Paul Deheuvels 
  
Gérard Derzko 
  
BLOCK DESIGNS FOR EARLY-STAGE CLINICAL TRIALS

Keywords: AMS 1980 subject classification. 62K10 Neighbour correlations, balanced incomplete blocks designs, repeated measurements

 is discussed.

1 Preliminaries and notation.

Introduction

This paper provides a selection of experimental designs, appropriate for early-stage clinical trials, where 2 ≤ v ≤ 7 treatments are applied to b subjects over 2 ≤ k ≤ 5 time-periods. We consider only proper binary equireplicated block designs [PBERD], where the subject i ∈ {1, . . . , b} receives k distinct treatments j(i, 1), . . . , j(i, k) over the time-periods 1, . . . , k, each treament being replicated r times (Rasch and Herrendörfer [RH] (1986)). A design D is described by its b × k design matrix J D , whose i-th line is (j(i, 1), . . . , j(i, k)).

Uniformity on periods and efficiency

Let λ j j be the number of times that the pair (j , j ) of treatments is allocated to the same subject, and λ j j = r j for 1 ≤ j = j ≤ v. Among PBERD's, a special role is played by balanced incomplete block designs

[BIBD], denoted by BIBD(v, b, r, k, λ), for which λ j j = λ is independent of 1 ≤ j = j ≤ v. Partially balanced incomplete block designs [PBIBD] with K associated classes are PBERD's such that λ j j take K distinct values for 1 ≤ j = j ≤ v (see e.g. [START_REF] Raghavarao | Construction and Combinatorial Problems in Design of Experiments[END_REF]). For combinations of v, b, k and r for which a BIBD does not exist, the class of PBIBD's (Clatworthy (1973)) may provide some useful alternatives. We refer to [START_REF] Street | Combinatorics of Experimental Design[END_REF], [START_REF] Fisher | Statistical Tables for Biological Agricultural and Medical Research[END_REF], Sprott (1962) and [START_REF] Mathon | Tables of parameters of BIBDs with r ≤ 41 including existence, enumeration and resolvability results[END_REF] for methods of construction and lists of designs covering the most usual values of v, b, r, k and λ. A PBERD is connected if rank(C) = v -1, where C = rI v -k -1 Λ, I v is the v × v identity matrix, and Λ = (λ j j ), or equivalently if there exist unbiased estimates of the treatment elementary contrasts (RH (1986) pp. 39-40 and John (1980), pp. 9-13). Let Ω v,b,k denote the class of connected PBERD's. For D ∈ Ω v,b,k the yield of subject i in period h is assumed to be

Y ih = µ + β i + τ j(i,h) + π h + ih for 1 ≤ i ≤ b and 1 ≤ h ≤ k ( 1 
)
where µ is the mean effect, β i the i-th subject effect, τ j the j-th treatment effect, π h the h-th time-period effect, and i β i = j τ j = h π h = 0. The residuals { ih } form a Gaussian array with N (0, σ 2 ) marginals. The assumption that these residuals are uncorrelated [UC] being often unrealistic, the following models have been introduced to account for within-block dependence, assuming no between-block dependence. For 0 ≤ m ≤ k -1, it is assumed in m-th nearest-neighbour [NN or NNm] models that

I E( ip iq ) = σ 2 ρ |p-q| for 1 ≤ i ≤ b and 1 ≤ p, q ≤ k (2) 
where ρ 0 = 1, . . . , ρ m , ρ m+1 = . . . = ρ k-1 = 0.

The geometric correlation [GC or GC(R)] model is a special case of NN(k-1) with

I E( ip iq ) = σ 2 R |p-q| for 1 ≤ i ≤ b and 1 ≤ p, q ≤ k (3) 
The NNm and GC(R) models become UC for m = R = 0 and are appropriate for analysis of repeated measurements experiments (Hedayat andAsfarinejad (1975, 1978), [START_REF] Jones | Design and Analysis of Cross-Over Trials[END_REF]. NN1-dependence was studied by Kiefer and Wynn [KW] (1981), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], NN2-dependence, by [START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF], [START_REF] Morgan | Block designs for first and second order correlations[END_REF], GC-dependence, by [START_REF] Patterson | The efficiency of incomplete block designs in National List and Recommended List Cereal Variety Trials[END_REF], [START_REF] Kunert | Optimal repeated measurement designs for correlated observations and analysis by weighted least square[END_REF]. For general or special forms of NN(k-1)-dependence we refer to [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], [START_REF] Williams | A criterion for the construction of optimal neighbour designs[END_REF][START_REF] Williams | A neighbour model for field experiments[END_REF], [START_REF] Ipinyomi | Equineighboured experimental designs[END_REF], [START_REF] Wild | The construction of neighbour designs[END_REF], Russel and Eccleston (1987a, b), [START_REF] Martin | Optimal incomplete block designs for general dependence structures[END_REF] and the references therein.

One may further specialize (1) by introducing for 1 ≤ j ≤ v the first-order residual (or carryover) effect γ j of the treatment j once administered, and setting [START_REF] Kunert | Optimality of balanced uniform repeated measurement designs[END_REF][START_REF] Kunert | Optimal repeated measurement designs for correlated observations and analysis by weighted least square[END_REF])

Y ih = µ + β i + τ j(i,h) + π h + γ j(i,h-1) + ih for 1 ≤ i ≤ b and 1 ≤ h ≤ k (4)
In early stage clinical trials, primarily aimed to study treatment effects, it is desirable for the best linear unbiased estimator [BLUE] τ = {τ j } of τ = {τ j } with respect to ordinary least squares [OLS] to be uncorrelated with the BLUE of the other parameters. This requires any design of interest to be uniform on periods, each treatment being then allocated b/v times over each time period [START_REF] Patterson | Change-over trials[END_REF][START_REF] Patterson | The construction of balanced designs for experiments involving sequences of treatments[END_REF]), in which case the OLS BLUE τ of τ under (1) coincides with that obtained assuming π h = 0 for 1 ≤ h ≤ k.

Uniformity on periods requires that v divides b, denoted v|b, and conversely one has (Agrawal (1966a, b)), Chapter 6 of Raghavarao (1971))

Theorem 1 (Agrawal (1966a, b)) For any D ∈ Ω v,b,k with v|b, the treatment sequences can be rearranged for each subject to obtain a design uniform on periods.

