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MOVING AND OBLIQUE OBSERVATIONS OF BEAMS AND PLATES

PHILIPPE JAMING AND VILMOS KOMORNIK

Abstract. We study the observability of the one-dimensional Schrödinger equation
and of the beam and plate equations by moving or oblique observations. Applying
different versions and adaptations of Ingham’s theorem on nonharmonic Fourier series,
we obtain various observability and non-observability theorems. Several open problems
are also formulated at the end of the paper.

1. Introduction

Fourier series methods have been applied for a long time in control theory [5, 19, 20, 3].
Since Haraux [6] recognized the usefulness of a classical theorem of Ingham [7] in this
context, many new results have been obtained by applying multiple variants of Ingham’s
theorem [1, 2, 4, 11, 17].

The purpose of this paper is to investigate the observability of beams and plates by
moving or oblique observations.

Moving point observability theorems for parabolic and hyperbolic equations have been
obtained earlier by Khapalov by different methods [12, 13].

Another motivation for this paper was the following recent result of the first author
with K. Kellay [10]:

Theorem 1.1. Let µ be a bounded measure on R2 and let u = µ̂ be its Fourier transform.
Assume that u is a solution of the Schrödinger equation ∂tu(t, x)+i∂2

xu(t, x) = 0 on R+×R

and assume that, for some a 6= b ∈ R, u(t, at) = u(t, bt) = 0 for every t > 0 then u = 0.

In other words, a solution of the Schrödinger equation is uniquely determined by its
value in two moving points x = at and x = bt, t > 0. The proof however does not provide
any quantitative estimate on u from its values on these points.

We first consider the one-dimensional Schrödinger equation ut+ iuxx = 0 in a bounded
interval I with periodic boundary conditions and initial data u0 ∈ L2(I). We prove
among other things the observability relations

∫ T

0

|u(t, at)|2 dt ≍ ‖u0‖2L2(I)

for all non-integer real numbers a and for all T > 0. (See the beginning of the next
section for the notations.) On the other hand, the relations

m∑

i=1

∫ T

0

|u(t, ait)|2 dt ≍ ‖u0‖2L2(I)

fail for any choice of finitely many integers ai and for any T > 0.
Here and in the sequel the notation A ≍ B means that c1A ≤ B ≤ c2A with some

positive constants c1, c2 that do not depend on the particular choice of the initial data.
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Next we carry over a similar study for the one-dimensional beam equation utt+uxxxx =
0 in a bounded interval I with periodic boundary conditions and initial data u0 ∈ L2(I),
u1 ∈ H−2(I). For example, we have

∫ T

0

|u(t, at)|2 dt ≍ ‖u0‖2L2(I) + ‖u1‖2H−2(I)

if and only if the circle centered in (−a
2
, a
2
) and passing through the origin contains no other

points with integer coordinates. This is the case whenever a is irrational. Furthermore,
we give a necessary and sufficient geometric condition for the validity of the estimates

∫ T

0

|u(t, a1t)|2 dt+

∫ T

0

|u(t, a2t)|2 dt ≍ ‖u0‖2L2(I) + ‖u1‖2H−2(I)

in case of two given numbers a1, a2. It remains an open question whether there exist
exceptional cases indeed.

Finally we consider vibrating rectangular plates. Improving several earlier theorems
given in [6, 8, 9, 14], it was shown in [17] that these plates may be observed on an
arbitrarily small segment which is parallel to one of the sides of the rectangle. Using a
different tool we prove that the observability still holds for oblique segments.

The paper is organized as follows. In Section 2 we recall some Ingham type theorems
that we need in the subsequent proofs. Section 3 is then devoted to the one-dimensional
Schrödinger equation while Section 4 is devoted to the one-dimensional beam equation
and Section 5 to vibrating rectangular plates. We end the paper with a list of open
questions related to the problems studied here.

2. A review of Ingham type inequalities

Ingham type inequalities play a central role is this study. We therefore devote this
section to summarize the results we use.

If I is an interval of length |I| = 2π, then Parseval’s equality

1

|I|

∫

I

∣∣∣∣∣
∑

k∈Z

cke
ikx

∣∣∣∣∣

2

dx =
∑

k∈Z

|ck|2

holds for all square summable sequences (ck) of complex numbers. This equality remains
valid if the length of I is a positive multiple of 2π. It follows by an elementary argument
that if 2kπ < |I| < (2k + 2)π for some nonnegative integer k, then

2kπ
∑

k∈Z

|ck|2 ≤
∫

I

∣∣∣∣∣
∑

k∈Z

cke
ikx

∣∣∣∣∣

2

dx ≤ (2k + 2)π
∑

k∈Z

|ck|2

for all square summable sequences (ck), and the constants 2kπ, (2k + 2)π are the best
possible here. Hence

∫

I

∣∣∣∣∣
∑

k∈Z

cke
ikx

∣∣∣∣∣

2

dx ≍
∑

k∈Z

|ck|2

for every bounded interval I of length ≥ 2π. Here and in the sequel we use the notation
A ≪ B if there exists a positive constant α such that A ≤ αB for all sequences (ck), and
A ≍ B if A ≪ B and B ≪ A.

Ingham [7] proved an important generalization of the last relation. A set Λ of real
numbers is called uniformly separated if

(2.1) γ(Λ) := inf {|λ1 − λ2| : λ1, λ2 ∈ Λ and λ1 6= λ2} > 0;
2



then γ(Λ) is called the uniform gap of Λ. For example, Z is uniformly separated with
γ(Z) = 1. Note that the empty set and the one-point sets are uniformly separated with
γ(Λ) = ∞.

Theorem A (Ingham). Let Λ ⊂ R be a uniformly separated set.

(i)
∑

λ∈Λ cλe
iλx is a well-defined locally square summable function on R for every square

summable sequence (cλ).
(ii) The direct inequality

∫

I

∣∣∣∣∣
∑

λ∈Λ

cλe
iλx

∣∣∣∣∣

2

dx ≪
∑

λ∈Λ

|cλ|2

holds for every bounded interval I.
(iii) The inverse inequality

∑

λ∈Λ

|cλ|2 ≪
∫

I

∣∣∣∣∣
∑

λ∈Λ

cke
iλx

∣∣∣∣∣

2

dx

holds for every bounded interval I of length > 2π
γ(Λ)

.

