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Abstract

Temperate eels Anguilla anguilla (European eel), A. rostrata (American eel), and A. japonica 

(Japanese eel) are three catadromous species which have been declining since the 1970s/1980s 

despite their remarkable adaptive capacity. Because of their specific life-cycles, which share distant 

oceanic spawning grounds and continental growth stage, eels are affected by five components of the

global change: (i) climate change affecting larval survival and drift, (ii) an increase in pollution 

leading to high levels of contamination exacerbated by their high lipid levels, (iii) increasing 

fragmentation and habitat loss that reduce dramatically the amount of available habitats and induce 

increased spawner mortality, (iv) the appearance of Anguillicola crassus a parasitic alien nematode 

that impairs spawning success and (v) the impact of commercial and recreational fisheries for all 

life stages of eel. In this context, the rapid increases of pressures during the “Great Acceleration” 

have surpassed the adaptive capacity of eels. This illustrates that cumulative effects of global 

change can lead to the collapse of species, even in species that have amazingly high adaptive 

capacities.

Keywords: adaptation, Anguilla spp., climate change, contamination, ecosystem fragmentation, 

over-exploitation
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In 2005, the Millennium Ecosystem Assessment (2005a) pointed out that, despite an increase in 

human welfare during the XXth century, anthropogenic actions threaten the ability of ecosystems to

sustainably provide important goods and services, especially for future generations. Such human-

caused environmental changes are generally referred to as global change (Steffen et al. 2005). In 

this paper, we illustrate how the rate at which global change is happening can endanger even highly 

adaptive species such as temperate eels Anguilla anguilla (European eel), A. rostrata (American 

eel), and A. japonica (Japanese eel). More specifically, this example illustrates that cumulative 

effects of the different components of global change (Vitousek et al. 1997; Western 2001; 

Tylianakis et al. 2008; Jacoby et al. 2015; Miller et al. 2016) can produce rates of change that 

exceed a species’ adaptive capacity, a central question in the debate on the effects of climate and 

global change (Donner et al. 2005; Visser 2008). 

Soulé (1991) proposed a list of the main threats to biodiversity that include six components: habitat 

loss, habitat fragmentation, overexploitation, exotic species, pollution and climate change. Later, the

United-States National Research Council (2000) proposed a very similar list of ongoing changes: 

(1) climate, (2) land use and land cover modifications that can result in habitat loss and 

fragmentation, (3) biogeochemical and hydrological cycles and pollution, (4) biotic mixing 

including biological invasions and (5) overexploitation of natural resources especially in oceanic 

ecosystems. The main difference with Soulé’s proposal is that habitat loss and habitat fragmentation

were merged into a single component. This latter listing was then endorsed by many authors, 

including IPCC (2001), the Millennium Ecosystem Assessment (2005b), Simberloff (2012) and 

Pe'er et al. (2013) though Pe’er et al. (2013) did not mention pollution. The IGPB (Steffen et al. 

2005, executive summary) and the Global Change Program of the Royal Society of Canada (1992) 

provided more detailed lists of components of global change (IGBP: oil harvest, transformation of 

land surface, nitrogen waste, use of freshwater, greenhouse gas, marine habitat destruction, 

overexploitation of fisheries, extinction rates of species – GCPRSC: climate change, energy and 
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resource consumption, air and water pollution, ozone depletion, population increase, extinction 

events, land and soil degradation). These components can be merged into the five more general 

components from IPCC (except perhaps “population increase” which can be shared by various 

components). 

Among these components of global change, the best documented is global warming, which is due to

increased greenhouse gas emission by human activities (IPCC 2015), affecting the biosphere at all 

scales (Gattuso et al. 2015). Global warming already has visible impacts on the ecology of living 

organisms (Hughes 2000; Walther et al. 2002) with impacts on their phenology (Menzel et al. 2006;

Chevillot et al. 2017) and modification of distribution areas (Lassalle et al. 2009; Cheung et al. 

2010; Nicolas et al. 2011; Rougier et al. 2015). Global warming alters biogeochemical cycles such 

as the water cycle. For example, the seasonality of river discharge (amplitude between low and high

discharge) is expected to increase, while average discharges will increase in some regions and 

decrease in others (Nohara et al. 2006; van Vliet et al. 2013).

The second component is increasing nutrient, contaminant and pesticide loads in the ecosystem due 

to industries, agriculture and urbanisation (Verhoeven et al. 2006). These increased loads destabilise

nutrient cycles and can have direct consequences, such as eutrophication (Tilman et al. 2001; 

Rabalais et al. 2009). At the individual scale, contaminants and pesticides can have a large range of 

deleterious effects, such as altered metabolism, immunotoxicity, endocrine disruption or 

neurotoxicity (Köhler and Triebskorn 2013; ICES 2016). Moreover, many contaminants are 

ecologically harmful because persistent biomagnifying chemicals can accumulate in food webs at 

high trophic levels (Van Oostdam et al. 2005; Köhler and Triebskorn 2013).

Another component is the modification of habitats due to anthropogenic land use, which can lead to

fragmentation of aquatic and terrestrial ecosystems or even habitat loss (Collinge 1996; Fischer and 

Lindenmayer 2007; Brook et al. 2008). Habitat loss and ecosystem fragmentation are currently 

5

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



considered major threats to biodiversity and represent one of the major challenges in ecosystem 

conservation and restoration (Tilman et al. 1994; Tischendorf and Fahrig 2000a,b; Sutherland et al. 

2013), by impairing the ability of individuals to migrate to essential habitats (Gros and Prouzet 

2014), isolating populations and reducing gene flow (Horreo et al. 2011; Haxton and Cano 2016), 

and by modifying species community structure (Perkin and Gido 2012). Fragmentation and habitat 

loss increase the risk of extinction cascades (Terborgh et al. 2001; Fischer and Lindenmayer 2007; 

Krauss et al. 2010; Junge et al. 2014; Haddad et al. 2015; van Leeuwen et al. 2016).

Biological invasion by alien species is our fourth component of global change (Vitousek et al. 1997;

Occhipinti-Ambrogi and Savini 2003; Ricciardi 2007). Invasive species can affect native ones 

directly through predation, competition or parasitism, or indirectly by habitat modification or by 

spreading diseases (Lymbery et al. 2014). Arrival of alien species due to shifts in their distribution 

in response to climate change, uniformisation of habitat or transport by humans, can profoundly 

reshape species interactions and has consequences at the species, community, and ecosystem levels 

but also on the provision of ecosystem services (Alpine and Cloern 1992; Cloern 1996; Grosholz 

2002; Vilà et al. 2010). Currently, there are about 10,000 alien species registered in Europe, while 

ecological impacts have been documented for 11% of them and economic impacts for 13% (Vilà et 

al. 2010).

Finally, the last component is the overexploitation of natural resources (Brook et al. 2008). For 

example, fisheries have had major impacts on marine ecosystems, depleting stocks with potential 

impacts on fishing food webs, and impacts on habitats because of destructive fishing gear (Turner 

et al. 1999; Christensen et al. 2003; Gascuel et al. 2011; Branch 2015; Drouineau et al. 2016b). 

Fisheries have also shaped the life histories of exploited fishes by acting as a permanent and 

continuous selection pressure (Jørgensen and Renöfält 2013; Heino et al. 2015).
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Through the combined impacts of these five components, global change leads to an extremely rapid 

modification of ecosystems. Species can display different kinds of adaptive response to address this 

threat, such as local adaptation through i) a micro-evolutionary response, ii) phenotypic plasticity 

(Charmantier et al. 2008), or iii) modification of their distribution area (Hughes, 2000). However, 

adaptation is not always possible, especially in cases of synergies among components which can 

lead to rates of change outpacing a species adaptive capacity (Brook et al. 2008). In this context, 

global change threatens extinction for many species (Spurgeon 2000; Thomas et al. 2004; Steffen et

al. 2005; Brook et al. 2008; Cahill et al. 2013; Urban 2015). The collapse of the three temperate 

anguillid eel populations is an excellent illustration of this phenomenon.