Uniform on periods PBERD's are often called Latin rectangles if v = b > k, and Latin square designs of order [START_REF] Youden | Use of incomplete block replications in estimating tobacco virus[END_REF] proved a special case of theorem 1 for symmetrical BIBD's (with v = b and k = r), which, when rearranged, are best-known as Youden squares [START_REF] Shrikhande | Designs for the two-way elimination of heterogeneity[END_REF]). In the sequel, the designs D ∈ Ω v,b,k are rearranged when possible to be uniform on periods.

v if v = b = k in which case J D is a v × v Latin square.
Among the various forms of optimality with respect to estimation of τ (Kiefer (1975)), A-optimality is the most appropriate when treatments play symmetrical roles. For D ∈ Ω v,b,k and under (1), the OLS BLUE u τ of a contrast u τ satisfies var(u τ ) = σ 2 u (C+aJ v ) -1 u, where J v is a v×v matrix of ones, a = 0 and J v u = 0. A-optimality corresponds to a maximal value of the efficiency factor, averaging the variances of elementary contrasts and given by [START_REF] Kiefer | On the nonrandomized optimality and randomized non-optimality of symmetrical designs[END_REF], [START_REF] Kshirsagar | A note on incomplete block designs[END_REF], [START_REF] Mote | On a minimax property of balanced incomplete block designs[END_REF] and [START_REF] Roy | On the efficiency factor of block designs[END_REF]), in which case [START_REF] John | Incomplete Block Designs[END_REF], p. 15)

E = r σ 2 (v -1) 1≤j <j ≤v var(τ j -τj ) -1 = 2 v -1 1≤j≤v-1 θ -1 j ≤ vr -b r(v -1) ≤ 1 (5) θ 1 , . . . , θ v-1 being the non-zero characteristic roots of C (Raghavarao (1971)), pp. 58-59). The upper bound vr-b k(v-1) for E in (5) is reached iff D ∈ Ω v,b,k is a BIBD(v, b, r, k, λ)
E = v(k -1) r(v -1) = λv rk , bk = rv, λ(v -1) = r(k -1) and b ≥ v (6) 
Whenever the subclass Ω * v,b,k of BIBD(v, b, r, k, λ) is not empty, it is therefore advisable to select D ∈ Ω v,b,k within Ω * v,b,k as to optimize other forms of optimality discussed below.

Minimal NN1 and NN2-optimal designs

For NN(k-1)-dependence, efficiency can be assessed either under generalized least square [GLS], assuming that {ρ r , 1 ≤ r ≤ k -1} is known, or under ordinary least squares [OLS]. GLS is theoretically more efficient than OLS, but bears the disadvantage to require inference or prior knowledge on withinblocks dependence. On the other hand, OLS coincide with GLS in the UC model and is of standard use. The choice of a design is further complicated by the fact that optimal designs with respect to OLS may not be optimal with respect to GLS and conversely [START_REF] Martin | Optimal incomplete block designs for general dependence structures[END_REF]). In spite of the fact that our approach is primarily OLS-oriented with respect to NN1-and NN2-dependence, the properties of the designs we consider are, at times, also appropriate for GLS-optimality at the price of weak additional conditions on {ρ r }. This point will not be discussed further.

Weak OLS universal optimality for NN1-and NN2-dependence was characterized by [START_REF] Kiefer | Optimal balanced block and Latin square designs for correlated observations[END_REF], [START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF] and [START_REF] Morgan | Block designs for first and second order correlations[END_REF] as follows. Let N t j j be the number of times that j and j are allocated to the same subject as t-th neigbours, e j j the number of times that j and j are allocated to the same subject, with j or j on an end plot (h = 1 or k) (counted twice when both j and j are on an end plot), and f j j the number of times that j and j are allocated to the same subject with at least one of j and j on a next-to-end plot (h = 2 or k -1) (counted twice if both j and j are on next-to-end plots).

Theorem 2 [START_REF] Kiefer | Optimal balanced block and Latin square designs for correlated observations[END_REF]) For k ≥ 2, a BIBD(v, b, r, k, λ) is weakly universally optimum within Ω * v,b,k for the NN1 model if

kN 1 j j + e j j is independent of 1 ≤ j = j ≤ v (7) 
Theorem 3 (Morgan and Chakravarti (1988

)) For k ≥ 3, a BIBD(v, b, r, k, λ) is weakly universally optimum within Ω * v,b,k for the NN2 model if (i) kN 1 j j + e j j is independent of 1 ≤ j = j ≤ v (ii) kN 2 j j + e j j + f j j is independent of 1 ≤ j = j ≤ v (8) 
For k = 3 (resp. k = 2), (i) and (ii) are (resp. (i) is) equivalent to

N 1 j j is independent of 1 ≤ j = j ≤ v (9) 
For complete designs (v = k), weak universal optimality within Ω * v,b,k with respect to the NN1 (resp. NN2) models holds iff N 1 j j is (resp. N 1 j j and N 2 j j are) independent of 1 ≤ j = j ≤ v

We provide in section 2 for 2 ≤ k ≤ 5 and 2 ≤ v ≤ 7 a series of designs D ∈ Ω * v,b,k which are NN1-(resp. NN2-) optimal in the sense of theorem 2-3, and minimal, meaning that they correspond to the minimal possible value of b given k and v. The superposition D 1 + D 2 of two NN1-(resp. NN2-) optimal BIBD's D 1 and D 2 of parameters (v, b 1 , r 1 , k, λ 1 ) and (v, b 2 , r 2 , k, λ 2 ) and design matrices J D 1 and J D 2 is an NN1-(resp. NN2-) optimal BIBD's of parameters (v, b 1 + b 2 , r 1 + r 2 , k, λ 1 + λ 2 ) and design matrix (J D 1 , J D 2 ) , suitable superposition of minimal optimal designs enable to generate optimal designs for each admissible value of b.

A BIBD is minimal or irreducible if not the superposition of two BIBD's. Irreducible component of minimal optimal BIBD's are provided in section 2.

Remark 1 If D ∈ Ω * v,b,k is NN1-(or NN2-) optimal
, we obtain another NN1-(or NN2-) optimal BIBD by replacing in D, for some selected subjects, the original sequence of treatments by the sequence of reverse order (this modification leaves unchanged N t j j , e j j and f j j ). However this may affect uniformity on periods.