Remark 2.1. If Λ is not uniformly separated, but it is the union of finitely many, say m
uniformly separated sets, then a simple application of the inequality

(x1 + · · ·+ xm)
2 ≤ m(x2

1 + · · ·+ x2
m)

shows that the direct inequality still holds.

The condition |I| > 2π
γ(Λ)

is the best uniform condition for all uniformly separated sets,

but it can be weakened for individual uniformly separated sets. We illustrate this by
recalling from [6] the following

Theorem B (Haraux). If Λ ⊂ R is a uniformly separated set and F ⊂ Λ is a finite
subset, then the inverse inequality of Theorem A holds under the condition |I| > 2π

γ(Λ\F )
.

Example 2.2. The square numbers 0, 1, 4, 9, . . . form a uniformly separated set Λ with
γ(Λ) = 1. If F = {0, 1, . . . , m− 1} for some positive integer m, then γ(Λ \ F ) =
2m + 1, so that the inverse inequality holds under the condition |I| > 2π

2m+1
. Since m

may be chosen arbitrarily large, hence the inverse inequality holds for all non-degenerated
bounded intervals.

Remark 2.3. The proof of Theorem B shows that the direct and inverse inequalities
remain valid under the same assumptions for more general sums of the form

∑

λ∈Λ′

cλ′xeiλ
′x +

∑

λ∈Λ

cλe
iλx

where Λ′ is some finite subset of Λ; see [16, Theorem 4.5].

For a particular uniformly separated set the optimal condition for the inverse inequality
has been determined by Beurling [4]; see also [2] for a generalization to weakly separated
sets.
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3. One-dimensional Schrödinger equation

We consider the one-dimensional Schrödinger equation on a bounded interval with
periodic boundary condition. Up to an affine change of variable, we may assume that the
interval is (0, 2π). Thus we consider the following system

(3.1)





ut + iuxx = 0 in R× (0, 2π),

u(t, 0) = u(t, 2π) for t ∈ R,

ux(t, 0) = ux(t, 2π) for t ∈ R,

u(0, x) = u0(x) for x ∈ (0, 2π).

Setting L2 := L2(0, 2π) for brevity and introducing the Sobolev space

H2
p :=

{
v ∈ H2(0, 2π) : v(0) = v(2π) and vx(0) = vx(2π)

}
,

for each initial datum u0 ∈ H2
p there is a unique weak solution

u ∈ C(R, H2
p) ∩ C1(R, L2).

Furthermore, u has a Fourier series representation

(3.2) u(t, x) =
∑

k∈Z

cke
i(k2t+kx)

where the ck’s are the Fourier coefficients of u0:

u0(x) =
∑

k∈Z

cke
ikx.

In particular, the ck satisfy Parseval’s identity
∑

k∈Z

|ck|2 =
1

2π
‖u0‖2L2 .

Using (3.2) we extend the solutions to R2 by 2π-periodicity in x and t.
First we ask whether the observability of the solutions on a fixed line segment of R2

allows us to identify the unknown initial datum.
The case of vertical segments is easy: since the exponential functions eikx form an

orthogonal basis in L2(I) on every interval I of length 2π, we infer from the formula

u(t1, x) =
∑

k∈Z

(
cke

ik2t1
)
eikx

that the knowledge of u on a segment {t1} × I determines u0 if and only if |I| ≥ 2π.
Moreover, in the latter case we also have the quantitative relation∫

I

|u(t1, x)| dx ≍
∑

k∈Z

|ck|2 .

The case of horizontal segments (pointwise observability) is different: we infer from the
equality

u(t, x1) =
∑

k∈Z

(
cke

ikx1
)
eik

2t = c0 +

∞∑

k=1

eik
2t
(
cke

ikx1 + c−ke
−ikx1

)

that the knowledge of u even on the line on a segment R× {x1} does not determine u0.
For example, if u0(x) = e−ix1eix − eix1e−ix, that is c1 = e−ix1 , c−1 = −eix1 and ck = 0 for
all other k’s, then u(t, x1) = 0 for all t ∈ R, although u(t, x) is not the zero solution.

The situation is much better for most oblique segments:
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Theorem 3.1. Fix (t1, x1) ∈ R2, a ∈ R and T > 0 arbitrarily, and consider the solutions
of (3.1).

(i) The direct inequality
∫ T

0

|u(t1 + t, x1 − at)|2 dt ≪
∑

k∈Z

|ck|2

always holds.
(ii) If a /∈ Z, then the inverse inequality

(3.3)
∑

k∈Z

|ck|2 ≪
∫ T

0

|u(t1 + t, x1 − at)|2 dt

also holds.
(iii) If a ∈ Z, then

(3.4)

∫ T

0

|u(t1 + t, x1 − at)|2 dt ≍
∞∑

k∈Z

|dk + da−k|2 ,

where we use the notations

dk := cke
i(k2t1+kx1), k ∈ Z.

In particular, then there exist non-trivial solutions satisfying

(3.5) u(t1 + t, x1 − at) = 0 for all t ∈ R,

and therefore the inverse inequality (3.3) fails.

Changing u(t, x) to v(t, x) := u(−t, x) we see that analogous results hold if we change
the equation in (3.1) to ut − iuxx = 0.

Proof. (i) For any fixed a ∈ R a straightforward computation shows that

(3.6) u(t1 + t, x1 − at) =
∑

k∈Z

cke
i(k2(t1+t)+k(x1−at)) =

∑

k∈Z

dke
i(k2−ak)t.

Since Λ := {k2 − ak : k ∈ Z} is the union of
{
k2 − ak : k ∈ Z, k ≥ a/2

}
and

{
k2 − ak : k ∈ Z, k < a/2

}
,

it suffices to show that latter two sets are uniformly discrete. (In view of Theorem A (i)
this will also show that the restrictions of the solutions for segments are well defined.)
This follows from the following inequalities: if k ≥ a/2

(
(k + 1)2 − a(k + 1)

)
− (k2 − ak) = 2k + 1− a ≥ 1

while if k < a/2,

(k2 − ak)−
(
(k − 1)2 − a(k − 1)

)
= 2k + a− 1 ≤ −1.