Temperate eels: endangered species impacted by diverse anthropogenic pressures 

European eel, American eel and Japanese eel are three temperate catadromous species that share 

many remarkable ecological features (Figure 1). They have a large distribution area in continental 

waters (Figure 2 - from Norway to Morocco for the European eel (Tesch 2003), from Canada to 

Venezuela for American eel (Helfman et al. 1987), from Northern Philippines to Korea for Japanese

eel (Tsukamoto 1990), which are reached after a long larval drift (larvae are called leptocephali) 

from distant marine spawning grounds (Sargasso Sea for A. rostrata and A. anguilla (Schmidt 1923;

McCleave 1993) and west of Mariana Islands for A. japonica (Tsukamoto 1992)). After this 

migration, the larvae metamorphose into glass eels upon reaching the continental shelf (Tesch 

2003). They subsequently penetrate continental waters, turning into pigmented yellow eels, where 

they colonise a large range of continental habitats from brackish to freshwater (Daverat et al. 2006; 

Arai and Chino 2012). After a growth phase lasting from 3 to over 30 years, yellow eels 

metamorphose into silver eels and migrate back to their spawning grounds (Béguer-Pon et al. 
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2015b; Chang et al. 2016; Righton et al. 2016). The eels mature en route and presumably die 

following spawning.

Eels have successfully adapted to very heterogeneous growth environments at both the distribution 

area and catchment scale. Eels are panmictic (Han et al. 2010; Als et al. 2011; Côté et al. 2013; 

Pujolar 2013) and their long larval drift which limit the possibility of local genetic adaptation. 

However, there are correlations between environmental gradients and spatial patterns in life history 

traits throughout the distribution area and within river catchments (Vélez-Espino and Koops 2009; 

Drouineau et al. 2014; Yokouchi et al. 2014). For example, sex ratio is generally female-biased in 

the northern parts of distribution areas (Vladykov 1966; Helfman et al. 1984; Vøllestad and Jonsson

1988; Vøllestad 1992) and in upstream parts of river catchments (Oliveira and McCleave 2000; 

Tesch 2003). Length-at-silvering (onset of sexual maturation) varies between between sexes and 

habitats. Males follow a time-minimising strategy, leaving continental waters as soon as they reach 

the minimal length to achieve the spawning migration, while females follow a size-maximising 

strategy, adapting their length-at-silvering to local growth and mortality conditions finding a trade-

off between survival and fecundity (Helfman et al. 1987; Vøllestad 1992). Consequently, male 

length-at-silvering is rather set (Vøllestad 1992; Oliveira 1999), while females exhibit a wider range

of sizes and are often larger in the northern parts of the distribution areas (Helfman et al. 1987; 

Davey and Jellyman 2005; Jessop 2010). These life history traits patterns are thought to be the 

result of adaptive phenotypic plasticity that allows individuals to adapt their life history traits to a 

wide range of environmental conditions (Côté et al. 2014; Drouineau et al. 2014; Mateo et al. 

2017a) but also of genetic polyphormism leading to spatially varying selection and/or genetically 

based habitat selection producing genetically distinct ecotypes (Gagnaire et al. 2012; Côté et al. 

2014; Ulrik et al. 2014; Pavey et al. 2015; Mateo et al. 2017a).
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In addition to having similar life histories, the three anguillid species underwent a dramatic decline 

which started in the late 1970s (Dekker et al. 2003; Dekker and Casselman 2014). The collapse 

became evident through the analyses of the recruitment indices of the three species (Figure 3). 

Recruitment series of glass eels are the most reliable indices to estimate trends in eel populations 

throughout their range, because they are less influenced by local conditions than indices using older 

stages. In Europe, recruitment has decreased by 90 to 99 % since the 80’s (ICES 2015) while 

spawner abundance has also dropped (Dekker 2003a). Concerning the American eel, the recruitment

in the upper Saint-Lawrence River and Lake Ontario has nearly ceased in one of the most 

productive areas (Casselman 2003) and commercial silver eel CPUE dropped by at least 50 % in 40 

years in the Saint-Lawrence River (de Lafontaine et al. 2009). Recruitment of Japanese eel has 

followed a very similar decline, corresponding to 80 % in the last decades (Dekker et al. 2003; 

Tanaka 2014).  As a result, IUCN classified A. anguilla as critically endangered in 2008 (confirmed 

in 2010 and 2014) (Jacoby and Gollock 2014a) while A. rostrata and A. japonica have been 

classified as endangered since 2014 (Jacoby and Gollock 2014b; Jacoby et al. 2014). Meanwhile, 

conservation regulations have flourished for the three species (Figure 4). The European 

Commission implemented a regulation in 2007 (Council Regulation (EC) No 1100/2007) 

establishing measures for the recovery of the stock of European eel and calling for a reduction in 

anthropogenic mortalities. The North American eel is "endangered" since 2008 as under Ontario’s 

Endangered Species Act, which prohibits their fishing and trading. The Canadian federal 

Government is currently considering whether the American eel should be listed as “Threatened” 

under the federal Species at Risk Act. The Japanese eel is “endangered” on the Japanese Red List 

published by the Ministry of Environment, Japan in 2013.

The eel population declines possibly result from oceanic changes (Castonguay et al. 1994b), over-

fishing (Haro et al. 2000; Dekker 2003c; Tsukamoto et al. 2003), contamination (Belpaire et al. 

2011, 2016), parasitism (Feunteun 2002; Kirk 2003) and blockage due to dams (Moriarty and 
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Dekker 1997; Kettle et al. 2011). These suspected causes match the above-mentioned components 

of global change: oceanic modifications resulting from global warming, over-fishing corresponds to

over-harvesting of natural resources, the eel swimbladder parasite is an alien species, blockage due 

to dams is an example of habitat loss due to land-use, and contamination is the direct result of the 

increased pollutant load. The respective effects of anthropogenic pressures are difficult to 

disentangle and probably acted synergistically in the declines of eel populations (Jacoby et al. 2015;

Miller et al. 2016). Here, we focus on the timelines of events and on the spatial dimension to show 

how some anthropogenic pressures have had a greater impact on certain habitats (and consequently 

eels in these habitats) than others. Finally, we discuss why the overall decline may be interpreted as 

the result of the combined effect of the global change components and how the cumulative 

pressures have had a more drastic impact, than 50 million years of evolution, by radically reducing 

adaptive capacities of eels. Even though there are growing concerns about the situation of tropical 

eels and many similarities with temperate eels (Jacoby et al. 2015), we restricted our analysis to 

temperate eels of the genus Anguilla because they are in the worst situation according to IUCN 

criteria, and are the three most commercially important species (Jacoby et al. 2015). 

Component 1 - Global warming and ocean modification: impacts on eel migrations

Effect on leptocephalus drift and survival

The decline in eel populations is possibly linked to modifications of physical conditions in the 

oceans (Castonguay et al. 1994b; Knights et al. 1996; Bonhommeau et al. 2008a; Miller et al. 2009,

2016). The synchronous declines of the three eel species may indicate the involvement of large-

scale drivers, such as changes in oceanic conditions that affect hatching and subsequent survival of 

larvae (Castonguay et al. 1994b; Bonhommeau et al. 2008a). Global warming has had a measurable

impact on sea surface temperatures (Figure 5) and on different oceanic features (North Atlantic 

10

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



Oscillation, El Niño Southern Oscillation and North Equatorial Current) influencing recruitment 

success of temperate eels. Global warming has also had visible impacts on planktonic communities:

important shifts in the diversity, abundance and spatial distribution of planktonic species in the 

Atlantic Ocean, where plankton is crucial for eel larval growth and survival (Beaugrand 2004; 

Beaugrand et al. 2009; Goberville et al. 2014).

Indeed, there are correlations between glass eel recruitment and different oceanic indicators, such as

the North Oscillation Index (NAO) and sea surface temperatures (Table 1). Because most studies 

computed statistical correlations, the underlying mechanisms are speculative. Three main 

mechanisms have been proposed: a limitation in trophic conditions (Desaunay and Guerault 1997; 

ICES 2001; Knights 2003; Kettle and Haines 2006; Friedland et al. 2007; Bonhommeau et al. 

