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BLOCK DESIGNS FOR EARLY-STAGE
CLINICAL TRIALS

Paul Deheuvels∗ & Gérard Derzko†

ABSTRACT

We provide a commented list of uniform on periods incomplete block designs

appropriate for early-stage clinical trials. The optimality of these designs

with respect to the NN1 and NN2 nearest-neighbour correlation models

studied by Kiefer and Wynn (1981) and Morgan and Chakravarti (1988) is

discussed.

AMS 1980 subject classification. 62K10.

Keywords and phrases. Neighbour correlations, balanced incomplete blocks

designs, repeated measurements.

1 Preliminaries and notation.

1.1 Introduction

This paper provides a selection of experimental designs, appropriate for

early-stage clinical trials, where 2 ≤ v ≤ 7 treatments are applied to b sub-

jects over 2 ≤ k ≤ 5 time-periods. We consider only proper binary equirepli-

cated block designs [PBERD], where the subject i ∈ {1, . . . , b} receives k

distinct treatments j(i, 1), . . . , j(i, k) over the time-periods 1, . . . , k, each

treament being replicated r times (Rasch and Herrendörfer [RH] (1986)).

A design D is described by its b × k design matrix JD, whose i-th line is

(j(i, 1), . . . , j(i, k)).

1.2 Uniformity on periods and efficiency

Let λj′j′′ be the number of times that the pair (j′, j′′) of treatments is allo-

cated to the same subject, and λj′j′ = rj′ for 1 ≤ j′ 6= j′′ ≤ v. Among

PBERD’s, a special role is played by balanced incomplete block designs
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[BIBD], denoted by BIBD(v, b, r, k, λ), for which λj′j′′ = λ is independent of

1 ≤ j′ 6= j′′ ≤ v. Partially balanced incomplete block designs [PBIBD] with

K associated classes are PBERD’s such that λj′j′′ take K distinct values

for 1 ≤ j′ 6= j′′ ≤ v (see e.g. Raghavarao (1971)). For combinations of

v, b, k and r for which a BIBD does not exist, the class of PBIBD’s (Clat-

worthy (1973)) may provide some useful alternatives. We refer to Street and

Street (1987), Fisher and Yates (1963), Sprott (1962) and Mathon and Rosa

(1985) for methods of construction and lists of designs covering the most

usual values of v, b, r, k and λ. A PBERD is connected if rank(C) = v − 1,

where C = rIv − k−1Λ, Iv is the v × v identity matrix, and Λ = (λj′j′′), or

equivalently if there exist unbiased estimates of the treatment elementary

contrasts (RH (1986) pp. 39-40 and John (1980), pp. 9-13). Let Ωv,b,k

denote the class of connected PBERD’s. For D ∈ Ωv,b,k the yield of subject

i in period h is assumed to be

Yih = µ+ βi + τj(i,h) + πh + εih for 1 ≤ i ≤ b and 1 ≤ h ≤ k (1)

where µ is the mean effect, βi the i-th subject effect, τj the j-th treatment

effect, πh the h-th time-period effect, and
∑

i βi =
∑

j τj =
∑

h πh = 0.

The residuals {εih} form a Gaussian array with N (0, σ2) marginals. The

assumption that these residuals are uncorrelated [UC] being often unrealis-

tic, the following models have been introduced to account for within-block

dependence, assuming no between-block dependence. For 0 ≤ m ≤ k− 1, it

is assumed in m-th nearest-neighbour [NN or NNm] models that

IE(εipεiq) = σ2ρ|p−q| for 1 ≤ i ≤ b and 1 ≤ p, q ≤ k (2)

where ρ0 = 1, . . . , ρm, ρm+1 = . . . = ρk−1 = 0.

The geometric correlation [GC or GC(R)] model is a special case of NN(k-1)

with

IE(εipεiq) = σ2R|p−q| for 1 ≤ i ≤ b and 1 ≤ p, q ≤ k (3)

The NNm and GC(R) models become UC for m = R = 0 and are ap-

propriate for analysis of repeated measurements experiments (Hedayat and

Asfarinejad (1975, 1978), Jones and Kenward (1989). NN1-dependence was

studied by Kiefer and Wynn [KW] (1981), Cheng (1983), NN2-dependence,

by Morgan (1983), Morgan and Chakravarti (1988), GC-dependence, by

Patterson and Hunter (1983), Kunert (1985). For general or special forms

of NN(k-1)-dependence we refer to Azzalini and Giovagnoli (1987), Williams

(1985, 1986), Ipinyomi (1986), Wild and Williams (1987), Russel and Eccle-

ston (1987a, b), Martin and Eccleston (1991) and the references therein.

One may further specialize (1) by introducing for 1 ≤ j ≤ v the first-order

residual (or carryover) effect γj of the treatment j once administered, and
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setting (Kunert (1984, 1985))

Yih = µ+ βi + τj(i,h) + πh + γj(i,h−1) + εih for 1 ≤ i ≤ b and 1 ≤ h ≤ k (4)

In early stage clinical trials, primarily aimed to study treatment effects, it is

desirable for the best linear unbiased estimator [BLUE] τ̂ = {τ̂j} of τ = {τj}
with respect to ordinary least squares [OLS] to be uncorrelated with the

BLUE of the other parameters. This requires any design of interest to be

uniform on periods, each treatment being then allocated b/v times over each

time period (Patterson (1951, 1952)), in which case the OLS BLUE τ̂ of τ

under (1) coincides with that obtained assuming πh = 0 for 1 ≤ h ≤ k.

Uniformity on periods requires that v divides b, denoted v|b, and conversely

one has (Agrawal (1966a, b)), Chapter 6 of Raghavarao (1971))

Theorem 1 (Agrawal (1966a, b)) For any D ∈ Ωv,b,k with v|b, the treat-

ment sequences can be rearranged for each subject to obtain a design uniform

on periods.

Uniform on periods PBERD’s are often called Latin rectangles if v = b > k,

and Latin square designs of order v if v = b = k in which case JD is a

v × v Latin square. Youden (1937) proved a special case of theorem 1 for

symmetrical BIBD’s (with v = b and k = r), which, when rearranged,

are best-known as Youden squares (Shrikhande (1951)). In the sequel, the

designs D ∈ Ωv,b,k are rearranged when possible to be uniform on periods.