Remark 2 For a BIBD(v, b, r, k, λ), [START_REF] Kiefer | Optimal balanced block and Latin square designs for correlated observations[END_REF] showed that equality of all N 1 j j imply k|4λ. By theorem 2.12 and corollary 2.13 of [START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF], and by theorem 2.2 of [START_REF] Morgan | Block designs for first and second order correlations[END_REF], an NN1 optimal BIBD(v, b, r, k, λ) satisfies k|4λ (and [START_REF] Morgan | Block designs for first and second order correlations[END_REF] showed that the minimal value of b for which there exists a complete NN1-(resp. NN2-) optimal design with [START_REF] Williams | Experimental designs balanced for the estimation of pairs of residual effects of treatments[END_REF][START_REF] Williams | Experimental designs balanced for pairs of residual effects[END_REF]). These designs have been investigated by [START_REF] Kiefer | Optimal balanced block and Latin square designs for correlated observations[END_REF] [START_REF] Street | Combinatorics of Experimental Design[END_REF] pp. 333-337). A Latin square design D is called complete (resp. quasi-complete) [START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF]) if every ordered (resp. unordered) pair of treatments appears once (resp. twice) in the rows and once (resp. twice) in the columns. [START_REF] Williams | Experimental designs balanced for the estimation of pairs of residual effects of treatments[END_REF] proved the existence of a complete (resp. quasi-complete) Latin square of order 2m (resp. 2m + 1) for each integer m. By theorem 3, a quasi-complete (resp. complete) Latin square design is an NN1-optimal EBIBD. A design is called equi-neighboured [ED] if N t j j is independent of 1 ≤ j = j ≤ v for each t = 1, . . . , t -1 [START_REF] Ipinyomi | Equineighboured experimental designs[END_REF]). By theorem 3, an ED is NN2-optimal if k = v or k = 3 and NN1-optimal for k = 2, but needs not be NN2-optimal in general when 4 ≤ k ≤ v.

k|2λ if either k = 0 (mod. 4), v = 2 or v = 3 (mod. 4). An NN2 optimal BIBD(v, b, r, k, λ) satisfies k(k -1)|4λ (and k(k -1)|2λ if either k = 0 (mod. 4), v = 2 or v = 3 (mod. 4).
v = k is b = v (resp. b = 1 2 v(v -1)).

Optimal designs for the GC model

D ∈ Ω * v,b,k is called an equi-neighboured balanced incomplete block design [EBIBD] (or a Williams design), when N 1 j j is independent of 1 ≤ j = j ≤ v (Kunert (1985),
A design D has balanced end pairs [BEP] if the number N k j j of subjects receive j and j on end-plots is independent of 1 ≤ j = j ≤ v. When k = v, optimality of designs with respect to estimation of τ and the GC model [START_REF] Kunert | Optimal repeated measurement designs for correlated observations and analysis by weighted least square[END_REF], [START_REF] Kiefer | Construction and optimality of generalized Youden designs[END_REF]) is characterized as follows.

Theorem 4 [START_REF] Kunert | Optimal repeated measurement designs for correlated observations and analysis by weighted least square[END_REF]) Under the GC model, the universally optimal designs are characterized when k = v by the conditions:

(i) kN 1 j j + e j j is independent of 1 ≤ j = j ≤ v (ii) kN k j j + e j j + f j j is independent of 1 ≤ j = j ≤ v (10) 
Cheng and Wu (1980) and [START_REF] Kunert | Optimality of balanced uniform repeated measurement designs[END_REF] considered optimality for estimation of weighted least squares [WLS] with respect to the first order carry-over UC model [START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF].

Theorem 5 [START_REF] Kunert | Optimality of balanced uniform repeated measurement designs[END_REF]) For a first order carry-over model with uncorrelated residuals, and for k = v ≥ 3, designs such that the number of times that the treatments j is administered to a subject prior to the treatment j is independent of 1 ≤ j = j ≤ v are universally optimal with respect to WLS in

Ω * v,v,v .
For k ≤ v, we refer to [START_REF] Martin | Optimal incomplete block designs for general dependence structures[END_REF] for a discussion of optimality in the NN(k -1) model ( 2), which includes the GC model (3).

Higher neighbour balancing

With the exception of (4), the models above do not consider effects due to the ordering of treatment sequences (see Remark 1). This observation leads to introducing pairwise balanced EBIBD's [PB] where the number of times that each ordered pair (j , j ) is allocated to the same subject in adjacent positions is independent of 1 ≤ j = j ≤ v. A PB-EBIBD may be generated by superposition of an arbitrary EBIBD with its mirror-image obtained by reversing the order of treatments for each subject.

An equi-neighboured BIBD is said to be universally balanced (resp. totally balanced), denoted by UBIBD (resp. TBIBD) if the number of times an ordered (resp. unordered) pair (j , j ) is allocated to the same subject over the time periods h and h is independent of 1 ≤ j = j ≤ v and 1 ≤ h = h ≤ v. TBIBD's (resp. UBIBD's) are related to strongly directionally equi-neighboured designs [SDEN] (resp. transitive designs) (Martin and Eccleston (1991)), orthogonal arrays of type II of strength 2, and semi-balanced arrays of strength 2 [START_REF] Rao | Combinatorial arrangements analogous to orthogonal arrays[END_REF][START_REF] Rao | Some combinatorial problems of arrays and applications to design of experiments[END_REF]). By [START_REF] Ipinyomi | Equineighboured experimental designs[END_REF] and Martin and Eccleston (1991) TBIBD's and UBIBD's possess general properties of optimality with respect to OLS or GLS and under weak restrictions upon

{ρ r , 1 ≤ r ≤ k -1}. A UBIBD(v, b = v! (v-k)! , r = k(v-1)! (v-k)! , k, λ = k(k-1)(v-2)! 2(v-k)!
) is generated by allocating all ordered sequences of k treatments taken among {1, . . . , v}. The resulting trivial design is uniform on periods, but requires a large number of subjects and is minimal only in special cases.

Cyclic designs

The cyclic designs C v (j 1 , . . . , j k ) [START_REF] John | Efficient cyclic designs[END_REF][START_REF] John | Cyclic Designs[END_REF])), allocating to the i-th subject the residuals mod. v of {j 1 + i -1, . . . , j k + i -1}, is uniform over periods with b = v and λ j j = λ |j -j | , where λ 1 , . . . , λ v-1 satisfy (John (1987), pp. 64-65)

λ m = λ v-m for m = 1, . . . , v -1 (11) 
By [START_REF] Hanani | The existence and construction of balanced incomplete block designs[END_REF], cyclic designs, denoted by C(v, k), are BIBD's for v = 2, 3, PBIBD's with K ≤ 2 for v = 4, 5, and K ≤ 3 for v = 5, 6. For connected cyclic designs [START_REF] John | Cyclic Designs[END_REF], p. 65),

E = k -1 k - 1 rk v-1 j=1 λ j cos 2jπ v (12) 
Most optimal BIBD's in section 2 are superpositions of cyclic designs and listed as such. E is obtained, for each cyclic component, by [START_REF] Hanani | On balanced incomplete block designs with large numbers of elements[END_REF] if connected, or by E = ∞ if not connected.