2008b, 2009; Munk et al. 2010), changes in oceanic currents modifying larval transport 

(Castonguay et al. 1994b; ICES 2001; Knights 2003; Friedland et al. 2007; Zenimoto et al. 2009), 

and/or spatial oscillations of a salinity front used by adult eels to detect the spawning grounds which

then lead to oscillations in the success of larval transport (Kimura et al. 2001; Kimura and 

Tsukamoto 2006). In addition to statistical correlations, Lagrangian simulations of larval drift have 

also been carried out to explore some mechanisms (Kettle and Haines 2006; Kim et al. 2007; 

Bonhommeau et al. 2009, 2010; Zenimoto et al. 2009; Melià et al. 2013; Pacariz et al. 2014). These

simulations suggested that, while for European eel the correlation between NAO and recruitment 

more likely reflects an indirect effect of trophic conditions in the Sargasso Sea (Bonhommeau et al. 

2009; Pacariz et al. 2014), changes in oceanic currents directly affect Japanese eel larval drift (Kim 

et al. 2007; Zenimoto et al. 2009).

Analysing simultaneously the declines of the three species, Bonhommeau et al. (2008a) highlighted 

the synchrony between regime shifts in the Atlantic and Pacific sea surface temperature, primary 

production and recruitment of the three species. They postulated that an increase in sea surface 
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temperature due to climate change, led to a higher stratification of the Sargasso Sea and 

consequently to a lower primary production, which could translate into lower food availability for 

the leptocephali. Recently, Miller et al. (2016) proposed a more precise mechanism: the regime shift

resulted in a lower abundance of diatoms and a higher abundance of cyanobacteria, which may have

resulted in a lower production of carbohydrates which are crucial for the production of “marine 

snow”, the main food of eel larvae (Riemann et al. 2010).

Effect on silver eel spawning migration

Climate change can also affect the later stages of eel. Oceanic conditions and climate change can, 

indirectly, influence river discharge (Arnell 1999; Milly et al. 2005) through modifications of 

precipitation regimes (Kettle et al. 2011). The discharge regime is also modified by water extraction

for human use, agriculture and other industrial processes (Postel and Richter 2003; Verreault et al. 

2012). River discharge and rainfall are important triggers (direct or indirect) of silver eel migration 

(Boubée et al. 2001; Acou et al. 2008; Durif and Elie 2008; Bruijs and Durif 2009; Trancart et al. 

2013; Reckordt et al. 2014; Drouineau et al. 2017). Higher river discharge increases migration 

speed (Vøllestad et al. 1986; Tesch 2003). Reduced discharge delays migration and eels may even 

be stopped until the following year if environmental conditions are not favourable (Durif et al. 

2003; Drouineau et al. 2017). Finally, reduced discharge can lead to higher proportions of eels 

going through turbines, since at low flow a higher proportion of water is guided through the 

turbines, leading to higher mortalities (Jansen et al. 2007; Bau et al. 2013).
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Component 2 - Increased contamination load: contamination of eels and consequences on its 

physiology

Eels are vulnerable to contamination because of their high trophic level and high level of lipid 

storage (Geeraerts and Belpaire 2009; Belpaire et al. 2011; ICES 2016). Contaminants that have 

been found in eels include: organic contaminants (Hodson et al. 1994; Ohji et al. 2006; Bilau et al. 

2007; Blanchet-Letrouvé et al. 2014; Kammann et al. 2014; Guhl et al. 2014); heavy metals (Yang 

and Chen 1996; Maes et al. 2005; Pierron et al. 2008a,b; Nunes et al. 2014; Pannetier et al. 2016) 

and pesticides (Hodson et al. 1994; Gimeno et al. 1995; Couillard et al. 1997; Byer et al. 2013; 

Privitera et al. 2014). 

Consequently, eels are sometimes used as bioindicators of contamination (Amiard-Triquet et al. 

1987; Linde et al. 1996; Belpaire and Goemans 2007; McHugh et al. 2010). Contamination levels 

are often above human consumption standards (Bilau et al. 2007; Geeraerts and Belpaire 2009; 

Byer et al. 2013; ICES 2014, 2016) and have led to fishing prohibitions in various sites in European

countries (Germany, Belgium, Netherlands, France, Italy) (Belpaire et al. 2016). 

These contaminants are widely found in freshwater fishes (Streit 1998) and their effects on fish 

biology (Gilliers et al. 2006; Kerambrun et al. 2012; Fonseca et al. 2014) and the danger for human 

consumption have been demonstrated (Schuhmacher et al. 1994; Järup 2003; Halldorsson et al. 

2007). While metallic contaminants have a long history in countries with extraction activities, 

organic contamination, pesticides, and nutrients loads are much more recent (Malmqvist and Rundle

2002; Morée et al. 2013). Many of them appeared in the second half of the XXth century in relation

to agriculture intensification, urbanisation and industrial activities. During this period, fertiliser 

utilisation grew exponentially (Figure 6). PCBs and DDT production peaked around the 1960’s 

(Harrad et al. 1994; Van Metre et al. 1998), i.e. about 20 years before eels started to decline, and 

concentrations remain high in river sediments explaining why levels are still high in eels (ICES 
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2016). Persistent Organic Pollutants (POPs) had a dramatic effect on lake trout (Salvelinus 

namaycush) in Lake Ontario (Cook et al. 2003) and concentrations peaked in American eel in Lake 

Ontario in the late 1960s, about 20 years before the American eel recruitment collapse (Byer et al. 

2015). The increased nutrient load to water bodies has caused detrimental impacts on humans and 

aquatic ecosystem health (Grizzetti et al. 2011, 2012) and continued to increase until the mid-90s 

before declining in many rivers (Minaudo et al. 2015). Fertilisers are still used at a very high level 

(Figure 6). Moreover, new contaminants are appearing in the water and in eels, such as 

Perfluorooctanesulfonic acid (PFOS), textile dyes, musk compounds, perfluorinated substances, 

organophosphorus flame retardants and plasticisers (ICES 2016).

There have been a few cases of direct eel mortalities due to contaminants (Dutil 1984; Dutil et al. 

1987) but in the majority of cases the impact is at the sublethal level ranging from tissue damage, 

stress, effects on osmoregulation, behaviour alteration, hormonal perturbation and genotoxic effects 

(Couillard et al. 1997; Geeraerts and Belpaire 2009). Contaminants may also be transferred to the 

offspring resulting in larval malformation (Robinet and Feunteun 2002; Byer et al. 2013; Rigaud et 

al. 2016; Foekema et al. 2016). As a fatty fish, eels are particularly sensitive to contamination. Most

contaminants are highly concentrated in the lipid stores (Robinet and Feunteun 2002) and affect 

lipid metabolism (Fernández Vega et al. 1999; Corsi et al. 2005; Pierron et al. 2007). This is 

especially critical at the silver eel stage when lipid levels are highest (over 13%) to achieve their 

transoceanic migration to the spawning grounds (van Ginneken and van den Thillart 2000; Van Den 

Thillart et al. 2004, 2007; Belpaire et al. 2009). For female eels, 67% of their fat store is spent on 

the spawning migration and oocyte maturation (Palstra and van den Thillart 2010). As lipids are 

mobilised during spawning migration, contaminants are more likely to be released into the blood at 

high concentrations, thus negatively affecting gonad maturation and oocyte production, as they do 

in other fish species (Pierron et al. 2014; Baillon et al. 2015; ICES 2016), and also impairing 

migration success (Robinet and Feunteun 2002; Pierron et al. 2008a; Geeraerts and Belpaire 2009). 
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As a summary, contaminants can act as a classical stressor during the continental stage of eel, but 

then have the potential to dramatically impair maturation and migration success, i.e. the whole 

reproduction success.