Among the various forms of optimality with respect to estimation of τ

(Kiefer (1975)), A-optimality is the most appropriate when treatments play

symmetrical roles. For D ∈ Ωv,b,k and under (1), the OLS BLUE u′τ̂ of a

contrast u′τ satisfies var(u′τ̂) = σ2u′(C+aJv)−1u, where Jv is a v×v matrix

of ones, a 6= 0 and Jvu = 0. A-optimality corresponds to a maximal value

of the efficiency factor, averaging the variances of elementary contrasts and

given by

E =

{
r

σ2(v − 1)

∑
1≤j′<j′′≤v

var(τ̂j′ − τ̂j′′)
}−1

=
2

v − 1

∑
1≤j≤v−1

θ−1j

≤ vr − b
r(v − 1)

≤ 1 (5)

θ1, . . . , θv−1 being the non-zero characteristic roots of C (Raghavarao (1971)),

pp. 58-59). The upper bound vr−b
k(v−1) for E in (5) is reached iff D ∈ Ωv,b,k

is a BIBD(v, b, r, k, λ) (Kiefer (1958), Kshirsagar (1958), Mote (1958) and

Roy (1958)), in which case (John (1980), p. 15)

E =
v(k − 1)

r(v − 1)
=
λv

rk
, bk = rv, λ(v − 1) = r(k − 1) and b ≥ v (6)
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Whenever the subclass Ω∗v,b,k of BIBD(v, b, r, k, λ) is not empty, it is therefore

advisable to select D ∈ Ωv,b,k within Ω∗v,b,k as to optimize other forms of

optimality discussed below.

1.3 Minimal NN1 and NN2-optimal designs

For NN(k-1)-dependence, efficiency can be assessed either under generalized

least square [GLS], assuming that {ρr, 1 ≤ r ≤ k − 1} is known, or under

ordinary least squares [OLS]. GLS is theoretically more efficient than OLS,

but bears the disadvantage to require inference or prior knowledge on within-

blocks dependence. On the other hand, OLS coincide with GLS in the UC

model and is of standard use. The choice of a design is further complicated

by the fact that optimal designs with respect to OLS may not be optimal

with respect to GLS and conversely (Martin and Eccleston (1991)). In spite

of the fact that our approach is primarily OLS-oriented with respect to

NN1- and NN2-dependence, the properties of the designs we consider are,

at times, also appropriate for GLS-optimality at the price of weak additional

conditions on {ρr}. This point will not be discussed further.

Weak OLS universal optimality for NN1- and NN2-dependence was char-

acterized by Kiefer and Wynn (1981), Morgan (1983) and Morgan and

Chakravarti (1988) as follows. Let N t
j′j′′ be the number of times that j′

and j′′ are allocated to the same subject as t-th neigbours, ej′j′′ the number

of times that j′ and j′′ are allocated to the same subject, with j′ or j′′ on

an end plot (h = 1 or k) (counted twice when both j′ and j′′ are on an end

plot), and fj′j′′ the number of times that j′ and j′′ are allocated to the same

subject with at least one of j′ and j′′ on a next-to-end plot (h = 2 or k− 1)

(counted twice if both j′ and j′′ are on next-to-end plots).

Theorem 2 (Kiefer and Wynn (1981)) For k ≥ 2, a BIBD(v, b, r, k, λ) is

weakly universally optimum within Ω∗v,b,k for the NN1 model if

kN1
j′j′′ + ej′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v (7)

Theorem 3 (Morgan and Chakravarti (1988)) For k ≥ 3, a BIBD(v, b, r, k, λ)

is weakly universally optimum within Ω∗v,b,k for the NN2 model if

(i) kN1
j′j′′ + ej′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v

(ii) kN2
j′j′′ + ej′j′′ + fj′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v (8)

For k = 3 (resp. k = 2), (i) and (ii) are (resp. (i) is) equivalent to

N1
j′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v (9)
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For complete designs (v = k), weak universal optimality within Ω∗v,b,k with

respect to the NN1 (resp. NN2) models holds iff N1
j′j′′ is (resp. N1

j′j′′ and

N2
j′j′′ are) independent of 1 ≤ j′ 6= j′′ ≤ v

We provide in section 2 for 2 ≤ k ≤ 5 and 2 ≤ v ≤ 7 a series of designs

D ∈ Ω∗v,b,k which are NN1- (resp. NN2-) optimal in the sense of theorem 2-

3, and minimal, meaning that they correspond to the minimal possible value

of b given k and v. The superposition D1 + D2 of two NN1- (resp. NN2-)

optimal BIBD’s D1 and D2 of parameters (v, b1, r1, k, λ1) and (v, b2, r2, k, λ2)

and design matrices JD1 and JD2 is an NN1- (resp. NN2-) optimal BIBD’s

of parameters (v, b1 + b2, r1 + r2, k, λ1 + λ2) and design matrix (JD1 , JD2)′,

suitable superposition of minimal optimal designs enable to generate optimal

designs for each admissible value of b.

A BIBD is minimal or irreducible if not the superposition of two BIBD’s.

Irreducible component of minimal optimal BIBD’s are provided in section

2.

Remark 1 If D ∈ Ω∗v,b,k is NN1- (or NN2-) optimal, we obtain another

NN1- (or NN2-) optimal BIBD by replacing in D, for some selected sub-

jects, the original sequence of treatments by the sequence of reverse order

(this modification leaves unchanged N t
j′j′′, ej′j′′and fj′j′′). However this may

affect uniformity on periods.

Remark 2 For a BIBD(v, b, r, k, λ), Kiefer and Wynn (1981) showed that

equality of all N1
j′j′′ imply k|4λ. By theorem 2.12 and corollary 2.13 of

Morgan (1983), and by theorem 2.2 of Morgan and Chakravarti (1988), an

NN1 optimal BIBD(v, b, r, k, λ) satisfies k|4λ (and k|2λ if either k 6= 0 (mod.

4), v = 2 or v = 3 (mod. 4). An NN2 optimal BIBD(v, b, r, k, λ) satisfies

k(k− 1)|4λ (and k(k− 1)|2λ if either k 6= 0 (mod. 4), v = 2 or v = 3 (mod.