(ii) If a /∈ Z, then the set {k2 − ak : k ∈ Z} itself is uniformly discrete. Indeed, if k
and m are different integers, then

|(k2 − ak)− (m2 − am)| = |k −m||k +m− a| ≥ d(a,Z) := max(a− [a], [a] + 1− a)

where [a] is the integer part of a. If, for some positive integer N , k 6= m and k,m /∈
{−N, . . . , N}, then, using again the identity

(k2 − ak)− (m2 − am) = (k −m)(k +m− a),
5



we have

∣∣(k2 − ak)− (m2 − am)
∣∣ ≥





2N − a if k > m ≥ N,

2N + a if k < m ≤ −N,

2Nd(a,Z) if km < 0.

It follows that

γ(Λ \ {−N, . . . , N}) ≥ Nd(a,Z)

for all integers N > |a|. Letting N → ∞ and applying Theorem B we get the inverse
inequality (3.3).

(iii) If a ∈ Z, then we may rewrite (3.6) in the form

u(t1 + t, x1 − at) = da/2e
−i(a2/4)t +

∑

k∈Z,k>a/2

(dk + da−k)e
i(k2−ak)t

with the convention da/2 := 0 if a is an odd integer.
Since the set {

k2 − ak : k ∈ Z, k ≥ a/2
}

is uniformly separated, and
∣∣(k2 − ak)− (m2 − am)

∣∣ ≥ 2N − a

whenever k > m ≥ N , applying Theorem B we get (3.4) because

∣∣da/2
∣∣2 +

∞∑

k∈Z, k>a/2

|dk + da−k|2 ≍
∞∑

k∈Z

|dk + da−k|2 .

It follows from (3.4) that all solutions satisfying da/2 = 0 and dk + da−k = 0 for all
k ∈ Z satisfy the equality (3.5). If at least one of these coefficients is different from zero,
then the right side of (3.3) vanishes, while the left side is positive.

A concrete nonzero function satisfying (3.5) may be given as follows. We choose an
integer k 6= a/2 and then two nonzero numbers ck, ca−k satisfying the equality

cke
i(k2t1+kx1) + ca−ke

i((a−k)2t1+(a−k)x1) = 0.

Then the function

u(t, x) := cke
i(k2t+kx) + ca−ke

i((a−k)2t+(a−k)x)

has the required properties. �

Next we investigate what happens if we observe the solutions on two or more segments.
In view of Theorem 3.1 (i) we only investigate the validity of the inverse inequalities.

Theorem 3.2. Fix T > 0 arbitrarily, and consider the solutions of (3.1).

(i) Let (t1, x1), (t2, x2) ∈ R2, and a1, a2 two different integers. If

u(t1 + t, x1 − a1t) = u(t2 + t, x2 − a2t) = 0 for all t ∈ (0, T ),

then u is the trivial solution, i.e., u0 = 0. Nevertheless, the inverse inequality

∑

k∈Z

|ck|2 ≪
∫ T

0

|u(t1 + t, x1 − a1t)|2 + |u(t2 + t, x2 − a2t)|2 dt

fails.
6



(ii) The inverse inequality

∑

k∈Z

|ck|2 ≪
m∑

i=1

∫ T

0

|u(t1 + t, x1 − ait)|2 dt

also fails for any (t1, x1) ∈ R2 and any finite number of integers a1, . . . , am.

Proof. (i) Writing dk = cke
i(k2t1+kx1) again, the equality u(t1+t, x1−a1t) = 0 for t ∈ (0, T )

together with (3.4) imply that dk = −da1−k for every k. It follows that |ck| = |ca1−k| for
every k.

Similarly, u(t2 + t, x2 − a2t) = 0 for t ∈ (0, T ) implies |ck| = |ca2−k| for every k. But
then |ck| = |ca2−k| = |ca1−(a1−a2+k)| = |ca1−a2+k|, that is |ck| is (a1 − a2)-periodic. As |ck|
is square-summable, this can only happen if ck = 0 for every k.

For the second part, we construct a sequence (u0,n) ⊂ L2(0, 2π) of initial data such
that the corresponding solutions un satisfy the relation

(3.7)
1

‖u0,n‖22

2∑

i=1

∫ T

0

|un(ti + t, xi − ait)|2 dt → 0.

By the previous theorem the solutions satisfy the relation

2∑

i=1

∫ T

0

|u(ti + t, xi − ait)|2 dt ≍
∞∑

k∈Z

|dk + da1−k|2 + |ek + ea2−k|2

with the notations

dk := cke
i(k2t1+kx1) and ek := cke

i(k2t2+kx2).

Assuming by symmetry that a2 > a1, and setting p = a2−a1 the relation may be rewritten
in the form

2∑

i=1

∫ T

0

|u(ti + t, xi − ait)|2 dt ≍
∞∑

k∈Z

|dk + da1−k|2 + |ωkdk + da1−k+p|2

with suitable unimodular complex numbers ωk.
Fix an integer q > a1

2
. For any fixed positive integer n we define consecutively the

following numbers dk:

dq := 1, da1−q := −dq,

dq+p := −ωa1−qda1−q, da1−q−p := −dq+p,

dq+2p := −ωa1−q−pda1−q−p, da1−q−2p := −dq+2p,

· · ·
dq+np := −ωa1−q−(n−1)pda1−q−(n−1)p, da1−q−np := −dq+np.

Setting dk := for all other indices, we obtain a trigonometric polynomial

u0,n(x) =
∑

k∈Z

cke
ikx :=

∑

k∈Z

dke
−i(k2t1+kx1)eikx

satisfying

‖u0,n‖22 = 2π
∑

k∈Z

|ck|2 = 2n+ 2

and
∞∑

k∈Z

|dk + da1−k|2 + |ωkdk + da1−k+p|2 = 2.

7



This proves (3.7).

(ii) Note that in this part, (x1, t1) is the same for each a1, . . . , am. We will take
advantage of this to construct the sequence dk.