Component 3 - Fragmentation and habitat loss: fragmentation by weirs and dams and 

consequences on upstream and downstream migration

Movements, habitats and fragmentation

Movement is a key feature of living organisms to find food, mates and avoid predation (Nathan et 

al. 2008). Several types of movements can be distinguished. The first type, called “station-keeping” 

(Dingle 1996) takes place within the home range of the animal and corresponds to simple 

movements for foraging and predation avoidance. The two other types of movement, ranging and 

migration, occur outside the home range (Dingle and Drake 2007). Ranging is dedicated to the 

search of a specific resource (mate, food, etc.) and stops when the resource is found (Jeltsch et al. 

2013). Migration is generally triggered by physiological and environmental cues and not by the 

search for a specific resource such as food or mates. It affects most individuals in the population, 

occurs over a long timescale, requires orientation, and suggests a return journey (Dingle 1996; 

Dingle and Drake 2007).

Diadromous fish, such as eels undergo two long migrations (Tesch 2003): the first migration, from 

the spawning grounds to their growth habitat, includes a phase of active upstream migration in river

catchments during the early years of their continental life-stage (Castonguay et al. 1994a; Imbert et 

al. 2010; Fukuda et al. 2016). During the second migration, eels return to the oceanic spawning 

grounds from their growth habitats in rivers or coastal waters. Eels may also move between 

different habitats during their continental stage (Daverat et al. 2005; Kaifu et al. 2010; Arai and 
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Chino 2012; Yokouchi et al. 2012; Béguer-Pon et al. 2015a), movements which correspond to 

station keeping and ranging.

The construction of dams accelerated worldwide during the 1950/60s (Dynesius and Nilsson 1994; 

Postel and Richter 2003; MacGregor et al. 2009) (Figure 7), about 20 years before the eel 

population declined. This massive construction of dams has restrained eel movements and available 

habitats. The construction of hydropower dams during the XXth century in the St. Lawrence 

catchment caused a 40% habitat loss for the North American eel in this basin (Verreault et al. 2004).

The situation is similar or worse in the United States (Busch et al. 1998), especially since most 

dams lack fishways (MacGregor et al. 2009). In Europe, 50-90% of habitats were lost by the end of 

XXth century (Feunteun 2002). For the Japanese eel, approximately 75% of effective habitats were 

lost between 1970 and 2010 in Japan, Korea, Taiwan and China, with a maximum in China (>80%) 

and Taiwan (~50%) (Chen et al. 2014). 

Intensive dam constructions in Spain, Morocco and Portugal, have had drastic consequences on 

European eel distribution (Nicola et al. 1996; Lobon-Cervia 1999; Clavero and Hermoso 2015), 

possibly affecting the sex ratio since this area yields mainly male eels and is closest to the spawning

area (Kettle et al. 2011).

Dams and weirs are not the only factors affecting eel habitats: rivers provide multiple goods and 

services to society (Postel and Richter 2003; Wolanski et al. 2011; Elliott and Whitfield 2011) that 

have led to river channelization, hydro-morphological modifications, drying out of lateral wetland, 

wetland drainage, water extraction, modification of land use in the floodplain that can lead to higher

erosion and sedimentation (Elliott and Hemingway 2002; Postel and Richter 2003; Basset et al. 

2013). As an example, typical eel habitats, such as estuarine marshes and intertidal zones have been 

lost because of flood protection walls, agriculture activities and navigation (Gros and Prouzet 

2014). In Japan, catch reduction rates in several rivers and lakes were positively correlated with the 
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rate of revetment along rivers and around lakes (Itakura et al. 2015b), also the condition factor of 

eels and prey diversity were significantly lower in these modified habitats (Itakura et al. 2015a).

Blockage during upstream migrations

During their first year in continental waters, eels display an active migratory behaviour and then 

shift to a resident behaviour (Imbert et al. 2010; Benchetrit et al. 2017). Resident behaviour does 

not exclude habitat shifts (Daverat and Tomás 2006) though these types of movement correspond 

more to ranging than strict migration (Dingle and Drake 2007). Upstream migration has a cost and 

its evolutionary benefit is still unclear since eels can settle in a wide range of habitats (Tsukamoto et

al. 1998; Daverat et al. 2006; Yokouchi et al. 2012; Marohn et al. 2013). Glass eels with high 

feeding rate and fast weight gain have a higher propensity to migrate (Bureau du Colombier et al. 

2008). These glass eels also display a more gregarious and less aggressive behaviour (Geffroy and 

Bardonnet 2012). Habitat selection could be a trade-off between growth (generally higher in 

downstream habitats), survival (generally higher in upstream habitats),  competition avoidance 

(higher competition in downstream habitats) and energetic cost of migration (Mateo et al. 2017a; 

Edeline 2007; Drouineau et al. 2014). Habitat selection is also partly related to genetic or epigenetic

polymorphism (Gagnaire et al. 2012; Côté et al. 2014; Pavey et al. 2015; Podgorniak et al. 2015b; 

Mateo et al. 2017a). In such a scheme, habitat selection would be the result of a fitness optimisation

process in which fitness in a habitat would depend on habitat characteristics, competition in the 

habitat, but also individual variability of growth rates due to the existence of genetically distinct 

clusters of individuals ( Côté et al. 2015; Mateo et al. 2017a).

Given this plasticity in habitat use, the consequences of obstacles on upstream migrations are 

difficult to assess. Methods have been proposed to assess the passability of obstacles (Briand et al. 

2005; Drouineau et al. 2015; Tremblay et al. 2016). Densities of eels are higher downstream of 
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obstacles. This leads to (i) increased competition between individuals, which can subsequently 

result in lower survival (Vøllestad and Jonsson 1988; Bevacqua et al. 2011), (ii) increased 

susceptibility to predation (Drouineau et al. 2015; Larinier 2001; Garcia De Leaniz 2008; Agostinho

et al. 2012), and overfishing (Dekker 2003c; Briand et al. 2005) and, (iii) possible modification to 

the sex ratio, since sex determination is density-dependent (Poole et al. 1990; De Leo and Gatto 

1996; Roncarati et al. 1997; Tesch 2003; Davey and Jellyman 2005).

Finally, obstacles to upstream migration can act as a permanent selection pressure (Podgorniak et 

al. 2015a,b; Mateo et al. 2017b). Côté et al. (2014) demonstrated the existence of two clusters of 

individual eels with differing genetic basis: a cluster of slow growers and a cluster of fast growers, 

while Pavey et al. (2015) demonstrated the existence of genetically distinct ecotypes, with different 

growth rates and different sex ratios. By impairing migration within catchments, obstacles can 

decrease the fitness of some types of individuals; those individuals who genetically belong to the 

“freshwater habitat” may not be able to reach suitable habitats, or  will suffer damage during their 

downstream migration (Mateo et al. 2017b).

Impaired downstream migrations

Most studies dealing with downstream migration have focused on mortality due to passage through 

hydropower turbines (Coutant and Whitney 2000; Gosset et al. 2005; Boubée and Williams 2006; 

Winter et al. 2006; Carr and Whoriskey 2008; Calles et al. 2010; Pedersen et al. 2012). Several 

factors influence the mortality induced by hydropower plants:

 Turbine characteristics: The mortality due to strikes by Kaplan turbines are generally greater

than 15% and sometimes as high as 100% depending on fish length, wheel diameter, 

nominal discharge flow and speed of rotation (Gomes and Larinier 2008). For Francis 

turbines, Calles et al. (2010) estimated a mortality rate of 60% at a Swedish site while a 
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mortality rate of about 16% was found at an American site (Richkus and Dixon 2003). Even 

if they survive passage through the turbines, eels can be wounded and have a reduced 

chance of reaching the spawning area.

 Site configuration can greatly influence the probability that a fish will pass through or by-

pass the turbines. Since silver eels follow the main flow (Jansen et al. 2007), the orientation 

of the water intake with respect to the main channel influences the probability of turbine 

passage (Bau et al. 2013). Different types of barriers have been proposed to divert eels from 

turbine passage, such as fish-friendly trashracks (Raynal et al. 2013, 2014), flow field 

manipulation (Piper et al. 2015), light (Patrick et al. 1982; Hadderingh et al. 1992) and 

infrasound barriers (Sand et al. 2000, 2001). The installation of bypasses is also a mitigation

measure to prevent passages through turbines (Durif et al. 2003; Gosset et al. 2005; Haro et 

al. 2016).