4). Morgan and Chakravarti (1988) showed that the minimal value of b for

which there exists a complete NN1- (resp. NN2-) optimal design with v = k

is b = v (resp. b = 1
2v(v − 1)).

1.4 Optimal designs for the GC model

D ∈ Ω∗v,b,k is called an equi-neighboured balanced incomplete block design

[EBIBD] (or a Williams design), when N1
j′j′′ is independent of 1 ≤ j′ 6=

j′′ ≤ v (Kunert (1985), Williams (1949, 1950)). These designs have been

investigated by Kiefer and Wynn (1981) (Street and Street (1987) pp. 333-

337). A Latin square design D is called complete (resp. quasi-complete)

(Bailey (1984)) if every ordered (resp. unordered) pair of treatments ap-

pears once (resp. twice) in the rows and once (resp. twice) in the columns.
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Williams (1949) proved the existence of a complete (resp. quasi-complete)

Latin square of order 2m (resp. 2m+ 1) for each integer m. By theorem 3,

a quasi-complete (resp. complete) Latin square design is an NN1-optimal

EBIBD. A design is called equi-neighboured [ED] if N t
j′j′′ is independent of

1 ≤ j′ 6= j′′ ≤ v for each t = 1, . . . , t − 1 (Ipinyomi (1986)). By theorem 3,

an ED is NN2-optimal if k = v or k = 3 and NN1-optimal for k = 2, but

needs not be NN2-optimal in general when 4 ≤ k ≤ v.

A design D has balanced end pairs [BEP] if the number Nk
j′j′′ of subjects

receive j′ and j′′ on end-plots is independent of 1 ≤ j′ 6= j′′ ≤ v. When

k = v, optimality of designs with respect to estimation of τ and the GC

model (Kunert (1985), Kiefer (1975)) is characterized as follows.

Theorem 4 (Kunert (1985)) Under the GC model, the universally optimal

designs are characterized when k = v by the conditions:

(i) kN1
j′j′′ + ej′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v

(ii) kNk
j′j′′ + ej′j′′ + fj′j′′ is independent of 1 ≤ j′ 6= j′′ ≤ v (10)

Cheng and Wu (1980) and Kunert (1984) considered optimality for estima-

tion of weighted least squares [WLS] with respect to the first order carry-over

UC model (4).

Theorem 5 (Kunert (1984)) For a first order carry-over model with uncor-

related residuals, and for k = v ≥ 3, designs such that the number of times

that the treatments j′ is administered to a subject prior to the treatment j′′

is independent of 1 ≤ j′ 6= j′′ ≤ v are universally optimal with respect to

WLS in Ω∗v,v,v.

For k ≤ v, we refer to Martin and Eccleston (1991) for a discussion of

optimality in the NN(k − 1) model (2), which includes the GC model (3).

1.5 Higher neighbour balancing

With the exception of (4), the models above do not consider effects due to

the ordering of treatment sequences (see Remark 1). This observation leads

to introducing pairwise balanced EBIBD’s [PB] where the number of times

that each ordered pair (j′, j′′) is allocated to the same subject in adjacent

positions is independent of 1 ≤ j′ 6= j′′ ≤ v. A PB-EBIBD may be generated

by superposition of an arbitrary EBIBD with its mirror-image obtained by

reversing the order of treatments for each subject.

An equi-neighboured BIBD is said to be universally balanced (resp. totally

balanced), denoted by UBIBD (resp. TBIBD) if the number of times an

ordered (resp. unordered) pair (j′, j′′) is allocated to the same subject over
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the time periods h′ and h′′ is independent of 1 ≤ j′ 6= j′′ ≤ v and 1 ≤
h′ 6= h′′ ≤ v. TBIBD’s (resp. UBIBD’s) are related to strongly directionally

equi-neighboured designs [SDEN] (resp. transitive designs) (Martin and Ec-

cleston (1991)), orthogonal arrays of type II of strength 2, and semi-balanced

arrays of strength 2 (Rao (1961, 1973)). By Ipinyomi (1986) and Martin

and Eccleston (1991) TBIBD’s and UBIBD’s possess general properties of

optimality with respect to OLS or GLS and under weak restrictions upon

{ρr, 1 ≤ r ≤ k − 1}. A UBIBD(v, b = v!
(v−k)! , r = k(v−1)!

(v−k)! , k, λ = k(k−1)(v−2)!
2(v−k)! )

is generated by allocating all ordered sequences of k treatments taken among

{1, . . . , v}. The resulting trivial design is uniform on periods, but requires a

large number of subjects and is minimal only in special cases.

1.6 Cyclic designs

The cyclic designs Cv(j1, . . . , jk) (John (1981, 1987)), allocating to the i-th

subject the residuals mod. v of {j1 + i− 1, . . . , jk + i− 1}, is uniform over

periods with b = v and λj′j′′ = λ|j′−j′′|, where λ1, . . . , λv−1 satisfy (John

(1987), pp. 64-65)

λm = λv−m for m = 1, . . . , v − 1 (11)

By (11), cyclic designs, denoted by C(v, k), are BIBD’s for v = 2, 3, PBIBD’s

with K ≤ 2 for v = 4, 5, and K ≤ 3 for v = 5, 6. For connected cyclic designs

(John (1987), p. 65),

E =
k − 1

k
− 1

rk

v−1∑
j=1

λj cos

(
2jπ

v

)
(12)

Most optimal BIBD’s in section 2 are superpositions of cyclic designs and

listed as such. E is obtained, for each cyclic component, by (12) if connected,

or by E =∞ if not connected.

1.7 Conclusion

In section 2 below, we tabulate a series of optimal designs obtained by

miscellaneous techniques, including trial and error arguments. Applications

of these designs will be presented elsewhere.

2 Some useful balanced designs

In all cases, we have the following implications.
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(i) UBIBD ⇒ TBIBD ⇒ ED ⇒ EBIBD and BEP ;

(ii) UBIBD ⇒ PB,EBIBD ⇒ BIBD;

(iii) TBIBD ⇒ NN2-optimality⇒ NN1-optimality; (13)

(iv) EBIBD and k = v ⇔ NN1-optimality, ED and k = v ⇒ NN2-optimality;

(v) UBIBD ⇒ Uniformity on periods.