Now we are looking for a sequence (u0,n) ⊂ L2(0, 2π) of initial data such that the
corresponding solutions un satisfy the relation

1

‖u0,n‖22

m∑

i=1

∫ T

0

|un(t1 + t, x1 − ait)|2 dt → 0.

For any fixed positive integer n we consider the numbers

dk :=

{
sgn k if |k| ≤ n,

0 if |k| > n,

and we define

un(x) :=

n∑

k=−n

cke
ikx with ck := dke

−i(k2t1+kx1).

Then

‖u0,n‖22 = 2π
∑

k∈Z

|ck|2 = 2π
∑

k∈Z

|dk|2 = 4nπ.

On the other hand, using (3.4),

m∑

i=1

∫ T

0

|u(t1 + t, x1 − ait)|2 dt ≍
m∑

i=1

∞∑

k∈Z

|dk + dai−k|2 .

Therefore we will reach a contradiction if we bound
∞∑

k∈Z

|dk + dai−k|2 independently of n.

Fix i arbitrarily and write a := ai for brevity. The sequence (dk + da−k) takes only the
values −2,−1, 0, 1, 2. It suffices to show that the number of k’s for which dk + da−k 6= 0
is ≪ 1 + |a|. By the symmetry of the sequence (dk) it suffices to consider the values 1
and 2.

We have

dk + da−k = 2 ⇐⇒ 1 ≤ k ≤ n and 1 ≤ a− k ≤ n =⇒ 1 ≤ k ≤ 1 + a,

so that we have either no such k if a < 0 or at most 1 + a such indices k if a > 0.
Next, we have dk + da−k = 1 in the following three cases:

1 ≤ k ≤ n and a− k ≥ n+ 1 =⇒ 1 ≤ k ≤ a− 1− n;

1 ≤ k ≤ n and a− k = 0;

1 ≤ k ≤ n and a− k ≤ −n− 1 =⇒ a + 1 + n ≤ k ≤ n,

and in three other symmetric cases by exchanging k and a− k.
Since the first two cases above may only occur for a > 0, while the third case only for

a < 0, at most

max {(a− 1− n) + 1,−a} ≤ |a|
indices k satisfy one of them. We have the same upper bound for the three symmetric
cases, so that there are at most 2 |a| indices k for which dk + da−k = 1. �
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We may also consider other boundary conditions. Let us consider for example the
Dirichlet condition:

(3.8)





ut + iuxx = 0 in R× (0, π),

u(t, 0) = u(t, π) = 0 for t ∈ R,

u(0, x) = u0(x) for x ∈ (0, π).

The problem is well posed for every u0 ∈ H2
0 (0, π). Let us observe that extending an

arbitrary solution of (3.8) to a 2π-periodic odd function in the x variable we obtain a
solution of (3.1). Therefore Theorem 3.1 (i), (ii), (iii) and Theorem 3.2 (i) remain valid
for the solutions of (3.8).

The remaining parts were based on the construction of special solutions, so we need
some additional arguments. We have the following

Proposition 3.3. Fix T > 0 arbitrarily, and consider the solutions of (3.8).

(i) For any given (t1, x1) ∈ R2 and a ∈ Z there exist non-trivial solutions of (3.8)
satisfying

u(t1 + t, x1 − at) = 0 for all t ∈ R.

(ii) The inverse inequality

∑

k∈Z

|ck|2 ≪
m∑

i=1

∫ T

0

|u(t,−ait)|2 dt

fails for any T > 0 and for any finite number of integers a1, . . . , am.

Proof. The solutions of (3.8) are given by the series

u(t, x) =
∑

k∈Z

cke
i(k2t+kx)

with suitable square summable complex coefficients ck satisfying the relations ck+c−k = 0.

(i) We choose an integer k for which the four numbers k, a− k,−k, k − a are different
that and then two nonzero numbers ck, ca−k satisfying the equality

cke
i(k2t1+kx1) + ca−ke

i((a−k)2t1+(a−k)x1) = 0.

Then the function

u(t, x) : = ck sin(k
2t+ kx) + ca−k sin((a− k)2t + (a− k)x)

=
(ck
2i
ei(k

2t+kx) +
ca−k

2i
ei((a−k)2t+(a−k)x)

)
−
(ck
2i
ei(k

2t−kx) +
ca−k

2i
ei((a−k)2t−(a−k)x)

)

has the required properties by the same arguments as in the proof of Theorem 3.1 (iv).

(ii) Since (t1, x1) = (0, 0) and therefore dk = ck for all k, the sequences constructed in
the proof of Theorem 3.2 (ii) define solutions of not only (3.1), but also of (3.8). �
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4. Beam equation

We consider the one-dimensional linear beam equation with periodic boundary condi-
tions:

(4.1)





utt + uxxxx = 0 in R× (0, 2π),

u(t, 0) = u(t, 2π) for t ∈ R,

ux(t, 0) = ux(t, 2π) for t ∈ R,

u(0, x) = u0(x) for x ∈ (0, 2π),

ut(0, x) = u1(x) for x ∈ (0, 2π).

For any given initial data u0 ∈ H2
p and u1 ∈ L2 there is a unique weak solution

u ∈ C(R, H2
p) ∩ C1(R, L2).

Furthermore, u has a Fourier series representation

(4.2) u(t, x) = c+0 + c−0 t+
∑

k∈Z∗

(
c+k e

i(k2t+kx) + c−k e
i(−k2t+kx)

)

with suitable square summable complex coefficients c+k , c
−
k satisfying the relations

∑

k∈Z

(1 + k4)(
∣∣c+k
∣∣2 +

∣∣c−k
∣∣2) ≍ ‖u0‖2H2

p
+ ‖u1‖2L2 .

Using (4.2) we extend the solutions to R2 by 2π-periodicity in x.

Remark 4.1. Observe that (4.2) is no longer a trigonometric series if c−0 6= 0. However,
the results and proofs of this section remain valid in the general case by Remark 2.3.

First we consider the observation of the solutions on vertical line segments. (Analo-
gous theorems have been proved in [21] for the Klein–Gordon equations by a different
approach.)