Conclusion

In section 2 below, we tabulate a series of optimal designs obtained by miscellaneous techniques, including trial and error arguments. Applications of these designs will be presented elsewhere.

Some useful balanced designs

In all cases, we have the following implications.

(i) U BIBD ⇒ T BIBD ⇒ ED ⇒ EBIBD and BEP ;

(ii) U BIBD ⇒ P B, EBIBD ⇒ BIBD;

(iii) T BIBD ⇒ NN2-optimality ⇒ NN1-optimality;

(iv) EBIBD and k = v ⇔ NN1-optimality, ED and k = v ⇒ NN2-optimality;

(v) U BIBD ⇒ Uniformity on periods.

Here NN1 (resp. NN2-) optimality is meant in the sense of theorems 2 and 3, and holds within Ω v,b,k . A BIBD may be either NN1-optimal, NN2-optimal, EBIBD, ED or TBIBD without being uniform on periods. Minimality is meant with respect to b in a given class. For example, a minimal UBIBD has the least possible value of b among all possible UBIBD's, given v and k, and an irreducible BIBD will be said a minimal BIBD. In view of ( 13), and to avoid repetitions, we only mention minimality with respect to the less stringent condition. For example, if a design is both a minimal UBIBD and a minimal BIBD, we only mention the latter property.

When possible, designs are listed as superpositions of cyclic designs with the notation of section 1. When such decomposition do not exist, designs D are given by listing lines of J D . Tables are ordered by increasing values of k ∈ 2, . . . , 5, and for a fixed k, by increasing values of v ∈ {k, . . . , 7}. Designs which are not uniform on periods are labeled by a "*". The following tables give the least possible number of subjects required to obtain NN1-(resp. NN2-) optimal BIBD's with the number (#) of the corresponding design.

NN1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 k = 2 b = 2 b = 3 b = 12 b = 10 b = 30 b = 21 (#1) (#2a) (#3a) (#4a) (#5a) (#6a) k = 3 b = 3 b = 12 b = 10 b = 30 b = 21 (#7a) (#8a, b) (#9a, b, c) (#10a) (#11a) k = 4 b = 4 b = 10 b = 30 b = 14 (#12a) (#13a, b) (#14a) (#15a) k = 5 b = 5 b = 30 b = 21 (#16a) (#17a) (#18a) Table 1. Minimal value of b for uniform on period NN1-optimal BIBD's NN2 v = 3 v = 4 v = 5 v = 6 v = 7 k = 3 b = 3 b = 12 b = 10 b = 30 b = 21 (#7a) (#8a, b) (#9a, b, c) (#10a) (#11a) k = 4 b = 6 b = 10 b = 30 b = 14 (#12a) (#13a, b) (#14a) (#15b) k = 5 b = 10 b = 60 b = 21 (#16b) (#17b) (#18b)
Table 2. Minimal value of b for uniform on period NN2-optimal BIBD's ( * ) 4. Minimal value of b for uniform on period UBIBD's ( * ) ( * ) Minimality of designs in Tables 1, 2, 3 is proved, with exception of Design #17b in Table 2, Design #14b in Table 3 and Design #17c in Table 4.

TBIBD v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 k = 2 b = 2 b = 3 b = 12 b = 10 b = 30 b = 21 (#1) (#2a) (#3a) (#4a) (#5a) (#6a) k = 3 b = 3 b = 12 b = 10 b = 30 b = 21 (#7a) (#8a, b) (#9a, b, c) (#10a) (#11a) k = 4 b = 12 b = 10 b = 60 b = 21 (#12g) (#13a, b) (#14d) (#15b) k = 5 b = 10 b = 60 b = 21 (#16b) (#17b) (#18a) Table 3. Minimal value of b for uniform on period TBIBD's ( * ) UBIBD v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 k = 2 b = 2 b = 6 b = 12 b = 20 b = 30 b = 42 (#1) (#2b) (#3a) (#4d) (#5a) (#6e) k = 3 b = 6 b = 24 b = 20 b = 60 b = 42 (#7b) (#8c) (#9d) (#10e) (#11b) k = 4 b = 24 b = 20 b = 60 b = 42 (#12h) (#13c) (#14d) (#15c) k = 5 b = 20 b = 120 b = 42 (#16e) (#17c) (#18b) Table

Designs for k=2

Minimal BIBD's are obtained here by listing all treatment pairs {1, . . . , v}. NN2-optimality is meaningless, NN1-optimality ⇔ ED ⇔ EBIBD ⇔ BEP ⇔ BIBD ⇔ TBIBD, and PB ⇔ UBIBD. Therefore, we only mention whether the design is uniform on periods, TBIBD, UBIBD or not.

Design 1 v = 2 : U BIBD(v = 2, b = 2, r = 2, k = 2, λ = 2), E = 100%. C 2 (1, 2)
This minimal BIBD is a complete Latin square design.

Design 2a v = 3 : T BIBD(v = 3, b = 3, r = 2, k = 2, λ = 1), E = 75%. C 3 (1, 2)
This minimal BIBD is symmetrical. The superposition of this design with its mirror-image yields a minimal UBIBD (design 2b). [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] This minimal uniform on periods TBIBD is superposition of two (non uniform over periods) minimal TBIBD's (Designs 3b, c).

Design 2b v = 3 : U BIBD(v = 3, b = 6, r = 4, k = 2, λ = 2), E = 75%. C 3 (1, 2) + C 3 (1, 3). Design 3a v = 4 : U BIBD(v = 4, b = 12, r = 6, k = 2, λ = 2), E = 2/3 ≈ 67%. C 4 (1, 2) + C 4 (1, 3) + C 4
Design 3b * v = 4 : T BIBD(v = 4, b = 6, r = 3, k = 2, λ = 1), E = 2/3 ≈ 67%.
(1, 2), (1, 3), (4, 1), (2, 3), (2, 4), (4, 3)

Design 3c * v = 4 : T BIBD(v = 4, b = 6, r = 3, k = 2, λ = 1), E = 2/3 ≈ 67%.
(2, 1), (3, 1), (1, 4), (3, 2), (4, 2), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] Among the three components (Design 3d,e,f) of design 3a, Design 3d is not connected.