 Environmental conditions: In a period of low discharge, when the flow through the turbine 

is high compared to the flow over weir, more eels will pass through the turbines than at high 

discharge, when the turbine flow is small compared to the weir flow.

 Obstacle location within the catchment: since eels are not uniformly distributed within a 

river catchment (Ibbotson et al. 2002), the number of eels impacted by a given facility 

depends on the number of eels that settle upstream the facility. Therefore, it is necessary to 

estimate the distribution of fish within catchments to assess the effect of hydropower plants 

at the catchment scale. In the SEAHOPE model, the total mortality induced by hydropower 

plants in a given catchment was estimated by coupling a model that predicts the proportion 

of fish killed when passing each individual plant with a model that predicts the spatial 

distribution of eels within the catchment (Jouanin et al. 2012).

However, direct mortality is not the only impact obstacles can have on downstream migrants. First, 

sub-lethal injuries can occur during obstacle passages because of impingements on hard structures 
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(even in the absence of turbins), which can then impair spawning migration success (Bruijs and 

Durif 2009). Predation during downstream passage has also been recorded for many fish species 

(Williams et al. 2001; Muir et al. 2006; Garcia De Leaniz 2008). Moreover, increased energy costs 

induced by obstacle passage may have a delayed impact on migration success and fecundity: silver 

eels stop feeding during the spawning migration and their lipid stores are crucial to achieve the 

oceanic migration and produce oocytes (van Ginneken and van den Thillart 2000). Delays induced 

by obstacles can impair escapement, especially when the environmental migration suitability 

window is limited (Verbiest et al. 2012; Drouineau et al. 2017). Finally, similarly to obstacles to 

upstream migration, obstacles to downstream migration affect specific types of individual: 

individuals that settle upstream of the obstacle (i.e. individuals that settle in upstream habitats and 

individuals that were able to pass the obstacle), as such, obstacles may have the potential to exert a 

selection pressure on the population (Mateo et al. 2017b).

Component 4 - Alien species: effects of alien parasitoid Anguillicola crassus

Though competition is possible with some alien species such as the European catfish (Bevacqua et 

al. 2011), or even with introduced American (Han et al. 2002) and European eels in East Asia 

(Aoyama et al. 2000), Anguillicola crassus is the alien species that has the most documented and 

widespread impact on eels, at least for European and American eels. Anguillicola crassus is a 

natural parasite of Japanese eel which was introduced into Europe in the mid 70’s, early 80’s, 

probably through the aquaculture trade (Koops and Hartmann 1989). It is now widespread in 

Europe (Kennedy and Fitch 1990; Evans and Matthews 1999; Lefebvre et al. 2002; Kirk 2003; 

Norton et al. 2005; Neto et al. 2010; Becerra-Jurado et al. 2014), and Northern Africa (Koops and 

Hartmann 1989; El Hilali et al. 1996; Maamouri et al. 1999; Hizem Habbechi et al. 2012; Dhaouadi

et al. 2014). Systematic monitoring of eel diseases is still limited to a few countries, impairing our 

20

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



ability to assess the overall prevalence (ICES 2015). However, many studies have reported a 

significant prevalence at sites in both North America and Europe (Aieta and Oliveira 2009; Denny 

et al. 2013; Becerra-Jurado et al. 2014) and an analysis of the European Eel Quality Database 

confirmed the prevalence of the infection in Europe (Belpaire et al. 2011).

The invasion in North America started for the same reason, a few years after its introduction into 

Europe. The first record occurred in the second half of the 90’s in Texas (Fries et al. 1996) and then 

in Chesapeake Bay and the Hudson River (Barse and Secor 1999). The invasion then quickly spread

in the United States and in Canada (Machut and Limburg 2008; Aieta and Oliveira 2009; Rockwell 

et al. 2009; Denny et al. 2013; Hein et al. 2014). Though transmission is possible in brackish waters

(Reimer et al. 1994; Kirk et al. 2000a,b; Lefebvre et al. 2002), the level of infection is lower than in

freshwater (Kirk et al. 2000a,b; Kirk 2003).

This swimbladder parasite has multiple impacts on its host. The parasite causes inflammation of the 

swimbladder leading to multiple bacterial infections, stress and loss of appetite (Kirk 2003; 

Lefebvre et al. 2013). However, the most serious damage is on the swimbladder itself. The infection

may alter the gas composition of the swimbladder, block the pneumatic duct, impairing the organ’s 

function (Kirk et al. 2000b; Lefebvre et al. 2013) leading to necrosis in the most extreme cases 

(Molnár et al. 1994; Würtz and Taraschewski 2000). The alteration of the swimbladder has a direct 

impact on swimming capacity (Sprengel et al. 1991; Székely et al. 2009). It may imperil the 

transoceanic spawning migration (Palstra et al. 2007; Clevestam et al. 2011), especially because 

migrant eels display important diurnal vertical migrations (Chow et al. 2015; Béguer-Pon et al. 

2015b; Righton et al. 2016) that require buoyancy control. This higher energetic cost of migration, 

due to a malfunctioning swimbladder, will affect individuals which may already have reduced lipid 

storage available, due to the infection (Marohn et al. 2013).
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Component 5 - Exploitation of natural resources: an intensive exploitation of eels at all their 

stages

Eels are targeted by recreational and commercial fisheries at all continental life stages (glass eels, 

yellow eels and silver eels) with a great variety of active and passive gears (Haro et al. 2000; Tesch 

2003). Yellow and silver eels have been exploited for a long time as attested by representations of 

eels in prehistoric pictographs (Citerne 1998, 2004). Eel was an important food resource for Native 

Americans (MacGregor et al. 2009) and is a traditional food in Japan and East Asia (Tatsukawa 

2003). The first official record of European eel fisheries dates back to 1086 (Dekker and Beaulaton 

2016). In contrast to the situation for many commercial species, the culture of eel is not a closed 

system in that it is still dependent on wild caught glass eels. Artificial reproduction and rearing of 

glass eels has only been achieved for the Japanese eel (Tanaka et al. 2001, 2003; Kagawa et al. 

2005) although these operations are still not commercially viable (Okamura et al. 2014). Artificial 

reproduction has been achieved in European (Palstra and Thillart 2009) and American eels (Oliveira

and Hable 2010) but not rearing of glass eels.

The main shift in the traditional artisanal eel fisheries occurred as a result of the demand from on-

growing aquaculture (Moriarty and Dekker 1997; Haro et al. 2000). According to FAO statistics, eel

farming is now responsible for 90% of total eel production (versus wild-caught eels) and Japan is 

thought to consume 70% of total freshwater eel production (Shiraishi and Crook 2015). While eel 

aquaculture started in the late XIXth century and early XXth century in eastern Asia, it turned into a

stable industry after World War II (Ringuet et al. 2002). The high value of eel in Eastern Asia food 

markets led to the development of highly competitive aquaculture farms (Liao 2001; Lee et al. 

2003). The development of intensive farming explains why despite the decline in the wild 

population, the production of Anguilla spp. increased nearly 20-fold between 1950 and 2007 (Crook

and Nakamura 2013). Since these farms depend on wild-caught animals, the demand for glass eel 
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increased considerably and prices climbed to very high levels, completely transforming the industry.

The shortage of Japanese glass eels since the early 1970s lead aquaculture farms to import 

European and American glass eels (Moriarty and Dekker 1997; Haro et al. 2000; Ringuet et al. 