Here NN1 (resp. NN2-) optimality is meant in the sense of theorems 2 and 3,

and holds within Ωv,b,k. A BIBD may be either NN1-optimal, NN2-optimal,

EBIBD, ED or TBIBD without being uniform on periods. Minimality is

meant with respect to b in a given class. For example, a minimal UBIBD

has the least possible value of b among all possible UBIBD’s, given v and

k, and an irreducible BIBD will be said a minimal BIBD. In view of (13),

and to avoid repetitions, we only mention minimality with respect to the

less stringent condition. For example, if a design is both a minimal UBIBD

and a minimal BIBD, we only mention the latter property.

When possible, designs are listed as superpositions of cyclic designs with

the notation of section 1. When such decomposition do not exist, designs D

are given by listing lines of JD. Tables are ordered by increasing values of

k ∈ 2, . . . , 5, and for a fixed k, by increasing values of v ∈ {k, . . . , 7}. Designs

which are not uniform on periods are labeled by a “*”. The following tables

give the least possible number of subjects required to obtain NN1- (resp.

NN2-) optimal BIBD’s with the number (#) of the corresponding design.

NN1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7

k = 2 b = 2 b = 3 b = 12 b = 10 b = 30 b = 21
(#1) (#2a) (#3a) (#4a) (#5a) (#6a)

k = 3 b = 3 b = 12 b = 10 b = 30 b = 21
(#7a) (#8a, b) (#9a, b, c) (#10a) (#11a)

k = 4 b = 4 b = 10 b = 30 b = 14
(#12a) (#13a, b) (#14a) (#15a)

k = 5 b = 5 b = 30 b = 21
(#16a) (#17a) (#18a)

Table 1. Minimal value of b for uniform on period NN1-optimal BIBD’s

NN2 v = 3 v = 4 v = 5 v = 6 v = 7

k = 3 b = 3 b = 12 b = 10 b = 30 b = 21
(#7a) (#8a, b) (#9a, b, c) (#10a) (#11a)

k = 4 b = 6 b = 10 b = 30 b = 14
(#12a) (#13a, b) (#14a) (#15b)

k = 5 b = 10 b = 60 b = 21
(#16b) (#17b) (#18b)
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Table 2. Minimal value of b for uniform on period NN2-optimal BIBD’s (∗)

TBIBD v = 2 v = 3 v = 4 v = 5 v = 6 v = 7

k = 2 b = 2 b = 3 b = 12 b = 10 b = 30 b = 21
(#1) (#2a) (#3a) (#4a) (#5a) (#6a)

k = 3 b = 3 b = 12 b = 10 b = 30 b = 21
(#7a) (#8a, b) (#9a, b, c) (#10a) (#11a)

k = 4 b = 12 b = 10 b = 60 b = 21
(#12g) (#13a, b) (#14d) (#15b)

k = 5 b = 10 b = 60 b = 21
(#16b) (#17b) (#18a)

Table 3. Minimal value of b for uniform on period TBIBD’s (∗)

UBIBD v = 2 v = 3 v = 4 v = 5 v = 6 v = 7

k = 2 b = 2 b = 6 b = 12 b = 20 b = 30 b = 42
(#1) (#2b) (#3a) (#4d) (#5a) (#6e)

k = 3 b = 6 b = 24 b = 20 b = 60 b = 42
(#7b) (#8c) (#9d) (#10e) (#11b)

k = 4 b = 24 b = 20 b = 60 b = 42
(#12h) (#13c) (#14d) (#15c)

k = 5 b = 20 b = 120 b = 42
(#16e) (#17c) (#18b)

Table 4. Minimal value of b for uniform on period UBIBD’s (∗)

(∗) Minimality of designs in Tables 1, 2, 3 is proved, with exception of Design

#17b in Table 2, Design #14b in Table 3 and Design #17c in Table 4.

2.1 Designs for k=2

Minimal BIBD’s are obtained here by listing all treatment pairs {1, . . . , v}.
NN2-optimality is meaningless, NN1-optimality⇔ ED⇔ EBIBD⇔ BEP⇔
BIBD ⇔ TBIBD, and PB ⇔ UBIBD. Therefore, we only mention whether

the design is uniform on periods, TBIBD, UBIBD or not.

Design 1 v = 2 : UBIBD(v = 2, b = 2, r = 2, k = 2, λ = 2), E = 100%.

C2(1, 2)

This minimal BIBD is a complete Latin square design.

Design 2a v = 3 : TBIBD(v = 3, b = 3, r = 2, k = 2, λ = 1), E = 75%.

C3(1, 2)

This minimal BIBD is symmetrical. The superposition of this design with

its mirror-image yields a minimal UBIBD (design 2b).
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Design 2b v = 3 : UBIBD(v = 3, b = 6, r = 4, k = 2, λ = 2), E = 75%.

C3(1, 2) + C3(1, 3).

Design 3a v = 4 : UBIBD(v = 4, b = 12, r = 6, k = 2, λ = 2), E = 2/3 ≈
67%.

C4(1, 2) + C4(1, 3) + C4(1, 4)

This minimal uniform on periods TBIBD is superposition of two (non uni-

form over periods) minimal TBIBD’s (Designs 3b, c).

Design 3b∗ v = 4 : TBIBD(v = 4, b = 6, r = 3, k = 2, λ = 1), E = 2/3 ≈
67%.

(1, 2), (1, 3), (4, 1), (2, 3), (2, 4), (4, 3)

Design 3c∗ v = 4 : TBIBD(v = 4, b = 6, r = 3, k = 2, λ = 1), E = 2/3 ≈
67%.

(2, 1), (3, 1), (1, 4), (3, 2), (4, 2), (3, 4)

Among the three components (Design 3d,e,f) of design 3a, Design 3d is not

connected.

Design 3d v = 4 : C(v = 4, k = 2), E = 50%

C4(1, 2)

Design 3e v = 4 : C(v = 4, k = 2), E =∞
c4(1, 3)

Design 3f v = 4 : C(v = 4, k = 2), E = 50%

c4(1, 4)

Design 4a v = 5 : TBIBD(v = 5, b = 10, r = 4, k = 2, λ = 1), E = 5/8 ≈
62%.