Design 3d v = 4 : C(v = 4, k = 2), E = 50% C 4 (1, 2) Design 3e v = 4 : C(v = 4, k = 2), E = ∞ c 4 (1, 3) Design 3f v = 4 : C(v = 4, k = 2), E = 50% c 4 (1, 4) Design 4a v = 5 : T BIBD(v = 5, b = 10, r = 4, k = 2, λ = 1), E = 5/8 ≈ 62%. C 5 (1, 2) + C 5 (1, 3)
This minimal BIBD is superposition of two cyclic designs (designs 4b,c).

Design 4b v = 5 : C(v = 5, k = 2) C 5 (1, 2) Design 4c v = 5 : C(v = 5, k = 2) C 5 (1, 3)
The superposition of design 4 with its mirror image yields a minimal UBIBD (design 4d). [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF].

Design 4d v = 5 : U BIBD(v = 5, b = 20, r = 8, k = 2, λ = 2), E = 5/8 ≈ 62%. C 5 (1, 2) + C 5 (1, 3) + C 5 (1, 4) + C 5
Design 5a v = 6 : U BIBD(v = 6, b = 30, r = 10, k = 2, λ = 2), E = 60%. C 6 (1, 2) + C 6 (1, 3) + C 6 (1, 4) + C 6 (1, 5) + C 6 (1, 6).
This minimal uniform on periods BIBD is superposition of two minimal (non uniform on periods) BIBD's (Designs 5b,c). Among the five cyclic components (Designs 5d,e,f,g,h) of Design 5a, Design 5e,f,g are not connected.

Design 5b * v = 6 : T BIBD(v = 6, b = 15, r = 5, k = 2, λ = 1), E = 60%.
(1, 2), (1, 3), (1, 4), (5, 1), (6, 1), (3, 2), (2, 4), [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], (5, 3), (6, 3), (4, 5), (4, 6), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF].

Design 5c * v = 6 : EBIBD(v = 6, b = 15, r = 5, k = 2, λ = 1), E = 60%.
(2, 1), (3, 1), (4, 1), [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], (4, 2), (5, 2), (6, 2), (4, 3), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]. [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF]. [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]. [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF]. [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] This minimal BIBD is the superposition of three cyclic designs (Designs 6b,c,d).

Design 5d v = 6 : C(v = 6, k = 2). C 6 (1, 2). Design 5e v = 6 : C(v = 6, k = 2), E = ∞. C 6 (1, 3). Design 5f v = 6 : C(v = 6, k = 2), E = ∞. C 6
Design 5g v = 6 : C(v = 6, k = 2), E = ∞. C 6
Design 5h v = 6 : C(v = 6, k = 2). C 6
Design 6a v = 7 : T BIBD(v = 7, b = 21, r = 6, k = 2, λ = 1), E = 7/12 ≈ 58%. C 7 (1, 2) + C 7 (1, 3) + C 7
Design 6b v = 7 : C(v = 7, k = 2). C 7 (1, 2). Design 6c v = 7 : C(v = 7, k = 2).
C 7 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF].

Design 6d v = 7 : C(v = 7, k = 2). C 7 (1, 4).
The superposition of Design 6a with its mirror image yields a minimal UBIBD (Design 6e).

Design 6e v = 7 : U BIBD(v = 7, b = 42, r = 12, k = 2, λ = 2), E = 7/12 ≈ 58%. C 7 (1, 2) + C 7 (1, 3) + C 7 (1, 4) + C 7 (1, 5) + C 7 (1, 6) + C 7 (1, 7)

Designs for k=3

By theorem 4.15 in RH (1986) (Hannani (1961)), ( 6) is here sufficient for existence of a BIBD(v, b, r, k, λ). By ( 13) and theorem 1.3, NN1-optimality ⇔ NN2-optimality ⇔ EBIBD, and ED ⇔ EBIBD and BEP. Theorem 5.2 of [START_REF] Kiefer | Optimal balanced block and Latin square designs for correlated observations[END_REF] shows that an NN1-optimal BIBD(v, b, r, k, λ) exists iff λ = 3m, b = mv(v -1)/2 and r = 3m(v -1)/2, whence the minimum value of b given v is b = v(v -1)/2 for odd v and b = v(v -1) for even v. We only mention below whether the design is uniform on periods, EBIBD, ED, TBIBD or UBIBD.

Design 7a v = 3 : T BIBD(v = 3, b = 3, r = 3, k = 3, λ = 3), E = 100% C 3 (1, 2, 3)
This minimal TBIBD is a quasi-complete Latin square design of order 3. The superposition of this design with its mirror image yield a minimal UBIBD (Design 7b). [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]. [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF].

Design 7b v = 3 : U BIBD(v = 3, b = 6, r = 6, k = 3, λ = 6), E = 100% C 3 (1, 2, 3) + C 3 (1, 3, 2) Design 8a v = 4 : T BIBD(v = 4, b = 12, r = 9, k = 3, λ = 6), E = 8/9 ≈ 89% C 4 (1, 2, 3) + C 4 (1, 3, 2) + C 4 (1, 4, 2) Design 8b v = 4 : T BIBD(v = 4, b = 12, r = 9, k = 3, λ = 6), E = 8/9 ≈ 89% C 4 (1, 2, 4) + C 4 (1, 3, 4) + C 4 (1, 4, 3) Designs 8a,b are minimal TBIBD's. Each cyclic component C 4 (1, 2, 3), C 4 (1, 3, 2), C 4 (1, 4, 2), C 4 (1, 2, 4), C 4 (1, 3, 4), C 4 (1, 4, 3) is an irreducible BIBD(v = 4, b = 4, r = 3, k = 3, λ = 2) with E ≈ 89%. The superposi- tion of Designs 8a,b is a minimal UBIBD (Design 8c). Design 8c v = 4 : U BIBD(v = 4, b = 24, r = 18, k = 3, λ = 12), E = 8/9 ≈ 89% C 4 (1, 2, 3) + C 4 (1, 3, 2) + C 4 (1, 4, 2) + C 4 (1, 2, 4) + C 4 (1, 3, 4) + C 4 (1, 4, 3) Design 9a v = 5 : T BIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈ 83% C 5 (1, 2, 3) + C 5
Design 9b v = 5 : T BIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈ 83% C 5 (1, 2, 4) + C 5
Design 9c v = 5 : T BIBD(v = 5, b = 10, r = 6, k = 3, λ = 3), E = 5/6 ≈ 83% C 5 (1, 3, 4) + C 5 (1, 2, 5). Designs 9a,b,c are minimal BIBD's. Each is superposition of designs of efficiency E ≈ 83% Design 9d v = 5 : U BIBD(v = 5, b = 20, r = 12, k = 3, λ = 6), E = 5/6 ≈ 83% C 5 (1, 2, 3) + C 5 (1, 3, 5) + C 5 (1, 4, 2) + C 5 (1, 5, 4).
Design 9d is minimal UBIBD with TBIBD components C 5 (1, 2, 3)+C 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF] and C 5 (1, 4, 2) + C 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF]. This minimal period-balanced BIBD is superposition of Designs 10b,c,d. Each is an irreducible BIBD, but neither is uniform on periods, nor with balanced end pairs. Up to permutations of treatments within each subject, designs 10b,c,d coincide with a design given on p. 170 in RH (1986) and in Example 3.1.5 of [START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF]. The superposition of design 10a with its mirror image yields a minimal UBIBD (Design 10e).