Theorem 4.2. Fix two distinct nonzero real numbers t1, t2, a number T > 0, and consider
the solutions of (4.1).

(i) The direct inequality

(4.3)

∫ T

0

|u(t1, x)|2 + |u(t2, x)|2 dx ≪
∑

k∈Z

(|c+k |2 + |c−k |2)

and the weakened inverse inequality

(4.4) |c+0 |2 + |c−0 |2 +
∑

k∈Z∗

sin2 k2(t1 − t2)(|c+k |2 + |c−k |2) ≪
∫ T

0

|u(t1, x)|2 + |u(t2, x)|2 dx

always hold.
(ii) If (t2 − t1)/π is irrational, then the right hand side of (4.4) does not vanish for any

non-trivial solution.
(iii) If (t2 − t1)/π is rational, there exist non-trivial solutions for which the right hand

side of (4.4) vanishes.
(iv) The inverse inequality

(4.5)
∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)
≪
∫ T

0

|u(t1, x)|2 + |u(t2, x)|2 dx

always fails.
10



Proof. (i) Since

u(tj, x) = c+0 + c−0 tj +
∑

k∈Z∗

(
c+k e

ik2tj + c−k e
−ik2tj

)
eikx,

for j = 1, 2, applying Theorem B we get the relations

(4.6)
∣∣c+0 + c−0 tj

∣∣2 +
∑

k∈Z∗

∣∣∣c+k eik
2tj + c−k e

−ik2tj
∣∣∣
2

≍
∫ T

0

|u(tj, x)|2 dx.

They imply (4.3) by using the elementary inequality |a+ b|2 ≤ 2 |a|2 + 2 |b|2.
The relations (4.4) follows by adding (4.6) for j = 1, 2, and using for each k ∈ Z∗ the

following estimates with a = k2t1 and b = k2t2:
∣∣xeia + ye−ia

∣∣2 +
∣∣xeib + ye−ib

∣∣2 =
∣∣xe2ia + y

∣∣2 +
∣∣xe2ib + y

∣∣2

= 2(|x|2 + |y|2) + 2ℜ
(
xy
(
e2ia + e2ib

))

≥ (|x|2 + |y|2)
(
2−

∣∣e2ia + e2ib
∣∣)

= (|x|2 + |y|2)4−
∣∣e2ia + e2ib

∣∣2

2 + |e2ia + e2ib|

= (|x|2 + |y|2) 4 sin2(a− b)

2 + |e2ia + e2ib|
≥ (|x|2 + |y|2) sin2(a− b).

(ii) If (t2 − t1)/π is irrational and the right side of (4.4) vanishes for some solution u,
then we infer from (4.4) that all coefficients c±k are equal to zero because sin2 k2(t1−t2) 6= 0
for all k ∈ Z∗, so that u is the trivial solution.

(iii) If (t2 − t1)/π is rational, there exists a nonzero integer k such that k2(t1 − t2) is a
multiple of 2π. Then the formula

u(t, x) =
(
e−ik2t1eik

2t − eik
2t1e−ik2t

)
eikx

defines a non-trivial solution of (4.1) such that u(t1, x) = u(t2, x) = 0 for all x ∈ R.
(iv) It follows from (4.6) that the inverse inequality (4.5) holds if and only if the

matrices

Ak :=

(
eik

2t1 e−ik2t1

eik
2t2 e−ik2t2

)

are invertible, and the norms of their inverses are bounded by some uniform constant.
If (t2 − t1)/π is rational, then not all matrices Ak are invertible by (iii). Otherwise, by

the irrationality there exists a sequence (kj) of positive integers such that k2
j (t1− t2) → 0

mod 2π, and then the above norms tend to ∞ as j → ∞. �

Now we turn to the case of oblique segments. Given a real number a, if u is a solution
of (4.1), then a straightforward computation shows that

(4.7) u(t0 + t, x0 − at) = d+0 + d−0 t+
∑

k∈Z∗

(
d+k e

i(k2−ak)t + d−k e
i(−k2−ak)t

)
,

where we use the notations

d+0 := c+0 + c−0 t0, d−0 := c−0

and
d+k := c+k e

i(k2t0+kx0), d−k := c−k e
i(−k2t0+kx0) for k ∈ Z∗.

11



Observe that ∑

k∈Z

(∣∣d+k
∣∣2 +

∣∣d−k
∣∣2
)
≍
∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)
.

In order to state our results we introduce the circle Sa ⊂ R2 centered in (a/2,−a/2)
and passing through the origin. Its cartesian equation is

(
x− a

2

)2
+
(
y +

a

2

)2
=

a2

2
or equivalently x2 − ax+ y2 + ay = 0.

Furthermore, we introduce the set Aa = Sa ∩ Z2 \ {(0, 0)}.
Remarks 4.3.

(i) Since the distance between distinct elements of Aa is at least one, Aa cannot have
more elements than the perimeter of the circle Sa: |Aa| ≤

√
2πa.

(ii) If a is irrational, then Aa is empty. Indeed, if (k,m) ∈ Aa, then a = k2+m2

k−m
∈ Q.

(iii) If a is not an integer, then no element of Aa has any zero coordinate, and hence
Aa = (Z∗)2 ∩ Sa. Indeed, if (k, 0) ∈ Aa, then a = k ∈ Z from the above equation of
Sa.

Theorem 4.4. Fix (t1, x1) ∈ R2, a ∈ R and T > 0 arbitrarily, and consider the solutions
of (4.1).

(i) The direct inequality
∫ T

0

|u(t1 + t, x1 − at)|2 dt ≪
∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)

always holds.
(ii) If a 6= 0 and Aa = ∅, then the inverse inequality

∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)
≪
∫ T

0

|u(t1 + t, x1 − at)|2 dt

also holds. In particular, the inverse inequality holds whenever a is irrational.
(iii) If a ∈ Z or if Aa 6= ∅, then there exist non-trivial solutions satisfying

u(t1 + t, x1 − at) = 0 for all t ∈ R,

so that the inverse inequality in (ii) fails.

Remark 4.5. Similarly to the Schrödinger equation, analogous results may be obtained
for other boundary conditions; the details are left to the reader.