C5(1, 2) + C5(1, 3)

This minimal BIBD is superposition of two cyclic designs (designs 4b,c).

Design 4b v = 5 : C(v = 5, k = 2)

C5(1, 2)

10



Design 4c v = 5 : C(v = 5, k = 2)

C5(1, 3)

The superposition of design 4 with its mirror image yields a minimal UBIBD

(design 4d).

Design 4d v = 5 : UBIBD(v = 5, b = 20, r = 8, k = 2, λ = 2), E = 5/8 ≈
62%.

C5(1, 2) + C5(1, 3) + C5(1, 4) + C5(1, 5).

Design 5a v = 6 : UBIBD(v = 6, b = 30, r = 10, k = 2, λ = 2), E = 60%.

C6(1, 2) + C6(1, 3) + C6(1, 4) + C6(1, 5) + C6(1, 6).

This minimal uniform on periods BIBD is superposition of two minimal (non

uniform on periods) BIBD’s (Designs 5b,c). Among the five cyclic compo-

nents (Designs 5d,e,f,g,h) of Design 5a, Design 5e,f,g are not connected.

Design 5b∗ v = 6 : TBIBD(v = 6, b = 15, r = 5, k = 2, λ = 1), E = 60%.

(1, 2), (1, 3), (1, 4), (5, 1), (6, 1), (3, 2), (2, 4), (2, 5), (2, 6), (3, 4), (5, 3), (6, 3), (4, 5), (4, 6), (5, 6).

Design 5c∗ v = 6 : EBIBD(v = 6, b = 15, r = 5, k = 2, λ = 1), E = 60%.

(2, 1), (3, 1), (4, 1), (1, 5), (1, 6), (2, 3), (4, 2), (5, 2), (6, 2), (4, 3), (3, 5), (3, 6), (5, 4), (6, 4), (6, 5).

Design 5d v = 6 : C(v = 6, k = 2).

C6(1, 2).

Design 5e v = 6 : C(v = 6, k = 2), E =∞.

C6(1, 3).

Design 5f v = 6 : C(v = 6, k = 2), E =∞.

C6(1, 4).

Design 5g v = 6 : C(v = 6, k = 2), E =∞.

C6(1, 5).

Design 5h v = 6 : C(v = 6, k = 2).

C6(1, 6).
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Design 6a v = 7 : TBIBD(v = 7, b = 21, r = 6, k = 2, λ = 1), E =

7/12 ≈ 58%.

C7(1, 2) + C7(1, 3) + C7(1, 4)

This minimal BIBD is the superposition of three cyclic designs (Designs

6b,c,d).

Design 6b v = 7 : C(v = 7, k = 2).

C7(1, 2).

Design 6c v = 7 : C(v = 7, k = 2).

C7(1, 3).

Design 6d v = 7 : C(v = 7, k = 2).

C7(1, 4).

The superposition of Design 6a with its mirror image yields a minimal

UBIBD (Design 6e).

Design 6e v = 7 : UBIBD(v = 7, b = 42, r = 12, k = 2, λ = 2), E =

7/12 ≈ 58%.

C7(1, 2) + C7(1, 3) + C7(1, 4) + C7(1, 5) + C7(1, 6) + C7(1, 7)

2.2 Designs for k=3

By theorem 4.15 in RH (1986) (Hannani (1961)), (6) is here sufficient for

existence of a BIBD(v, b, r, k, λ). By (13) and theorem 1.3, NN1-optimality

⇔ NN2-optimality ⇔ EBIBD, and ED ⇔ EBIBD and BEP. Theorem 5.2

of Kiefer and Wynn (1981) shows that an NN1-optimal BIBD(v, b, r, k, λ)

exists iff λ = 3m, b = mv(v − 1)/2 and r = 3m(v − 1)/2, whence the

minimum value of b given v is b = v(v− 1)/2 for odd v and b = v(v− 1) for

even v. We only mention below whether the design is uniform on periods,

EBIBD, ED, TBIBD or UBIBD.

Design 7a v = 3 : TBIBD(v = 3, b = 3, r = 3, k = 3, λ = 3), E = 100%

C3(1, 2, 3)

This minimal TBIBD is a quasi-complete Latin square design of order 3. The

superposition of this design with its mirror image yield a minimal UBIBD

(Design 7b).
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Design 7b v = 3 : UBIBD(v = 3, b = 6, r = 6, k = 3, λ = 6), E = 100%

C3(1, 2, 3) + C3(1, 3, 2)

Design 8a v = 4 : TBIBD(v = 4, b = 12, r = 9, k = 3, λ = 6), E = 8/9 ≈
89%

C4(1, 2, 3) + C4(1, 3, 2) + C4(1, 4, 2)

Design 8b v = 4 : TBIBD(v = 4, b = 12, r = 9, k = 3, λ = 6), E = 8/9 ≈
89%

C4(1, 2, 4) + C4(1, 3, 4) + C4(1, 4, 3)

Designs 8a,b are minimal TBIBD’s. Each cyclic component C4(1, 2, 3),

C4(1, 3, 2), C4(1, 4, 2), C4(1, 2, 4), C4(1, 3, 4), C4(1, 4, 3) is an irreducible

BIBD(v = 4, b = 4, r = 3, k = 3, λ = 2) with E ≈ 89%. The superposi-

tion of Designs 8a,b is a minimal UBIBD (Design 8c).

Design 8c v = 4 : UBIBD(v = 4, b = 24, r = 18, k = 3, λ = 12), E =

8/9 ≈ 89%

C4(1, 2, 3) + C4(1, 3, 2) + C4(1, 4, 2) + C4(1, 2, 4) + C4(1, 3, 4) + C4(1, 4, 3)

Design 9a v = 5 : TBIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈
83%

C5(1, 2, 3) + C5(1, 3, 5).

Design 9b v = 5 : TBIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈
83%

C5(1, 2, 4) + C5(1, 4, 5).

Design 9c v = 5 : TBIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈
83%

C5(1, 3, 4) + C5(1, 2, 5).

