44)

with K > 0 and where P > 0 solution of the Lyapunov
equation A(De)TP + PA(De) + Q = 0. The matrix
B(X(t), U) depends on all the harmonics of each state and
input variables as

B(X(t), U) =
nx∑
j=1

(Adep{Cj}
⊗X{j}T (t))

+
nu∑
l=1

(Bdep{Cl}
⊗ U{l}T )

(45)

where Adep{Cj}
, Bdep{Cl}

are respectively the jth column of
Adep and the lth column of Bdep, and with X{j}T (t), U{l}T
the Toeplitz matrices of the harmonic vectors of the jth state
variable and the lth input variable.

Proof: The model (41) is affine and we undercome the
non-linearity issues by a similar approach than in [1]. The
equilibrium equation gives

0 = A(De)Xe + B(De)U (46)

So that (41) can be written as

Ẋ(t) = A(De)(X(t)−Xe) + (A(D(t))−A(De))X(t)
+(B(D(t))− B(De))U

(47)
On the one hand,

A(D(t))−A(De) = Adep ⊗ (D(t)−De)T
B(D(t))− B(De) = Bdep ⊗ (D(t)−De)T

(48)

And on the other hand,

(D(t)−De)TX{j}(t) = X{j}T (t)(D(t)−De)
(D(t)−De)TU{l} = U{l}T (D(t)−De)

(49)
So that we can write

Ẋ(t) = A(De)(X(t)−Xe) + B(X(t), U)(D(t)−De)
(50)

Assuming that A(De) is Hurwitz, for any positive definite
matrix Q, there is a definite positive matrix P solution of the
Lyapunov equation A(De)TP + PA(De) + Q = 0. Then,
we focus on the Lyapunov candidate

V (X(t), Xe) = (X(t)−Xe)TP(X(t)−Xe) (51)

Let us note Y (t) = BT (X(t), U)P(X(t) − Xe). We can
write

V̇ (X(t), Xe) = −(X(t)−Xe)TQ(X(t)−Xe)
+(D(t)−De)TY (t)
+Y (t)T (D(t)−De)

(52)
Thus, by choosing D(t) = De −KY (t),

V̇ (X(t), Xe) = −(X(t)−Xe)TQ(X(t)−Xe)
−2Y (t)TKY (t))

≤ 0
(53)

This function is equal to zero if and only if X(t) =
Xe. Thus, the Lyapunov function V (X(t), Xe) proves the
asymptotic stability of the equilibrium point Xe. Q is the
Lyapunov gain to spread the control effort and K is the gain
to adjust the control significance.

Such a control law, by using harmonic modeling, can be
exploited either to solve properly a tracking problem like a
traditional regulation problem or to eliminate some unwanted
harmonics.

B. Application to a Boost converter

Since we have defined a more general notion of
equilibrium points in (43), an input periodic perturbation
can now be considered as some constant perturbations on
each harmonics. So the idea to integrate these static errors
comes easily. In this part, we present some results about a
control law using harmonic modeling to eliminate unwanted
harmonics on the input. The chosen system to demonstrate
is a Boost converter of switching frequency fsw = 100kHz
connected to a constant load. Its temporal model is expressed
as in (39) with

x(t) =

[
i(t)
v(t)

]
u(t) = vin(t)

A(d(t)) =

[
0 − 1−d(t)

L
1−d(t)
C − 1

RC

]

B(d(t)) =

[
1
L
0

]
(54)



where i(t) is the current trough inductance, v(t) is the
output voltage that we want to regulate, vin(t) is the input
voltage, and d(t) is the pwm signal. We know how to
control a Boost converter and how to deal with constant input
perturbations. But regarding harmonic issues, the influence
of periodic input perturbations need to be studied. Fig.
3 shows the influence of a periodic input perturbation
vin(t) = vinc +vinvarsin(2πft) over the output voltage with
traditional control methods, choosing vinvar =

vinc

10 . High-
frequency periodic input perturbations are not significant
as they are viewed as noises and low-frequency periodic
input perturbations can be overcome by adaptative control
methods.

Fig. 3. Influence of periodic input perturbation vin(t) = vinc +
vinvarsin(2πft). A traditional control law is used, improved by
adaptive techniques to overcome low-frequency perturbations. The maximal
amplitude error on the output voltage is plotted against the perturbation
frequency.

Assuming that we know the period T of the input
perturbation, the idea is to study the system in the harmonic
basis of period T . The corresponding harmonic model is
expressed as in (41) with

X(t) =

[
I(t)
V (t)

]
U = Vin

A(D(t)) =

[
−N − 1

L (I −DT (t))
1
C (I −DT (t)) − 1

RC I −N

]

B(D(t)) =

[
1
LI
0I

]
(55)

Vin is constant since vin(t) is T -periodic. The control
objective is to regulate the ouput voltage to a setpoint.
That implies to avoid oscillations on the output voltage.
The corresponding reference harmonic vector contains zeros
everywhere except at its dc component. The computation
of the equilibrium point corresponding to a given reference
voltage can bring numerical issues due to the number of
variables, but it is overcomed by the use of integrators to
reject static errors on each harmonics. Fig. 4 shows the better
rejection of a periodic perturbation vin(t) = 30+3sin(2πft)
of critical frequency f = 5kHz by the use of harmonic
modeling techniques.

Fig. 4. Output regulation with rejection of a periodic input perturbation of
critical frequency f = 5kHz. The resulting output voltages are plotted for
traditional (temporal-based) control in green and harmonic-based control in
red.

IV. CONCLUSION

The harmonic domain can capture the harmonic content
of a system and it provides a better understanding of
frequency phenomena. Many different approaches have been
developed in the harmonic domain, but this article shows
that they are based on the same equations. Their differences
are only their writing and their objective frameworks for
control or analysis. In this paper, a state-space representation
is developed to describe the links between the different
approaches. From this general modeling can be derived all
the models presented in the literature. In practice, the key
point of harmonic modeling techniques is the choice of the
harmonic basis period and the number of harmonics taken
into account. The period has to be large enough to capture the
interesting low frequencies and the number of harmonics has
to be large enough to capture the interesting high frequencies.
Moreover, the period has to be a common multiple of all
periods of relevance to obtain a LTI state-space system. One
advantage of harmonic modeling is the possibility to control
directly the harmonics. A tracking problem can be solved as
a simple regulation problem and some harmonic criteria can
be included to control or avoid oscillations.
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