Proof of Theorem 4.4. (i) The proof of Theorem 3.1 (i) shows that the exponents in (4.7)
form a finite union of uniformly separated sets. Hence the direct inequality holds by
Theorem A and the remarks following Theorems A and B.

(ii) Since (a,−a) ∈ Aa for all nonzero integers, a /∈ Z by our assumptions, and therefore
both sets {

k2 − ak : k ∈ Z
}

and
{
−k2 − ak : k ∈ Z

}

are uniformly discrete by the proof of Theorem 3.1 (ii). In view of (4.7) we have to show
that their union is also uniformly discrete.

This amounts to show that

inf
{∣∣(k2 − ak)− (−m2 − am)

∣∣ : (k,m) ∈ Z2 \ {(0, 0)}
}
> 0.

12



Since

(k2 − ak)− (−m2 − am) =
(
k − a

2

)2
+
(
m+

a

2

)2
− a2

2
,

this means that the circle Sa has a positive distance from the set Z2 \ {(0, 0)}. Since the
latter set is discrete, this is satisfied by our assumption Aa = ∅.

(iii) If a ∈ Z, then the function given in the proof of Theorem 3.1 (iii) also solves (4.1).
Otherwise choose (k,m) ∈ Sa ∩ Z2 \ {(0, 0)}, and set

u(t, x) := ei(−m2t1+mx1)ei(k
2t+kx) − ei(k

2t1+kx1)ei(−m2t+mx).

Then d+k + d−m = 0 and therefore

u(t0 + t, x0 − at) = (d+k + d−m)e
i(k2−ak)t = 0

for all t ∈ R. �

Now let us investigate the inverse inequality

(4.8)
∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)
≪
∫ T

0

|u(t1 + t, x1 − a1t)|2 + |u(t2 + t, x2 − a2t)|2 dt

when we observe the solutions on two segments.
We start with some simple observations. We write Aj instead of Aaj for brevity, and

we denote by A+
j , A

−
j its projection on the first and second coordinate axis, respectively.

Remarks 4.6.

(i) If a1 6= 0 and A1 = ∅, then (4.8) holds by the preceding theorem. The same
conclusion holds by symmetry if a2 6= 0 and A2 = ∅.

(ii) The proof of Theorem 4.4 (ii) shows that

(4.9)
∑

k∈Z\A+

j

∣∣d+k
∣∣2 +

∑

m∈Z\A−

j

∣∣d−m
∣∣2 +

∑

(k,m)∈Aj

∣∣d+k + d−m
∣∣2 ≍

∫ T

0

|u(tj + t, xj − ajt)|2 dt

for j = 1, 2. If A+
1 ∩ A+

2 = A−
1 ∩ A−

2 = ∅, then adding these estimates for j = 1, 2
the inequality (4.8) follows.

(iii) On the other hand, if a1 = a2 and A1 6= ∅, then (4.8) fails. Indeed, if (k,m) ∈ A1

and c ∈ R, then changing d+k and +d−m to d+k + c and +d−m− c the right side of (4.9)
remains unchanged.

Lemma 4.7. If a1, a2 are different nonzero integers, then

(i) A1 ∩A2 = ∅;
(ii) if (k,m), (k′, m′) are two different points in A1 or A2, then k 6= k′ and m 6= m′.

Proof. (i) Since all circles Sa have the same tangent line in the origin, S1 ∩S2 = {(0, 0)},
and hence A1 ∩ A2 = ∅.

(ii) If for example (k,m), (k′, m) ∈ A1 with k 6= k′, then both k and k′ solve the
equation x2 − a1x + m2 + a1m = 0, and hence a1 = k + k′ ∈ Z. The other cases are
similar. �

At this stage it is convenient to associate a graph G(a1, a2) to a pair of distinct integers
a1, a2. The vertices of this graph form the set A1 ∪A2. Two vertices are adjacent if they
have a common coordinate. The previous lemma then states that this graph is bipartite,
namely a vertex in A1 can only be adjacent to a vertex in A2 and vice versa. A direct
consequence of this is that a vertex has at most two neighbours.

13



A (simple) path is a sequence of distinct vertices v1, v2, . . . , vn where vj , vj+1 are adja-
cent for every j = 1, . . . , n− 1. In particular, if the first coordinate is common in vj , vj+1

then vj+1, vj+2 have the second coordinate in common, and vice versa.

A simple path has at most |A1| + |A2| ≤
√
2π(a1 + a2) elements. Furthermore, every

v ∈ A1∪A2 belongs to a unique maximal simple path v−ℓ1 , . . . , v0, . . . , vℓ2 (see the figure).
This maximal path is called a cycle if v−ℓ1 and vℓ2 are adjacent, that is, they have a
common component. Note that a cycle has necessarily an even number of points.

Theorem 4.8. Fix (t1, x1), (t2, x2) ∈ R2, two different nonzero integers a1, a2 and T > 0.
The inverse inequality (4.8) fails if and only if G(a1, a2) has a cycle.

Proof. Adding the relations (4.9) for j = 1, 2 we see that the right hand side of (4.8) is

(4.10) ≍
∑

k∈(Z\A+

1
)∪(Z\A+

2
)

∣∣d+k
∣∣2 +

∑

m∈(Z\A−

1
)∪(Z\A−

2
)

∣∣d−m
∣∣2 +

∑

(k,m)∈A1∪A2

∣∣d+k + d−m
∣∣2 .

Since A1 ∪ A2 is finite, the difference between (4.10) and the left hand side of (4.8)
is a quadratic form in a finite number of variables. Therefore (4.8) is equivalent to the
following uniqueness property: if the expression in (4.10) is zero, then all coefficients d±k
vanish.

Assume first that G(a1, a2) has a cycle and write it as

(k1, m1), (k2, m1), (k2, m2), . . . , (kn, mn−1), (kn, mn), (k1, mn).

Up to exchanging A1 and A2 we may assume that (k1, m1) ∈ A1, so that (k1, mn) ∈ A2.
Note that k1, . . . , kn−1 ∈ A+

1 ∪A+
2 and m1, . . . , mn ∈ A−

1 ∪ A−
2 .