Designs 9a,b,c are minimal BIBD’s. Each is superposition of designs of

efficiency E ≈ 83%

Design 9d v = 5 : UBIBD(v = 5, b = 20, r = 12, k = 3, λ = 6), E =

5/6 ≈ 83%

C5(1, 2, 3) + C5(1, 3, 5) + C5(1, 4, 2) + C5(1, 5, 4).

Design 9d is minimal UBIBD with TBIBD components C5(1, 2, 3)+C5(1, 3, 5)

and C5(1, 4, 2) + C5(1, 5, 4).
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Design 10a v = 6 : TBIBD(v = 6, b = 30, r = 15, k = 3, λ = 6), E =

4/5 = 80%

(Design 10b) + (Design 10c) + (Design 10d).

This minimal period-balanced BIBD is superposition of Designs 10b,c,d.

Each is an irreducible BIBD, but neither is uniform on periods, nor with

balanced end pairs. Up to permutations of treatments within each subject,

designs 10b,c,d coincide with a design given on p. 170 in RH (1986) and in

Example 3.1.5 of Morgan (1983). The superposition of design 10a with its

mirror image yields a minimal UBIBD (Design 10e).

Design 10b∗ v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E =

4/5 = 80%

(1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 6), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 6), (3, 5, 6), (4, 5, 6)

Design 10c∗ v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E =

4/5 = 80%

(5, 1, 2), (6, 1, 2), (4, 1, 3), (6, 1, 3), (5, 1, 4), (4, 2, 3), (5, 2, 3), (6, 2, 4), (6, 3, 5), (6, 4, 5)

Design 10d∗ v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E =

4/5 = 80%

(2, 5, 1), (2, 6, 1), (3, 4, 1), (3, 6, 1), (4, 5, 1), (3, 4, 2), (3, 5, 2), (4, 6, 2), (5, 6, 3), (5, 6, 4)

Design 10e v = 6 : UBIBD(v = 6, b = 60, r = 30, k = 3, λ = 12), E =

4/5 = 80%

(1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 6), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 6), (3, 5, 6), (4, 5, 6)

(5, 2, 1), (6, 2, 1), (4, 3, 1), (6, 3, 1), (5, 4, 1), (4, 3, 2), (5, 3, 2), (6, 4, 2), (6, 5, 3), (6, 5, 4)

(5, 1, 2), (6, 1, 2), (4, 1, 3), (6, 1, 3), (5, 1, 4), (4, 2, 3), (5, 2, 3), (6, 2, 4), (6, 3, 5), (6, 4, 5)

(2, 1, 5), (2, 1, 6), (3, 1, 4), (3, 1, 6), (4, 1, 5), (3, 2, 4), (3, 2, 5), (4, 2, 6), (5, 3, 6), (5, 4, 6)

(2, 5, 1), (2, 6, 1), (3, 4, 1), (3, 6, 1), (4, 5, 1), (3, 4, 2), (3, 5, 2), (4, 6, 2), (5, 6, 3), (5, 6, 4)

(1, 5, 2), (1, 6, 2), (1, 4, 3), (1, 6, 3), (1, 5, 4), (2, 4, 3), (2, 5, 3), (2, 6, 4), (3, 6, 4), (4, 6, 5)

Design 11a v = 7 : TBIBD(v = 7, b = 21, r = 9, k = 3, λ = 3), E =

7/9 ≈ 78%

C7(1, 2, 4) +C7(1, 5, 6) +C7(1, 3, 7) also C7(1, 3, 4) +C7(1, 2, 6) +C7(1, 5, 7)

Design 11a is a minimal TBIBD. Each of its three components is a symmetri-

cal irreducible BIBD(v = 7, b = 7, r = 3, k = 3, λ = 1) with E = 7/9 ≈ 78%.

The superposition of Design 11a with its mirror image yields a minimal

UBIBD (Design 11b).
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Design 11b v = 7 : UBIBD(v = 7, b = 42, r = 18, k = 3, λ = 6), E =

7/9 ≈ 78%

C7(1, 2, 4) + C7(1, 5, 6) + C7(1, 3, 7) + C7(1, 6, 5) + C7(1, 7, 3) + C7(1, 4, 2)

also

C7(1, 3, 4) + C7(1, 2, 6) + C7(1, 5, 7) + C7(1, 7, 5) + C7(1, 4, 3) + C7(1, 6, 2)

2.3 Designs for k=4

By Theorem 4.15 in RH (1986) (Hanani (1961, 1970, 1972)), (6) is here

sufficient for existence of a BIBD(v, b, r, k, λ).

Design 12a v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100%

C4(1, 2, 3, 4)

This minimal NN1-optimal , symmetrical, PB, irreducible EBIBD is a com-

plete Latin square design. On the other hand, it is not NN2-optimal, nor

BEP, nor TBIBD.

Design 12b v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100%

C4(1, 2, 4, 3)

Design 12c v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100%

(1, 4, 3, 2), (2, 3, 4, 1), (3, 1, 2, 4), (4, 2, 1, 3)

Design 12d v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100%

(1, 2, 3, 4), (2, 4, 1, 3), (3, 1, 4, 2), (4, 3, 2, 1)

Designs 12b,c,d are minimal NN1-optimal symmetrical EBIBD’s. Neither

is NN2-optimal nor with balanced end pairs. Design 12b is cyclic, whereas

Designs 12c,d are not.

Design 12e∗ v = 4 : EBIBD(v = 4, b = 6, r = 6, k = 4, λ = 6), E =

100%

(1, 2, 3, 4), (3, 1, 4, 2), (1, 4, 3, 2), (3, 1, 2, 4), (1, 2, 4, 3), (4, 1, 3, 2)

Design 12f∗ v = 4 : EBIBD(v = 4, b = 6, r = 6, k = 4, λ = 6), E = 100%

(2, 4, 1, 3), (4, 3, 2, 1), (2, 3, 4, 1), (4, 2, 1, 3), (2, 3, 1, 4), (3, 4, 2, 1)

Designs 12e,f are minimal NN2-optimal symmetrical and irreducible EBIBD’s.