2002; Lee et al. 2003), leading to an increase in fishing effort in Europe and a peak in landings in 

1976 (Briand et al. 2008) and to the development of a large fishery targeting glass eels from North 

America (Meister and Flagg 1997). After a period of less favourable market conditions, the prices 

soared again during the early 1990s (Briand et al. 2008). A threefold increase in prices of European 

glass eel was observed between 1993 and 1997 (Ringuet et al. 2002), resulting in a “gold rush” for 

entry into the North-American fishery (Haro et al. 2000). Because of these incredibly high prices, 

eel became the most valuable species landed in France in the early 2000s (Castelnaud 2000) and 

Europe exported half of its production to Asia in the mid-2000s (Briand et al. 2008). The increase in

fishing effort led to very high exploitation rates in certain French and Spanish catchments (Prouzet 

2002; Briand et al. 2005; Aranburu et al. 2016) since Spain and France recruit the highest 

proportion of European eel (Dekker 2000a). Similarly, high exploitation rates were observed in 

catchments on Canadian Atlantic seaboard (Jessop 2000; 2000) or in Taiwan (Tzeng 1984). In 

France, about 25% of the arriving glass eels were harvested by commercial fisheries, and this 

estimate did not include the catch from illegal fisheries (Figure 8 - (Drouineau et al. 2016a)). In 

Japan, these proportions rose from about 25% in the early 1950s to approximately 40% in the 1980s

(Tanaka 2014). The Eel European Regulation has limited the fishing effort and required that 60% of

caught eels be dedicated for restocking. Moreover, European eel exports have been restricted after 

its inclusion on Appendix II of the Convention on Trade of Endangered Species in 2009 and a ban 

of all imports and exports from and to the European Union implemented in 2010 (Nijman 2010). In 

Japan, glass eel fisheries are forbidden and a special licence is required to capture seed for 

aquaculture and research. Specific permission is now required for aquaculture, and restrictions have
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also been implemented in China and Taiwan. In 2014, China, Japan, the Republic of Korea and 

Taiwan agreed to restrict “initial input” into farms of glass eel of A. japonica.

The catch of silver eels has decreased throughout the world (Dekker 2003a; Tatsukawa 2003; 

Tsukamoto et al. 2009; Cairns et al. 2014) because of a reduction in abundance of the stock and 

because of a decrease in fishing effort, accelerated by recent management measures. Silver eel 

fisheries have for example completely disappeared in Taiwan (Tzeng 2016) and are restricted in 11 

prefectures in Japan (Jacoby and Gollock 2014b). In Europe, the decline in the silver eel catches has

preceded the decline in recruitment (Dekker 2003a). Silver eel fisheries used to predominate at the 

northern edge of their distribution area and in the western Mediterranean (Dekker 2003b,c; Amilhat 

et al. 2008; Aalto et al. 2016) and in some catchments exploitation rates can still be high. Regarding

the American eel, silver eel landings used to be dominated by catches in the Saint-Lawrence River 

(Castonguay et al. 1994a), but they have also severely declined and a large-scale licence buyout in 

Quebec has recently accelerated this trend (Cairns et al. 2014).

When forty years of global change has had a greater impact than the ice ages or continental 

drift

The genus Anguilla appeared more than 50 million years ago during the Eocene (Tsukamoto and 

Aoyama 1998). A. japonica is thought to have appeared about 15 million years ago (Lin et al. 2001)

and A. rostrata and A. anguilla separated about 3 million years ago during the emergence of the isle

of Panama (Jacobsen et al. 2014). Those species have survived enormous changes: a succession of 

ice ages (the last ice age maximum occurred approximately 22,000 years ago) and continental drift 

that has progressively increased the distance between the spawning grounds and growth habitats 

(Knights 2003). This demonstrates their evolutionary robustness (Knights 2003) and remarkable 

adaptive capacity (Mateo et al. 2017a) based on adaptive phenotypic plasticity (Daverat et al. 2006;
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Côté et al. 2014; Drouineau et al. 2014) and genetic polymorphism (Gagnaire et al. 2012; Pujolar et

al. 2014; Ulrik et al. 2014; Pavey et al. 2015). Despite millions of years of adaptation, these three 

eel species have undergone a dramatic decline in only a few decades.

Identifying the main drivers of the eel decline is still in debate. The main arguments to support the 

importance of specific stressors are based on the synchrony between the time of the collapse in eel 

and the stressor. However, many factors impair our ability to disentangle their respective effects. 

First, the simultaneous decline of the three species strongly suggests the influence of large-scale 

factors and therefore of a possible oceanic influence. However, other stressors display very similar 

increasing trends at the global scale before the beginning of the decline (Figures 4, 6, 7). Moreover, 

the beginning of the eel decline is very difficult to identify because of the complex life cycles of the

species (Figure 2) and their long life expectancy (up to 30 years). It would be interesting to compare

with tropical species that also show signs of decline but comparative data with Southern hemisphere

tropical species are scarce (Jacoby et al. 2015, Jellyman 2016). Secondly, robust quantitative 

historical data on eel and the anthropogenic pressures are lacking for this period. Third, where these

data do exist they mainly come from specific river catchments and it is not possible to extrapolate 

these data to the whole distribution area because the anthropogenic pressure do not have the same 

effect everywhere and eels display a great diversity in life history traits. Each stressor probably 

played a role in the collapse and the combination of stressors in the second half of the XXth century

probably had a cumulative effect that heightened the overall effect of the individual stressors 

(Jacoby et al. 2015; Miller et al. 2016). The decline occurred about 30 years after the Second World

War, i.e. approximately 1-3 eel generations. This period corresponds to a period of high economic 

development “Les Trentes Glorieuses”, in which agricultural production process, industrial process 

and energy consumption quickly increased. This can be seen through the acceleration of many 

indicators since the 1950s / 1960s listed in the study of Steffen et al. (2005), for example world 

population, Gross Domestic Product (increased by a factor of 15 since 1950), world petroleum 

25

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



consumption which has increased by 3.5x since 1960, motor vehicles by a factor of16 since the 

early 50s and increased water use for human consumption and agriculture (Figure 9). This 

acceleration of human activity and consumption has been referred to as the “Great Acceleration” 

(Steffen et al. 2005, 2015), and occurred about 20 years before the first signs of the decline in eel 

populations, i.e. 1-2 eel generations. As mentioned earlier, river, estuaries and ecosystems have 

suffered intense modifications over this period (Elliott and Hemingway 2002; Postel and Richter 

2003; Basset et al. 2013, Postel and Richter 2003; Wolanski et al. 2011; Elliott and Whitfield 2011).

Eel populations are likely affected by global change as a whole, rather than by one specific 

anthropogenic pressure, explaining why Castonguay et al. (1994a) could not identify a primary 

cause for the decline of the American eel.

The resilience of eels severely impaired by global change

Several factors contribute to the resilience of eel populations. First, the presence of a brackish / 

marine contingent (which skip the freshwater phase) can buffer the pressures specific to the 

catadromous contingent such as dams, contamination, fishing or the parasite (ICES 2009). 

Additionally, their very large diet spectrum (Sinha and Jones 1967; Tesch 2003), their resistance to 

fluctuations in temperature, salinity, oxygen, food availability and temporary emersion (Brusle 

1991; Tesch 2003) allow them to grow in a very large range of habitats. This plasticity in growth 

habitat can generate a “storage effect” and a “portfolio effect” that mitigate against environmental 

variability (ICES 2009). In a complex life cycle, a storage effect corresponds to a situation where a 

specific stage of long duration and of limited sensitivity to environmental conditions, buffers the 

effects of environmental conditions on other stages. For eels, the long duration of the continental 

growth phase and its variability across habitats with generational overlaps allows the species to 

buffer the faster cyclic variations of oceanic conditions affecting recruitment (even in a single 
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cohort, some individuals are likely to face unfavourable oceanic conditions while others will face 

more favourable oceanic conditions during their spawning migration, reproduction and larval drift 

of their offspring) (Secor 2015a). A portfolio effect corresponds to the expression “don’t put all your

eggs in the same basket”. For eels, their large adaptive capacity allows them to settle in a wide 

range of habitats, smoothing out environmental fluctuations in each habitat: if one habitat is 

temporarily unsuitable, it is compensated by other habitats that remain suitable (Secor 2015a). More

generally, the large diversity of tactics during the continental phase and presumably during the 

spawning migration may correspond to remarkable bet-hedging well suited to address 

environmental variability (Daverat et al. 2006; Righton et al. 2016). The environmental sex 

determination may also be a compensatory mechanism: the higher production of females in a 

context of depleted population may mitigate the reduction in eggs production that would resulted 

from the decline in silver eel abundance (Geffroy and Bardonnet 2015; Mateo et al. 2017b), 

especially since eels have a high fecundity.

