Freshwater eels: a symbol of the effects of global change

Running title: Freshwater eels and global change

Authors: Hilaire Drouineau1*, Caroline Durif2, Martin Castonguay3, Maria Mateo1, Eric Rochard1, Guy Verreault4, Kazuki Yokouchi5, Patrick Lambert1

Affiliations:
1: Irstea, UR EABX, centre de Bordeaux, 50 avenue de Verdun, F-33612 Cestas cedex, France.
2: Institute of Marine Research, Storebø 5392, Norway
3: Ministère des Pêches et des Océans, Institut Maurice-Lamontagne, C.P. 1000, 850, route de la Mer, Mont-Joli, Québec G5H 3Z4, Canada
4: Ministère des Forêts, de la Faune et des Parcs – Direction Régionale du Bas Saint-Laurent, 186 rue Fraser, Rivière-du-Loup, Québec G5R 1C8, Canada
5: National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan

* corresponding author: Hilaire Drouineau – hilaire.drouineau@irstea.fr - tel : +33 (0)5 57 89 27 09 - fax : +33 (0)5 57 89 08 01
Abstract

Temperate eels *Anguilla anguilla* (European eel), *A. rostrata* (American eel), and *A. japonica* (Japanese eel) are three catadromous species which have been declining since the 1970s/1980s despite their remarkable adaptive capacity. Because of their specific life-cycles, which share distant oceanic spawning grounds and continental growth stage, eels are affected by five components of the global change: (i) climate change affecting larval survival and drift, (ii) an increase in pollution leading to high levels of contamination exacerbated by their high lipid levels, (iii) increasing fragmentation and habitat loss that reduce dramatically the amount of available habitats and induce increased spawner mortality, (iv) the appearance of *Anguillicola crassus* a parasitic alien nematode that impairs spawning success and (v) the impact of commercial and recreational fisheries for all life stages of eel. In this context, the rapid increases of pressures during the “Great Acceleration” have surpassed the adaptive capacity of eels. This illustrates that cumulative effects of global change can lead to the collapse of species, even in species that have amazingly high adaptive capacities.

Keywords: adaptation, *Anguilla* spp., climate change, contamination, ecosystem fragmentation, over-exploitation
Table of contents

Introduction

Global change: five components that threaten biodiversity

Temperate eels: endangered species impacted by diverse anthropogenic pressures

Component 1 - Global warming and ocean modification: impacts on eel migrations
 Effect on leptocephalus drift and survival
 Effect on silver eel spawning migration

Component 2 - Increased contamination load: contamination of eels and consequences on its physiology

Component 3 - Fragmentation and habitat loss: fragmentation by weirs and dams and consequences on upstream and downstream migration
 Movements, habitats and fragmentation
 Blockage during upstream migrations
 Impaired downstream migrations

Component 4 - Alien species: effects of alien parasitoid Anguillicola crassus

Component 5 - Exploitation of natural resources: an intensive exploitation of eels at all their stages

When forty years of global change has had a greater impact than the ice ages or continental drift

The resilience of eels severely impaired by global change

Other implications for eel management and research

Acknowledgements

References

Introduction

Global change: five components that threaten biodiversity
In 2005, the Millennium Ecosystem Assessment (2005a) pointed out that, despite an increase in human welfare during the XXth century, anthropogenic actions threaten the ability of ecosystems to sustainably provide important goods and services, especially for future generations. Such human-caused environmental changes are generally referred to as global change (Steffen et al. 2005). In this paper, we illustrate how the rate at which global change is happening can endanger even highly adaptive species such as temperate eels *Anguilla anguilla* (European eel), *A. rostrata* (American eel), and *A. japonica* (Japanese eel). More specifically, this example illustrates that cumulative effects of the different components of global change (Vitousek et al. 1997; Western 2001; Tylianakis et al. 2008; Jacoby et al. 2015; Miller et al. 2016) can produce rates of change that exceed a species’ adaptive capacity, a central question in the debate on the effects of climate and global change (Donner et al. 2005; Visser 2008).