Design 10b * v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E = 4/5 = 80%
(1, 2, 5), [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF])

Design 10c * v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E = 4/5 = 80% (5, 1, 2), (6, 1, 2), (4, 1, 3), (6, 1, 3), (5, 1, 4), (4, 2, 3), (5, 2, 3), (6, 2, 4), (6, 3, 5), (6, 4, 5) 
Design 10d * v = 6 : BIBD(v = 6, b = 10, r = 5, k = 3, λ = 2), E = 4/5 = 80%
(2, 5, 1), (2, 6, 1), (3, 4, 1), (3, 6, 1), (4, 5, 1), (3, 4, 2), (3, 5, 2), (4, 6, 2), (5, 6, 3), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF])

Design 10e v = 6 : U BIBD(v = 6, b = 60, r = 30, k = 3, λ = 12), E = 4/5 = 80%
(1, 2, 5), [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF] (5, 2, 1), (6, 2, 1), (4, 3, 1), (6, 3, 1), (5, 4, 1), (4, 3, 2), (5, 3, 2), (6, 4, 2), (6, 5, 3), (6, 5, 4) (5, 1, 2), (6, 1, 2), (4, 1, 3), (6, 1, 3), (5, 1, 4), (4, 2, 3), (5, 2, 3), (6, 2, 4), [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF] (2, 1, 5), (2, 1, 6), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], (4, 1, 5), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], (4, 2, 6), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF] (2, 5, 1), (2, 6, 1), (3, 4, 1), (3, 6, 1), (4, 5, 1), (3, 4, 2), (3, 5, 2), (4, 6, 2), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] (1, 5, 2), (1, 6, 2), [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF], (2, 5, 3), [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], (4, 6, 5)

Design 11a v = 7 : T BIBD(v = 7, b = 21, r = 9, k = 3, λ = 3), E = 7/9 ≈ 78% C 7 (1, 2, 4) + C 7 (1, 5, 6) + C 7 (1, 3, 7) also C 7 (1, 3, 4) + C 7 (1, 2, 6) + C 7 (1, 5, 7)
Design 11a is a minimal TBIBD. Each of its three components is a symmetrical irreducible BIBD(v = 7, b = 7, r = 3, k = 3, λ = 1) with E = 7/9 ≈ 78%. The superposition of Design 11a with its mirror image yields a minimal UBIBD (Design 11b).

Design 11b v = 7 : U BIBD(v = 7, b = 42, r = 18, k = 3, λ = 6), E = 7/9 ≈ 78% C 7 (1, 2, 4) + C 7 (1, 5, 6) + C 7 (1, 3, 7) + C 7 (1, 6, 5) + C 7 (1, 7, 3) + C 7 (1, 4, 2) also C 7 (1, 3, 4) + C 7 (1, 2, 6) + C 7 (1, 5, 7) + C 7 (1, 7, 5) + C 7 (1, 4, 3) + C 7 (1, 6, 2)

Designs for k=4

By Theorem 4.15 in RH (1986) [START_REF] Hanani | The existence and construction of balanced incomplete block designs[END_REF][START_REF] Hanani | On balanced incomplete block designs with large numbers of elements[END_REF][START_REF] Hanani | On balanced incomplete block designs with blocks having five elements[END_REF])), ( 6) is here sufficient for existence of a BIBD(v, b, r, k, λ). [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] This minimal NN1-optimal , symmetrical, PB, irreducible EBIBD is a complete Latin square design. On the other hand, it is not NN2-optimal, nor BEP, nor TBIBD. This design is minimal uniform on periods NN2-optimal EBIBD. By remark 2, for v = 4, an NN2-optimal design with k = v requires at least b = v(v -1)/2 = 6 subjects. However, in this case v = 4 does not divide b = 6 so that uniformity on periods cannot hold. Therefore, Designs 12e,f being NN2-optimal EBIBD's, cannot be rearranged to be uniform over periods. (1, 6, 2, 4), (2, 1, 3, 5), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], (4, 3, 5, 1), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF], (6, 5, 1, 3), (1, 2, 4, 3), [START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF], (4, 5, 1, 6), (5, 6, 1, 2), (6, 1, 3, 2), (1, 4, 5, 2), (2, 5, 6, 3), [START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF].

Design 12a v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100% C 4
Design 12b v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100%
Design 14c * v = 6 : BIBD(v = 6, b = 15, r = 10, k = 4, λ = 6), E = 90%.
(1, 6, 5, 3), (2, 1, 6, 4), (3, 2, 1, 5), (4, 3, 2, 6), (5, 4, 3, 1), [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF], (1, 3, 6, 2), (2, 4, 1, 3), (3, 5, 2, 4), (4, 6, 3, 5), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], (6, 2, 5, 1), (4, 1, 2, 5), [START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF], [START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF].

Design 14d v = 6 : U BIBD(v = 6, b = 60, r = 40, k = 4, λ = 24), E = 90%. C 6 (1, 6, 2, 4) + C 6 (1, 6, 5, 3) + C 6 (1, 2, 4, 3) + C 6 (1, 4, 5, 2) + C 6 (1, 3, 6, 2) +C 6 (1, 5, 3, 4) + C 6 (1, 3, 4, 5) + C 6 (1, 2, 6, 5) + C 6 (1, 4, 3, 6) + C 6 (1, 5, 2, 6)
This minimal UBIBD, superposition of Design 14a with its mirror image, is conjectured to be a minimal TBIBD. This design is a minimal UBIBD.