Then, how might have global change led to such a fast collapse despite eel adaptive capacities and 

those compensatory mechanisms? Eels are panmictic and thus have long been considered 

genetically homogeneous, however, recently a genetic polymorphism in eel populations was found 

to be correlated with environmental gradients (Gagnaire et al. 2012; Côté et al. 2014; Pujolar et al. 

2014; Ulrik et al. 2014; Pavey et al. 2015). These correlations are thought to result from spatially 

variable selection (some individuals are genetically more adapted than others to survive in some 

habitats) or of genetically based habitat selection (some types of individuals tend to settle 

preferentially in some habitats to maximise their fitness). The existence of genetically distinct types 

of individuals which are more or less adapted to the different types of habitats available within their

distribution area (northern vs southern habitats, marine vs brackish vs freshwater habitats), i.e. 

ecotypes (Pavey et al. 2015), combined with a large phenotypic plasticity are assumed to play the 

main role in eel adaptive capacity, enabling the species to address the wide environmental 
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heterogeneity at both the distribution and catchment scale (Drouineau et al. 2014; Mateo et al. 

2017a). In such a scheme, individuals are able to grow and survive in a wide range of habitats 

thanks to phenotypic plasticity but some individuals are more adapted to some habitats than others 

(ecotypes), and all individuals reproduce together (panmixia) ensuring that ecotypes are reshuffled 

in each generation. The synergy of phenotypic plasticity and genetic polymorphism could explain 

how a panmictic population can survive in such a wide and varied distribution area and be the basis 

for the adaptive capacities of eels.

In this review, we have highlighted that not all pressures affect all habitats and individuals evenly. 

Indeed, obstacles affect mostly individuals that settle preferentially in upstream habitats and habitat 

loss mainly affects males located in the south-western part of the range of the European eel. 

Anguillicola crassus has a greater impact on individuals that settle in freshwater habitats as opposed

to estuarine or marine (Kirk 2003). Finally, fisheries are not uniformly distributed, with European 

silver eel fisheries mainly occurring at the edge of the distribution area, especially the northern 

edge, though fisheries are also important along the Mediterranean coast (Castonguay et al. 1994a; 

Moriarty and Dekker 1997; Dekker 2003b,c), and glass eel fisheries in the core (Dekker 2003c). By 

affecting different habitats, anthropogenic pressures affect life history traits and ecotypes in 

different ways (Figure 10). Climate change and glass eel fisheries probably affect all ecotypes: 

climate change affects recruitment success. Glass eel fisheries, though not evenly distributed in the 

distribution area, generally operate downstream of river catchments and consequently harvest 

evenly all incoming glass eels. On the other hand, all the other anthropogenic pressures tend to 

affect ecotypes corresponding to more upstream habitats. As such, these anthropogenic pressures 

reduce the fitness of those individuals and can become an important selective pressure (Mateo et al. 

2017). For example, half the American silver eels migrating down the St. Lawrence River, one of 

the most productive areas for American eel (Casselman 2003), have been killed by hydropower 

dams and fisheries (Verreault and Dumont 2003). Such selection pressure over 30 years or more 
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(one to two eel generations) may have reduced the prevalence of individuals adapted to such types 

of habitats (northernmost area, longest migration from spawning grounds) in the panmictic eel 

population and explain why recruitment to the St. Lawrence River has been so much more reduced 

than elsewhere in their distribution range. Reducing this genetic polymorphism as a result of 

anthropogenic-induced selection may irrevocably alter the species capacity to adapt and modify its 

sex ratio.

Additionally, by decreasing the diversity of ecotypes and consequently, decreasing the capacity of 

eels to live in a wide range of habitats, anthropogenic pressures may have reduced the porfolio and 

storage effects which, as we said before, are crucial to address environmental variability and to 

improve resilience. In view of this, diversity is crucial for temperate eels (Secor 2015b) and 

management should preserve this diversity to ensure population resilience. Moreover, it is crucial to

improve our knowledge of the mechanisms involved in eel adaptation and of the effects of 

anthropogenic pressures on their capacity to adapt to the global change. A recent analysis outlines 

that even pressures that do not kill any eels can have impacts on eel populations by penalising some 

ecotypes more than others (Mateo et al. 2017b).

Other implications for eel management and research

The eel decline due to global change has several implications for management. First, global causes 

means global solutions are warranted. By global solutions, we do not mean that there should be a 

unique set of management measures across all distribution areas, but rather coordinated 

international management acting on each source of anthropogenic pressure. This was proposed in 

the Quebec declaration of concern (Dekker et al. 2003; Dekker and Casselman 2014) that called for 

immediate action and coordination at all scales. Though some progress has been made since the first

declaration, there is clear need to improve management coordination among regional, national and 
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international authorities. Dekker (2016) pointed out the difficulties in the implementation of the Eel 

Management Plan in Europe. International coordination has not yet started for the American eel 

(MacGregor et al. 2008, 2009; Jacoby et al. 2014; Castonguay and Durif 2016). The East Asia Eel 

Resource Consortium does not yet have any official support (Jacoby and Gollock 2014b), and the 

first attempt at international coordination took place in 2014 between South Korea, China, Taiwan 

and Japan with an agreement on the amount of glass eel that can be used for aquaculture. 

Second, though it is difficult to disentangle the relative effects of various anthropogenic pressures 

implicated in the decline, it is important to develop tools and methods to monitor and quantify their 

effects in the future. Eels grow in very small and almost independent units corresponding to river 

catchments (Dekker 2000b) with specific anthropogenic pressures, within which eels have different 

life history traits. Consequently, it is difficult to assess the stock and extrapolate the overall effect of

anthropogenic pressure at the population scale, from observations collected at the river catchment 

scale (Dekker 2000a). However, the improvement in data quality and the recent development of a 

generic model that can be used at a larger geographic scale is a first step. For example, the GEREM 

model provides estimates of glass eel recruitment that can be used to assess glass eel fishery 

exploitation rates (Drouineau et al. 2016a; Bornarel et al. 2018). The models EDA (Briand et al. 

2015) or SMEP (Aprahamian et al. 2007) can be used to assess the abundance of yellow eels in 

river catchments. These can then be coupled with other models to assess spawner escapement and 

the effect of different anthropogenic pressures such as hydropower production or fisheries (Jouanin 

et al. 2012). Stock assessment models have also been proposed to support management (Dekker 

2000a; Bevacqua and De Leo 2006; Oeberst and Fladung 2012; Bevacqua et al. 2015). However, 

few tools are currently available to assess the impact of contaminants on eel populations. Similarly, 

there is a lack of tools to quantify the effect of lost habitats on population dynamics, though some 

methodologies are available which can quantify the amount of habitat lost due to fragmentation. 

Though it is not possible to quantify the historical effects of anthropogenic pressures, quantifying 
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and predicting pressures in the future would provide valuable information to prioritise management 

actions. Quantification is even more important since (1) it is not possible to mitigate some of the 

pressures affecting eels (parasitism, climate change) so it is necessary to compensate their effects 

with mitigation measures on the other pressures (fishery, fragmentation, contamination), (2) 

management practices cannot mitigate anthropogenic pressures at similar temporal scales: reduction

in fishing efforts are recent but are thought to operate quickly, whereas effort to mitigate 

contamination or fragmentation are older but are much more complex and longer to implement.

Of course, temperate eels are not the only species endangered by global change and most 

diadromous fishes have undergone severe declines (McDowall 1999; Limburg and Waldman 2009; 

Mota et al. 2015). The effects of fragmentation (Larinier 2001; Limburg and Waldman 2009; 

Haxton and Cano 2016), global warming (Friedland 1998; Friedland et al. 2000; Lassalle et al. 