Then setting d+ki = 1 and d−mi
= −1 for i = 1, . . . , n and d+k = d−m = 0 for all other

indices k,m, the expression in (4.10) vanishes.
To prove the other direction, assume that G(a1, a2) has no cycle, and consider an

arbitrary maximal simple path. By symmetry between a1 and a2, we may assume that
this path starts in A1. Depending on whether the first move is horizontal or vertical, and
whether the path ends in A1 or A2, there are four possibilities:

• The first move is horizontal and the path ends in A2, so that the path has the
form

(k1, m1), (k2, m1), (k2, m2), . . . , (kn, mn−1)

with (k1, m1) ∈ A1 and (kn, mn−1) ∈ A2. Since the path is maximal, the only
element of A2 adjacent to (k1, m1) is (k2, m1); hence k1 /∈ A+

2 . Similarly, kn /∈ A+
1 .

• The first move is horizontal and the path ends in A1: we have

(k1, m1), (k2, m1), (k2, m2), . . . , (kn, mn−1), (kn, mn)

with (k1, m1) ∈ A1 and (kn, mn) ∈ A1. The maximality implies that k1 /∈ A+
2 and

mn /∈ A−
2 .

• The first move is vertical and the path ends in A2: we have

(k1, m1), (k1, m2), (k2, m2), . . . , (kn−1, mn)

with (k1, m1) ∈ A1 and (kn−1, mn) ∈ A2. The maximality implies that m1 /∈ A−
2

and mn /∈ A−
1

• The first move is vertical and the path ends in A1: we have

(k1, m1), (k1, m2), (k2, m2), . . . , (kn−1, mn), (kn, mn)

with (k1, m1) ∈ A1 and (kn, mn) ∈ A1. The maximality implies that m1 /∈ A−
2

and kn /∈ A+
2 .

14



Let us consider the first case; the others are similar. If the expression in (4.10) vanishes,
then d±k = 0 whenever k /∈ A±

1 or k /∈ A±
2 , and

∑

(k,m)∈A1∪A2

∣∣d+k + d−m
∣∣2 = 0.

In particular, d+k1 = 0, d+kn = 0 and

|d+k1 + d−m1
|2 + |d+k2 + d−m1

|2 + · · ·+ |d+kn + d−mn−1
|2 = 0,

whence d+kj + d−mj
= d+kj+1

+ d−mj
= 0 for j = 1, . . . , n− 1. A direct induction then shows

that d+kj = d−mj
= 0 for j = 1, . . . , n− 1.

Finally, since every (k, j) ∈ A1 ∪ A2 belongs to a maximal simple path, we conclude
that d+k = d−m = 0 for all k,m as claimed. �

Example 4.9. The figure below shows the situation where a1 = −13
5

and a2 = −10
3
. There

are two maximal simple paths KM and K ′M ′ having more than one element, and there
are no cycles.

−4 −3 −2 −1 1 2 3

−2

−1

1

2

3

4

5

0

K

K′

M ′

M

We have no concrete example in which G(a1, a2) has a cycle. The following proposition
indicates that if there exist such examples, they are rare.

Proposition 4.10. The graph G(a1, a2) has no cycle in the following cases:

(i) a1 and a2 have opposite nonzero signs;
(ii) a1 and a2 have equal signs, and a1/a2 ≥ 3/2.

Proof. (i) Without loss of generality, we may assume that a ≥ b > 0 and a1 = −a, a2 = b.
Let us start with the observation that, to belong to a cycle, a point (k,m) ∈ S−a must

have two neighbours (k,m′), (k′, m) ∈ Sb.
Set

b̃ =

(
1√
2
− 1

2

)
b =

√
2− 1

2
b,

and denote by ã+ and ã− the positive and negative root of x2 + ax+ b̃2 − ab̃ = 0, that is

ã+ =
−a +

√
a2 + 4ab̃− 4b̃2

2
, ã− =

−a−
√
a2 − 4ab̃− 4b̃2

2
.
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Finally, let P = (−b̃, ã−) (resp. Q = (−ã−, b̃)) be the point on S−a such that the

(vertical) (resp. horizontal) line through P and (−b̃,−b/2) (resp. Q and (b/2, b̃)) is
tangent to Sb.

Sb

S−a

P

Q

Figure: Case (i)

Note that P and Q divide S−a into two arcs. Denote by Γ0 the one through (0, 0) and
set

Γ0
+ := Γ0 ∩ {(x, y), x ≥ 0, y ≥ 0} and Γ0

− := Γ0 ∩ {(x, y), x ≤ 0, y ≤ 0}.

Now observe that a vertex of G(−a, b) on S−a \ Γ0 has at most one neighbour, so that
it cannot belong to a cycle. Furthermore, a vertex of G(−a, b) on Γ0

+ has no neighbour on
Γ0
−. Therefore, if there exists a cycle, then its points on S−a should all belong to Γ0

+, or
should all belong to Γ0

−. Since the reflection of a cycle with respect to the anti-diagonal
is also a cycle, it remains to prove that there is no cycle all of whose points on S−a belong
to Γ0

+.

The geometric property of Γ0
+ that we use is the following: consider the arc Γ̃ of Sb

joining (0, 0) to (b/2, b̃). Then if we start at (x, y) ∈ Γ0
+, draw a vertical line till we reach

Γ̃ at some point (x, y′) and then draw an horizontal line ℓ. Then ℓ will intersect S−a at
a point (x′, y′) ∈ Γ0

+ with 0 < x′ < x (and at a second point (x′′, y′) /∈ Γ0).
Now it is easy to see that Γ0

+ contains no cycle. Indeed, if A0 = (k, l) ∈ G(−a, b) ∩ Γ0
+

belonged to a cycle, then it would have a neighbour of the form A1 = (k, l′) ∈ Γ̃. Then
the second neighbour of A1 would be of the form (k′, l′) ∈ Γ0

+ with 0 < k′ < k. Thus this
path cannot return to A0, a contradiction.