However, neither is uniform on periods.
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Design 12g v = 4 : TBIBD(v = 4, b = 12, r = 12, k = 4, λ = 12), E =

100%

(Design 12b) + (Design 12c) + (Design 12d) = (Design 12e) + (Design 12f)

This design is minimal uniform on periods NN2-optimal EBIBD. By remark

2, for v = 4, an NN2-optimal design with k = v requires at least b =

v(v − 1)/2 = 6 subjects. However, in this case v = 4 does not divide b = 6

so that uniformity on periods cannot hold. Therefore, Designs 12e,f being

NN2-optimal EBIBD’s, cannot be rearranged to be uniform over periods.

Design 12h v = 4 : UBIBD(v = 4, b = 24, r = 24, k = 4, λ = 24), E =

100%

C4(1, 2, 3, 4), C4(1, 2, 4, 3), C4(1, 3, 2, 4), C4(1, 3, 4, 2), C4(1, 4, 2, 3), C4(1, 4, 3, 2)

This design is minimal UBIBD.

Design 13a v = 5 : TBIBD(v = 5, b = 10, r = 8, k = 4, λ = 6), E =

15/16 ≈ 94%.

C5(1, 2, 3, 4) + C5(1, 3, 5, 2).

Design 13b v = 5 : TBIBD(v = 5, b = 10, r = 8, k = 4, λ = 6), E =

15/16 ≈ 94%.

C5(1, 5, 4, 3) + C5(1, 4, 2, 5).

Designs 13a,b are minimal NN2- (and NN1-) optimal BIBD’s, each being

superposition of two symmetrical irreducible BIBD(v = 5, b = 5, r = 4, k =

4, λ = 3)’s. The superposition of Designs 13a,b yields a minimal UBIBD

(Design 13c). There does not exist an NN1-optimal BIBD(v = 5, b = 5, r =

4, k = 4, λ = 3), as follows from Lemma 4.9 of Morgan (1983) which implies

(6) cannot be satisfied for λ = 3 and k = 4.

Design 13c v = 5 : UBIBD(v = 5, b = 20, r = 16, k = 4, λ = 12), E =

15/16 ≈ 94%.

C5(1, 2, 3, 4) + C5(1, 3, 5, 2) + C5(1, 5, 4, 3) + C5(1, 4, 2, 5).

Design 14a v = 6 : EBIBD(v = 6, b = 30, r = 20, k = 4, λ = 12), E =

90%.

C6(1, 6, 2, 4) + C6(1, 6, 5, 3) + C6(1, 2, 4, 3) + C6(1, 4, 5, 2) + C6(1, 3, 6, 2) =

Design 14b + Design 14c.

This minimal NN2 (and NN1-) optimal BIBD is ED and superposition of two

irreducible non uniform on periods BIBD’s (Designs 14b,c) (Cheng (1983),

p246). It is not a TBIBD.
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Design 14b∗ v = 6 : BIBD(v = 6, b = 15, r = 10, k = 4, λ = 6), E =

90%.

(1, 6, 2, 4), (2, 1, 3, 5), (3, 2, 4, 6), (4, 3, 5, 1), (5, 4, 6, 2), (6, 5, 1, 3), (1, 2, 4, 3), (2, 3, 5, 4),

(3, 4, 6, 5), (4, 5, 1, 6), (5, 6, 1, 2), (6, 1, 3, 2), (1, 4, 5, 2), (2, 5, 6, 3), (3, 6, 1, 4).

Design 14c∗ v = 6 : BIBD(v = 6, b = 15, r = 10, k = 4, λ = 6), E =

90%.

(1, 6, 5, 3), (2, 1, 6, 4), (3, 2, 1, 5), (4, 3, 2, 6), (5, 4, 3, 1), (6, 5, 4, 2), (1, 3, 6, 2), (2, 4, 1, 3),

(3, 5, 2, 4), (4, 6, 3, 5), (5, 1, 4, 6), (6, 2, 5, 1), (4, 1, 2, 5), (5, 2, 3, 6), (6, 3, 4, 1).

Design 14d v = 6 : UBIBD(v = 6, b = 60, r = 40, k = 4, λ = 24), E =

90%.

C6(1, 6, 2, 4) + C6(1, 6, 5, 3) + C6(1, 2, 4, 3) + C6(1, 4, 5, 2) + C6(1, 3, 6, 2)

+C6(1, 5, 3, 4) + C6(1, 3, 4, 5) + C6(1, 2, 6, 5) + C6(1, 4, 3, 6) + C6(1, 5, 2, 6)

This minimal UBIBD, superposition of Design 14a with its mirror image, is

conjectured to be a minimal TBIBD.

Design 15a v = 7 : EBIBD(v = 7, b = 14, r = 8, k = 4, λ = 4), E =

7/8 ≈ 88%.

C7(1, 2, 7, 4) + C7(1, 2, 5, 3).

This minimal NN1-optimal BIBD, superposition of two irreducible EBIBD(v =

7, b = 7, r = 4, k = 4, λ = 2)’s, is obtained via the construction pp. 749-750

in KW (1981). By example 5.1 of KW (1981) there does not exist an NN1-

optimal BIBD(v = 7, b = 7, r = 4, k = 4, λ = 2). The following five designs

share the properties of Design 15a.

C7(1, 2, 7, 4)+C7(1, 2, 5, 3), C7(1, 2, 3, 6)+C7(1, 3, 5, 2), C7(1, 3, 2, 5)+C7(1, 3, 6, 2),

C7(1, 2, 7, 5) + C7(1, 2, 6, 3), C7(1, 3, 2, 6) + C7(1, 2, 4, 7).

Design 15b v = 7 : TBIBD(v = 7, b = 21, r = 12, k = 4, λ = 6), E =

7/8 ≈ 88%.

C7(1, 2, 4, 5) + C7(1, 4, 3, 6) + C7(1, 3, 7, 2).

This minimal NN2-optimal BIBD is superposition of three designs of effi-

ciency E ≈ 85%, neither of which is a BIBD (see Theorem 3.6 of Morgan

(1983), Patterson (1951), Jones and Kenward (1989) p. 200). Minimality

follows from Corollary 3.9 of Morgan (1983).