Design 15a v = 7 : EBIBD(v = 7, b = 14, r = 8, k = 4, λ = 4), E = 7/8 ≈ 88%.

Design 10a v = 6 :

 6 T BIBD(v = 6, b = 30, r = 15, k = 3, λ = 6), E = 4/5 = 80% (Design 10b) + (Design 10c) + (Design 10d).

C 4 ( 1 , 2 , 4 , 3 )

 41243 Design 12c v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100% (1, 4, 3, 2), (2, 3, 4, 1), (3, 1, 2, 4), (4, 2, 1, 3) Design 12d v = 4 : EBIBD(v = 4, b = 4, r = 4, k = 4, λ = 4), E = 100% (1, 2, 3, 4), (2, 4, 1, 3), (3, 1, 4, 2), (4, 3, 2, 1) Designs 12b,c,d are minimal NN1-optimal symmetrical EBIBD's. Neither is NN2-optimal nor with balanced end pairs. Design 12b is cyclic, whereas Designs 12c,d are not. Design 12e * v = 4 : EBIBD(v = 4, b = 6, r = 6, k = 4, λ = 6), E = 100% (1, 2, 3, 4), (3, 1, 4, 2), (1, 4, 3, 2), (3, 1, 2, 4), (1, 2, 4, 3), (4, 1, 3, 2) Design 12f * v = 4 : EBIBD(v = 4, b = 6, r = 6, k = 4, λ = 6), E = 100% (2, 4, 1, 3), (4, 3, 2, 1), (2, 3, 4, 1), (4, 2, 1, 3), (2, 3, 1, 4), (3, 4, 2, 1) Designs 12e,f are minimal NN2-optimal symmetrical and irreducible EBIBD's. However, neither is uniform on periods. Design 12g v = 4 : T BIBD(v = 4, b = 12, r = 12, k = 4, λ = 12), E = 100% (Design 12b) + (Design 12c) + (Design 12d) = (Design 12e) + (Design 12f)

Design 12h v = 4 :

 4 U BIBD(v = 4, b = 24, r = 24, k = 4, λ = 24), E = 100% C 4 (1, 2, 3, 4), C 4 (1, 2, 4, 3), C 4 (1, 3, 2, 4), C 4 (1, 3, 4, 2), C 4 (1, 4, 2, 3), C 4 (1, 4, 3, 2)This design is minimal UBIBD. Design 13a v = 5 : T BIBD(v = 5, b = 10, r = 8, k = 4, λ = 6), E = 15/16 ≈ 94%.

C 5

 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] + C 5[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF].Design 13b v = 5 : T BIBD(v = 5, b = 10, r = 8, k = 4, λ = 6), E = 15/16 ≈ 94%.

C 5

 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], 3) + C 5[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]. Designs 13a,b are minimal NN2-(and NN1-) optimal BIBD's, each being superposition of two symmetrical irreducible BIBD(v = 5, b = 5, r = 4, k = 4, λ = 3)'s. The superposition of Designs 13a,b yields a minimal UBIBD (Design 13c). There does not exist an NN1-optimal BIBD(v = 5, b = 5, r = 4, k = 4, λ = 3), as follows from Lemma 4.9 of Morgan (1983) which implies (6) cannot be satisfied for λ = 3 and k = 4. Design 13c v = 5 : U BIBD(v = 5, b = 20, r = 16, k = 4, λ = 12), E = 15/16 ≈ 94%.

C 5

 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF] + C 5 (1, 3, 5, 2) + C 5[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF], 3) + C 5[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF].Design 14a v = 6 : EBIBD(v = 6, b = 30, r = 20, k = 4, λ = 12), E = 90%. C 6 (1, 6, 2, 4) + C 6 (1, 6, 5, 3) + C 6 (1, 2, 4, 3) + C 6 (1, 4, 5, 2) + C 6 (1, 3, 6, 2) = Design 14b + Design 14c.This minimal NN2 (and NN1-) optimal BIBD is ED and superposition of two irreducible non uniform on periods BIBD's (Designs 14b,c) (Cheng (1983), p246). It is not a TBIBD. Design 14b * v = 6 : BIBD(v = 6, b = 15, r = 10, k = 4, λ = 6), E = 90%.

C 7

 7 (1, 2, 7, 4) + C 7 (1, 2, 5, 3). This minimal NN1-optimal BIBD, superposition of two irreducible EBIBD(v = 7, b = 7, r = 4, k = 4, λ = 2)'s, is obtained via the construction pp. 749-750 in KW (1981). By example 5.1 of KW (1981) there does not exist an NN1optimal BIBD(v = 7, b = 7, r = 4, k = 4, λ = 2). The following five designs share the properties of Design 15a. C 7 (1, 2, 7, 4)+C 7 (1, 2, 5, 3), C 7 (1, 2, 3, 6)+C 7 (1, 3, 5, 2), C 7 (1, 3, 2, 5)+C 7 (1, 3, 6, 2), C 7 (1, 2, 7, 5) + C 7 (1, 2, 6, 3), C 7 (1, 3, 2, 6) + C 7 (1, 2, 4, 7). Design 15b v = 7 : T BIBD(v = 7, b = 21, r = 12, k = 4, λ = 6), E = 7/8 ≈ 88%.

C 7

 7 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]) + C 7[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF]) + C 7[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | Balanced repeated measurement designs[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF]. This minimal NN2-optimal BIBD is superposition of three designs of efficiency E ≈ 85%, neither of which is a BIBD (see Theorem 3.6 of[START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF],[START_REF] Patterson | Change-over trials[END_REF],[START_REF] Jones | Design and Analysis of Cross-Over Trials[END_REF] p. 200). Minimality follows from Corollary 3.9 of[START_REF] Morgan | Optimum block design for neighbor type covariance structure[END_REF]. Design 15c v = 7 : U BIBD(v = 7, b = 42, r = 24, k = 4, λ = 12), E = 7/8 ≈ 88%.

C 7

 7 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]) + C 7[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF] + C 7 (1, 3, 7, 2) + C 7 (1, 7, 5, 4) + C 7 (1, 5, 6, 3) + C 7 (1, 6, 2, 7).This minimal UBIBD is superposition of design 15a with its mirror image. The following three designs are also UBIBD(= 7, b = 42, r = 24, k = 4, λ = 12).