(ii) The condition a ≥ 3
2
b > 0 was chosen so that the situation is exactly the same as

previously. Again, Sa splits into 2 arcs. On one of them the vertices have no neighbours,
and on the other arc after two steps we always get strictly closer to the origin. �
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0

Figure: Case (ii)

Example 4.11. On the figure below none of the conditions (i) or (ii) is satisfied. We do
not know whether cycles can exist in this case. The larger cicle has now four arcs that
could meet cycles.

0

Figure: A case where none of (i) and (ii) is satisfied

5. Rectangular plates

We consider the vibrations of a rectangular plate with periodic boundary conditions.
More precisely, we consider the following system in Ω = (0, 2π)× (0, 2π):

(5.1)





utt +∆2u = 0 in R× Ω,

u(0, ·) = u0 in Ω,

ut(0, ·) = u1 in Ω,

u(t, x, 0) = u(t, x, 2π) for t ∈ R and x ∈ (0, 2π),

uy(t, x, 0) = uy(t, x, 2π) for t ∈ R and x ∈ (0, 2π),

u(t, 0, y) = u(t, 2π, y) for t ∈ R and y ∈ (0, 2π),

uy(t, 0, y) = uy(t, 2π, y) for t ∈ R and y ∈ (0, 2π).

The results of this section may be extended to general rectangular domains by a simple
linear change of variables.

Let us consider the orthonormal basis

ek,ℓ(x, y) =
1

2π
ei(kx+ℓy), (k, ℓ) ∈ Z2
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of L2(Ω), and for any fixed real number s let Ds be the Hilbert space obtained by
completion of the linear span of the functions ek,ℓ with respect to the Euclidean norm

∥∥∥∥∥
∑

k,ℓ

ck,ℓek,ℓ

∥∥∥∥∥
s

:=

(
∑

k,ℓ

(1 + k2 + ℓ2)s |ck,ℓ|2
)1/2

.

For any given initial data u0 ∈ Ds and u1 ∈ Ds−2 there is a unique weak solution

u ∈ C(R, Ds) ∩ C1(R, Ds−2).

Furthermore, u has a Fourier series representation

(5.2) u(t, x) = c+0,0 + c−0,0t+
∑

k,ℓ∈Z
(k,ℓ)6=(0,0)

(
c+k,ℓe

i[(k2+ℓ2)t+kx+ℓy] + ck, ℓ−ei[−(k2+ℓ2)t+kx+ℓy]
)

with suitable square summable complex coefficients c+k,ℓ, c
−
k,ℓ satisfying the relations

∑

k,ℓ∈Z

(1 + k2 + ℓ2)s(
∣∣c+k,ℓ

∣∣2 +
∣∣c−k,ℓ

∣∣2) ≍ ‖u0‖2s + ‖u1‖2s−2 .

Using (4.2) we extend the solutions to R3 (by 2π-periodicity in x and y).
We are interested in the observability of the solutions on a fixed segment of the form

{(x1 + as, y1 + bs) : s ∈ (0, 1)}
during some time interval (t1, t1 + T ) with given real numbers x1, y1, a, b, t1, T satisfying
(a, b) 6= (0, 0) and T > 0.

Theorem 5.1. Given any (a, b) ∈ Z2 \ {(0, 0)} and a real number T > 0, the solutions
of (5.1) satisfy the estimates

‖u0‖20 + ‖u1‖2−2 ≪
∫ T

0

∫ 1

0

|u(t1 + t, x1 + as, y1 + bs)|2 ds dt

for all (u0, u1) ∈ D1 ×D−1.

Remark 5.2. If a = 0 or b = 0, then the theorem holds for any nonzero value of the other
coefficient by a reasoning similar to the proof of [17, Theorem 1.3].

Proof. It is classical (see, e.g., [15] and the standard trace theorems for Sobolev spaces)
that if (u0, u1) ∈ D1 × D−1, then the right hand side is well defined. We may write
u(t1 + t, x1 + as, y1 + bs) in the form

u(t1 + t, x1 + as, y1 + bs) = d+0,0 + d−0,0t

+
∑

k,ℓ∈Z
(k,ℓ)6=(0,0)

(
d+k,ℓe

i[(k2+ℓ2)t+(ak+bℓ)s] + d−k,ℓe
i[−(k2+ℓ2)t+(ak+bℓ)s]

)

with suitable complex coefficients satisfying the relations
∣∣d+0,0

∣∣2 +
∣∣d−0,0

∣∣2 ≍
∣∣c+0,0

∣∣2 +
∣∣c−0,0

∣∣2

and the equalities
∣∣d±k,ℓ

∣∣ =
∣∣c±k,ℓ

∣∣ for all (k, ℓ) 6= (0, 0). Therefore the theorem will follow if
we show that the set {

(ak + bℓ,±[k2 + ℓ2]) : k, ℓ ∈ Z
}

is uniformly separated. Setting

m := ak + bℓ, n := bk − aℓ
18



we have (m,n) ∈ Z2 and

k2 + ℓ2 =
m2 + n2

a2 + b2
.

Noticing that the linear map (k, ℓ) 7→ (m,n) is invertible, it suffices to show that the set
{
(m,±m2 + n2

a2 + b2
) : m,n ∈ Z

}
,

is uniformly separated. This is equivalent to the uniform separatedness of
{
(m,m2 + n2) : m,n ∈ Z

}
,

and this was proved in [22]. �

6. Open problems

We end this paper by a list of open questions:

(i) We do not know whether the inverse inequality in Theorem 3.2 (ii) fails for every
choice of finitely many segments (xi, ti) instead of only one segment.

(ii) Can we consider more general segments in Proposition 3.3 (ii)?
(iii) How to modify Proposition 3.3 for Neumann boundary conditions?
(iv) We have no examples for a cycle in Theorem 4.8. Does the inverse inequality (4.8)

of Theorem 4.8 hold for any two different non-integer rationals a1, a2?
(v) If there are examples of cycles in the preceding question, then does there exist an

integer m ≥ 3 such that the inverse inequalities

∑

k∈Z

(∣∣c+k
∣∣2 +

∣∣c−k
∣∣2
)
≪

m∑

i=1

∫ T

0

|u(ti + t, xi − ait)|2 dt

hold for all choices of different nonzero integers a1, . . . , am?
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