Design 15c v = 7 : UBIBD(v = 7, b = 42, r = 24, k = 4, λ = 12), E =

7/8 ≈ 88%.
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C7(1, 2, 4, 5) + C7(1, 4, 3, 6) + C7(1, 3, 7, 2) + C7(1, 7, 5, 4) + C7(1, 5, 6, 3) +

C7(1, 6, 2, 7).

This minimal UBIBD is superposition of design 15a with its mirror image.

The following three designs are also UBIBD(= 7, b = 42, r = 24, k = 4, λ =

12).

C7(1, 2, 3, 4) + C7(1, 4, 7, 3) + C7(1, 3, 5, 7) + C7(1, 7, 6, 5) + C7(1, 5, 2, 6) +

C7(1, 6, 4, 2)

C7(1, 4, 2, 5) + C7(1, 3, 4, 6) + C7(1, 2, 6, 7) + C7(1, 5, 7, 4) + C7(1, 6, 5, 3) +

C7(1, 7, 3, 2)

C7(1, 3, 2, 4) + C7(1, 2, 5, 6) + C7(1, 4, 6, 2) + C7(1, 6, 7, 5) + C7(1, 7, 4, 3) +

C7(1, 5, 3, 7)

2.4 Designs for k=5

By theorem 4.15 in RH (1986) (Hanani (1972)), for k = 5, the necessary

condition (6) for existence of a BIBD(v, b, r, k, λ) are sufficient for v ≤ 14.

By remark 2, an NN1-optimal uniform on periods BIBD(v = 7, b, r, k = 5, λ)

requires v|b and (6), and hence λ = 5m, b = vq and r = 5q, with m(v−1) =

4q. Likewise, an NN2-optimal uniform on periods BIBD(v = 7, b, r, k = 5, λ)

requires λ = 10m, b = vq and r = 5q with m(v − 1) = 2q.

Design 16a v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E = 100%.

(1, 2, 3, 4, 5), (2, 5, 4, 1, 3), (3, 4, 2, 5, 1), (4, 1, 5, 3, 2), (5, 3, 1, 2, 4).

This NN1-optimal BIBD is ED and a quasi-complete Latin square design.

Design 16b v = 5 : TBIBD(v = 5, b = 10, r = 10, k = 5, λ = 10), E =

100%.

Design 16c + Design 16d.

This minimal NN2-optimal BIBD is superposition of two quasi-complete

Latin squares, Designs 16c,d, neither of whom is TBIBD, NN1-optimal, or

BEP. The superposition of Design 16b with its mirror image yields a minimal

UBIBD (Design 16e).

Design 16c v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E = 100%.

C5(1, 3, 4, 5, 2).

Design 16d v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E =

100%.

C5(1, 2, 5, 3, 4).
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Design 16e v = 5 : UBIBD(v = 5, b = 20, r = 20, k = 5, λ = 20), E =

100%.

C5(1, 3, 4, 5, 2) + C5(1, 2, 5, 3, 4) + C5(1, 4, 3, 2, 5) + C5(1, 5, 2, 4, 3).

Design 17a v = 6 : EBIBD(v = 6, b = 30, r = 25, k = 5, λ = 20), E =

24/25 ≈ 96%.

C6(1, 2, 6, 4, 5)+C6(1, 3, 6, 2, 5)+C6(1, 4, 5, 6, 2)+C6(1, 5, 6, 3, 4)+C6(1, 6, 4, 3, 5).

This design is a minimal NN1-optimal BIBD, superposition of five cyclic

BIBD(v = 6, b = 6, r = 5, k = 5, λ = 4)’s with E ≈ 96%.

Design 17b v = 6 : TBIBD(v = 6, b = 60, r = 50, k = 5, λ = 40), E =

24/25 ≈ 96%.

C6(1, 2, 6, 4, 5)+C6(1, 3, 6, 2, 5)+C6(1, 4, 5, 6, 2)+C6(1, 5, 6, 3, 4)+C6(1, 6, 4, 3, 5)

C6(1, 2, 4, 5, 6)+C6(1, 3, 5, 2, 4)+C6(1, 4, 3, 5, 6)+C6(1, 5, 6, 4, 2)+C6(1, 6, 3, 2, 5).

This design is NN2-optimal and a minimal TBIBD.

Design 17c v = 6 : UBIBD(v = 6, b = 120, r = 100, k = 5, λ = 80), E =

24/25 ≈ 96%.

C6(1, 2, 6, 4, 5)+C6(1, 3, 6, 2, 5)+C6(1, 4, 5, 6, 2)+C6(1, 5, 6, 3, 4)+C6(1, 6, 4, 3, 5)

C6(1, 2, 4, 5, 6)+C6(1, 3, 5, 2, 4)+C6(1, 4, 3, 5, 6)+C6(1, 5, 6, 4, 2)+C6(1, 6, 3, 2, 5)

C6(1, 6, 2, 4, 3)+C6(1, 4, 2, 5, 3)+C6(1, 5, 4, 3, 6)+C6(1, 6, 3, 2, 4)+C6(1, 3, 2, 5, 6)

C6(1, 6, 5, 3, 2)+C6(1, 5, 2, 6, 4)+C6(1, 6, 4, 5, 2)+C6(1, 5, 3, 4, 2)+C6(1, 4, 6, 3, 2).

This design is conjectured to be minimal UBIBD.

Design 18a v = 7 : TBIBD(v = 7, b = 21, r = 15, k = 5, λ = 10), E =

14/15 ≈ 93.3%.

C7(1, 4, 3, 2, 5) + C7(1, 3, 7, 4, 6) + C7(1, 2, 4, 6, 7).

This minimal uniform on periods NN2- (and NN1-) optimal BIBD is ir-

reducible. The component cyclic designs are not BIBD’s but have nearly

optimal efficiency E ≈ 93.3%.

Design 18b v = 7 : UBIBD(v = 7, b = 42, r = 30, k = 5, λ = 20), E =

14/15 ≈ 93.3%.

C7(1, 4, 3, 2, 5) + C7(1, 3, 7, 4, 6) + C7(1, 2, 4, 6, 7)

C7(1, 5, 6, 7, 4) + C7(1, 6, 2, 5, 3) + C7(1, 7, 5, 3, 2).

This design is a minimal UBIBD.
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