C 7

 7 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF]) + C 7 (1, 4, 7, 3) + C 7 (1, 3, 5, 7) + C 7[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Cheng | Balanced repeated measurement designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF] + C 7 (1, 5, 2, 6) + C 7 (1, 6, 4, 2) C 7 (1, 4, 2, 5) + C 7 (1, 3, 4, 6) + C 7 (1, 2, 6, 7) + C 7 (1, 5, 7, 4) + C 7 (1, 6, 5, 3) + C 7 (1, 7, 3, 2) C 7 (1, 3, 2, 4) + C 7 (1, 2, 5, 6) + C 7 (1, 4, 6, 2) + C 7 (1, 6, 7, 5) + C 7 (1, 7, 4, 3) + C 7 (1, 5, 3, 7)2.4 Designs for k=5By theorem 4.15 in RH (1986)[START_REF] Hanani | On balanced incomplete block designs with blocks having five elements[END_REF]), for k = 5, the necessary condition (6) for existence of a BIBD(v, b, r, k, λ) are sufficient for v ≤ 14. By remark 2, an NN1-optimal uniform on periods BIBD(v = 7, b, r, k = 5, λ) requires v|b and (6), and hence λ = 5m, b = vq and r = 5q, with m(v -1) = 4q. Likewise, an NN2-optimal uniform on periods BIBD(v = 7, b, r, k = 5, λ) requires λ = 10m, b = vq and r = 5q with m(v -1) = 2q. Design 16a v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E = 100%. (1, 2, 3, 4, 5), (2, 5, 4, 1, 3), (3, 4, 2, 5, 1), (4, 1, 5, 3, 2), (5, 3, 1, 2, 4). This NN1-optimal BIBD is ED and a quasi-complete Latin square design. Design 16b v = 5 : T BIBD(v = 5, b = 10, r = 10, k = 5, λ = 10), E = 100%. Design 16c + Design 16d. This minimal NN2-optimal BIBD is superposition of two quasi-complete Latin squares, Designs 16c,d, neither of whom is TBIBD, NN1-optimal, or BEP. The superposition of Design 16b with its mirror image yields a minimal UBIBD (Design 16e). Design 16c v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E = 100%.

C 5

 5 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF].Design 16d v = 5 : EBIBD(v = 5, b = 5, r = 5, k = 5, λ = 5), E = 100%. C 5[START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF][START_REF] Azzalini | Some optimal designs for repeated measures with autoregressive errors[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF].Design 16e v = 5 : U BIBD(v = 5, b = 20, r = 20, k = 5, λ = 20), E = 100%.C 5 (1, 3, 4, 5, 2) + C 5 (1, 2, 5, 3, 4) + C 5 (1, 4, 3, 2, 5) + C 5 (1, 5, 2, 4, 3). Design 17a v = 6 : EBIBD(v = 6, b = 30, r = 25, k = 5, λ = 20), E = 24/25 ≈ 96%.

C 6

 6 (1, 2, 6, 4, 5)+C 6 (1, 3, 6, 2, 5)+C 6 (1, 4, 5, 6, 2)+C 6 (1, 5, 6, 3, 4)+C 6 (1, 6, 4, 3, 5). This design is a minimal NN1-optimal BIBD, superposition of five cyclic BIBD(v = 6, b = 6, r = 5, k = 5, λ = 4)'s with E ≈ 96%. Design 17b v = 6 : T BIBD(v = 6, b = 60, r = 50, k = 5, λ = 40), E = 24/25 ≈ 96%.

C 6

 6 [START_REF] Agrawal | Some systematic method of construction of designs for two way elimination of heterogeneity[END_REF][START_REF] Agrawal | Some generalization of distinct representatives with applications to statistical designs[END_REF][START_REF] Cheng | A note in the optimality of semibalanced arrays[END_REF][START_REF] Bailey | Quasi-complete Latin square: construction and randomization[END_REF][START_REF] Cheng | Construction of optimal balanced incomplete block designs for correlated observations[END_REF]+C 6 (1, 3, 6, 2, 5)+C 6 (1, 4, 5, 6, 2)+C 6 (1, 5, 6, 3, 4)+C 6 (1, 6, 4, 3, 5) C 6 (1, 2, 4, 5, 6)+C 6 (1, 3, 5, 2, 4)+C 6 (1, 4, 3, 5, 6)+C 6 (1, 5, 6, 4, 2)+C 6 (1, 6, 3, 2, 5).This design is NN2-optimal and a minimal TBIBD. Design 17c v = 6 : U BIBD(v = 6, b = 120, r = 100, k = 5, λ = 80), E = 24/25 ≈ 96%.

C 6

 6 (1, 2, 6, 4, 5)+C 6 (1, 3, 6, 2, 5)+C 6 (1, 4, 5, 6, 2)+C 6 (1, 5, 6, 3, 4)+C 6 (1, 6, 4, 3, 5) C 6 (1, 2, 4, 5, 6)+C 6 (1, 3, 5, 2, 4)+C 6 (1, 4, 3, 5, 6)+C 6 (1, 5, 6, 4, 2)+C 6 (1, 6, 3, 2, 5) C 6 (1, 6, 2, 4, 3)+C 6 (1, 4, 2, 5, 3)+C 6 (1, 5, 4, 3, 6)+C 6 (1, 6, 3, 2, 4)+C 6 (1, 3, 2, 5, 6) C 6 (1, 6, 5, 3, 2)+C 6 (1, 5, 2, 6, 4)+C 6 (1, 6, 4, 5, 2)+C 6 (1, 5, 3, 4, 2)+C 6 (1, 4, 6, 3, 2). This design is conjectured to be minimal UBIBD. Design 18a v = 7 : T BIBD(v = 7, b = 21, r = 15, k = 5, λ = 10), E = 14/15 ≈ 93.3%. C 7 (1, 4, 3, 2, 5) + C 7 (1, 3, 7, 4, 6) + C 7 (1, 2, 4, 6, 7). This minimal uniform on periods NN2-(and NN1-) optimal BIBD is irreducible. The component cyclic designs are not BIBD's but have nearly optimal efficiency E ≈ 93.3%. Design 18b v = 7 : U BIBD(v = 7, b = 42, r = 30, k = 5, λ = 20), E = 14/15 ≈ 93.3%.

C 7

 7 (1, 4, 3, 2, 5) + C 7 (1, 3, 7, 4, 6) + C 7 (1, 2, 4, 6, 7) C 7 (1, 5, 6, 7, 4) + C 7 (1, 6, 2, 5, 3) + C 7 (1, 7, 5, 3, 2).