2008, 2009; Jonsson and Jonsson 2009; Elliott and Elliott 2010; Rougier et al. 2014), fisheries and 

pollution (McDowall 1999; Limburg and Waldman 2009) have been documented for most of these 

species. More generally, most migratory animals regardless of taxa have undergone similar declines 

(Sanderson et al. 2006; Berger et al. 2008; Wilcove and Wikelski 2008) raising the question of 

sustainability of migratory tactics in the face of global change. In this context, why should eels be 

considered as a symbol of the effect of global change? Because the original life cycle of eels make 

them vulnerable to all five components of global change, and the cumulated impacts of those five 

components has outpaced the adaptive capacities of these species acquired through million years of 

evolution.  The rate of change during the Great Acceleration in the second half of the XXth century, 

was too fast for the adaptive capacity of the eel, especially since the five components of global 

change acted simultaneously. It explains how a species that was considered a vermin species in 

French salmonid rivers until the 1980s has become critically endangered in only 25 years, after 

millions of years of existence.
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Table 1 Main references exploring the impact of oceanic conditions on recruitment

Reference Species Oceanic index Proposed mechanisms

(Desaunay and 
Guerault 1997)

European eel Oceanic temperature Food availability

(Kimura et al. 2001) Japanese eel Southern Oscillation 
Index
El Niño/Southern 
Oscillation

Oscillations of the 
salinity front that 
affects larvae growth 
and survival during 
their migration

(ICES 2001) American and 
European eels

North Atlantic
Oscillation Index

Changes of transport 
due to modification of 
Gulf Stream path
Trophic limitations due
to oscillation in 
plankton abundance

(Knights 2003) American and 
European eels

North Atlantic
Oscillation Index
Sea Surface 
Temperature

Changes of transport 
due to modification of 
Gulf Stream path
Trophic limitations due
to oscillation in 
plankton abundance

(Kettle and Haines 
2006)

European eel Lagrangian circulation 
model,

Food availability

(Kimura and 
Tsukamoto 2006)

Japanese eel Field observation on 
salinity front

Oscillations of 
spawning location due 
to movements of 
salinity front induced 
by El Niño

(Friedland et al. 2007) European eel and 
presumably American 
eel

North Atlantic 
Oscillation

Food availability in the 
Sargasso Sea
larval drift

(Kim et al. 2007) Japanese eel Lagrangian circulation 
model

Success of larval 
transport due to 
oscillation of the North 
Equatorial Current

(Bonhommeau et al. 
2008b)

European eel Sea surface 
temperature in the 
Sargasso Sea

Food availability

(Bonhommeau et al. 
2009)

European eel Lagrangian circulation 
model
North Atlantic 
Oscillation Index
Transport Index

Oscillations biological 
production in the 
Sargasso Sea
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Gulf Stream Index

(Zenimoto et al. 2009) Japanese eel Lagrangian circulation 
model

Success of larval 
transport due to 
oscillation of the North 
Equatorial Current

(Munk et al. 2010) European eel and 
presumably American 
eel

Field observations of 
oceanic fronts in the 
Sargasso Sea

Oscillations of fronts 
that alter the efficiency 
of retention on feeding 
grounds

(Durif et al. 2011) European eel Analysis of a 100-year 
old time series of eel 
abundance

Relationship to NAO 
and temperature 
conditions in the 
Sargasso Sea

(Pacariz et al. 2014) European eel Lagrangian circulation 
model

Decline of success of 
larval transport due to 
current modifications 
(rejected)

(Miller et al. 2016) European, Japanese and
Amercial eels

Field measurement of 
diatoms and 
cyanobacterial 
abundances in the 
Sargasso Sea

Lower availability of 
food after oceanic 
regime shift
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Figure 1 Lifecyle of the 3 Anguilla species and effects of global change components.
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Figure 2 Spawning grounds (Tsukamoto et al. 2011; Miller et al. 2015) (open circles) and 

continental distribution of yellow eels (filled shapes) (Jacoby et al. 2015) for A. rostrata (red), A. 

anguilla (blue) and A. japonica (green).
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Figure 3 Recruitment series for the three temperate eel species. European eel series (black solid 

line) corresponds to the Elsewhere Europe index provided by ICES (2015a). American eel 

recruitment (grey solid line) corresponds to the recruitment in Lake Ontario through monitoring of 

eel passage at Moses Saunders hydroelectric dam (A. Mathers, Ontario Ministry of Natural 

Resources, personal communication). Japanese eel recruitment (black dotted line) corresponds to 

Japanese catch statistics (Data may include young yellow eels larger than glass eels during 1957-

1977 – provided by Statistics Department, Ministry of Agriculture, Forestry and Fisheries, Japan till

2002 and from Fisheries Agency, Japan since 2003). Data were smoothed using a 5 years moving 

geometric mean and expressed as a percentage of 1960s-1970s geometric mean.

87

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



regime shift
Pacific temperature
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Sargasso Sea

peak in dam construction
(global)

peak in dam construction
(Morocco)
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First A. crassus
in Europe
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 in all Europe
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in USA

expansion Japanese
aquaculture

First Golden age
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2nd Golden age
E. glass eel export
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East Asia Eel Consortium settled

Quebec 2nd declaration of concern

European eel critically endangered (IUCN)

American eel in Ontario Endangered Species act

American eel endangered (IUCN)

Japanese eel endangered (IUCN)

American eel threatened (COSEWIC)

European eel in App IIb (CITES)

European eel Regulation

American eel special concern (COSEWIC)

Figure 4 Timelines of main events with respect to the five global change components and 

management of eel populations. Committee on the Status of Endangered Wildlife in 

Canada(COSEWIC) is a committee of experts that assesses and designates which wildlife species 

are in some danger of disappearing from Canada
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Figure 5 Ocean temperature anomalies (left panel). Source (Morice et al. 2012; Steffen et al. 2015)
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Figure 6 Global fertiliser consumption in OECD countries (grey) and in the world (black). Source 

(Steffen et al. 2015, International Fertilizer Industry Association Database)
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Figure 7 Accumulative number of large dams in OECD countries (grey) and in the world (black). 

Source (World Commission on Dams 2000; Steffen et al. 2015)

91

2003

2004

2005

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



0.15

0.20

0.25

0.30

1980 1990 2000 2010

Year

E
xp

lo
ita

tio
n 

ra
te

Figure 8 French glass eel exploitation rates expressed as the ratio of catch (tonnes) to recruitment 

(tonnes). Catches corresponds to an appraisal of historical catches based upon market and fishery 

data (Briand et al. 2008) while recruitments was estimated using the model GEREM (Drouineau et 

al. 2016a).
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Figure 9 Various indicators of the Great Acceleration for OECD countries (grey) or the entire world

(black). GDP=gross domestic product. Carbon dioxide from firn and ice core records (Law Dome, 

Antarctica) and Cape Grim, Australia (deseasonalised flask and instrumental records). Sources 

(Steffen et al. 2005), population (Goldewijk et al. 2010), CO2 (Etheridge et al. 1996; MacFarling 

Meure 2004; MacFarling Meure et al. 2006; Langenfelds et al. 2011), water use (Alcamo et al. 

2003; aus der Beek et al. 2010; Flörke et al. 2013), energy use (GEA Writing Team 2012), GDP 

(World Bank indicators)

93

2011

2012

2013

2014

2015

2016

2017

2018

Author produced version of the article published in Fish and Fisheries, 2018, 19 (5), 903-930 
The original publication is available at https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12300 

Doi : 10.1111/faf.12300 



Figure 10 Adaptation mechanisms to environmental heterogeneity as proposed in (Mateo et al. 

2017a;b ; Gagnaire et al. 2012; Côté et al. 2014; Drouineau et al. 2014; Boivin et al. 2015). A red 

arrow stands for “unfavourable”, a green arrow stands for “favourable”. A blue arrow stands for a 

relationship which is either favourable” or “unfavourable” depending on situations. There is a 

double arrow between genotypes and “settlement in upstream habitats” because it represents 

“spatially varying selection” and “genetic-dependent habitat selection”. Regarding phenotypes, 

female is considered as opposite to male and “settlement in upstream habitats” as opposite to 

“settlement in downstream habitats”.
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