Soulé (1991) proposed a list of the main threats to biodiversity that include six components: habitat loss, habitat fragmentation, overexploitation, exotic species, pollution and climate change. Later, the United-States National Research Council (2000) proposed a very similar list of ongoing changes: (1) climate, (2) land use and land cover modifications that can result in habitat loss and fragmentation, (3) biogeochemical and hydrological cycles and pollution, (4) biotic mixing including biological invasions and (5) overexploitation of natural resources especially in oceanic ecosystems. The main difference with Soulé’s proposal is that habitat loss and habitat fragmentation were merged into a single component. This latter listing was then endorsed by many authors, including IPCC (2001), the Millennium Ecosystem Assessment (2005b), Simberloff (2012) and Pe'er et al. (2013) though Pe’er et al. (2013) did not mention pollution. The IGBP (Steffen et al. 2005, executive summary) and the Global Change Program of the Royal Society of Canada (1992) provided more detailed lists of components of global change (IGBP: oil harvest, transformation of land surface, nitrogen waste, use of freshwater, greenhouse gas, marine habitat destruction, overexploitation of fisheries, extinction rates of species – GCPRSC: climate change, energy and
resource consumption, air and water pollution, ozone depletion, population increase, extinction events, land and soil degradation. These components can be merged into the five more general components from IPCC (except perhaps “population increase” which can be shared by various components).

Among these components of global change, the best documented is global warming, which is due to increased greenhouse gas emission by human activities (IPCC 2015), affecting the biosphere at all scales (Gattuso et al. 2015). Global warming already has visible impacts on the ecology of living organisms (Hughes 2000; Walther et al. 2002) with impacts on their phenology (Menzel et al. 2006; Chevillot et al. 2017) and modification of distribution areas (Lassalle et al. 2009; Cheung et al. 2010; Nicolas et al. 2011; Rougier et al. 2015). Global warming alters biogeochemical cycles such as the water cycle. For example, the seasonality of river discharge (amplitude between low and high discharge) is expected to increase, while average discharges will increase in some regions and decrease in others (Nohara et al. 2006; van Vliet et al. 2013).

The second component is increasing nutrient, contaminant and pesticide loads in the ecosystem due to industries, agriculture and urbanisation (Verhoeven et al. 2006). These increased loads destabilise nutrient cycles and can have direct consequences, such as eutrophication (Tilman et al. 2001; Rabalais et al. 2009). At the individual scale, contaminants and pesticides can have a large range of deleterious effects, such as altered metabolism, immunotoxicity, endocrine disruption or neurotoxicity (Köhler and Triebeskorn 2013; ICES 2016). Moreover, many contaminants are ecologically harmful because persistent biomagnifying chemicals can accumulate in food webs at high trophic levels (Van Oostdam et al. 2005; Köhler and Triebeskorn 2013).

Another component is the modification of habitats due to anthropogenic land use, which can lead to fragmentation of aquatic and terrestrial ecosystems or even habitat loss (Collinge 1996; Fischer and Lindenmayer 2007; Brook et al. 2008). Habitat loss and ecosystem fragmentation are currently
considered major threats to biodiversity and represent one of the major challenges in ecosystem
conservation and restoration (Tilman et al. 1994; Tischendorf and Fahrig 2000a, b; Sutherland et al.
2013), by impairing the ability of individuals to migrate to essential habitats (Gros and Prouzet
2014), isolating populations and reducing gene flow (Horreo et al. 2011; Haxton and Cano 2016),
and by modifying species community structure (Perkin and Gido 2012). Fragmentation and habitat
loss increase the risk of extinction cascades (Terborgh et al. 2001; Fischer and Lindenmayer 2007;

Biological invasion by alien species is our fourth component of global change (Vitousek et al. 1997;
Occhipinti-Ambrogi and Savini 2003; Ricciardi 2007). Invasive species can affect native ones
directly through predation, competition or parasitism, or indirectly by habitat modification or by
spreading diseases (Lymbery et al. 2014). Arrival of alien species due to shifts in their distribution
in response to climate change, uniformisation of habitat or transport by humans, can profoundly
reshape species interactions and has consequences at the species, community, and ecosystem levels
but also on the provision of ecosystem services (Alpine and Cloern 1992; Cloern 1996; Grosholz
2002; Vilà et al. 2010). Currently, there are about 10,000 alien species registered in Europe, while
ecological impacts have been documented for 11% of them and economic impacts for 13% (Vilà et
al. 2010).

Finally, the last component is the overexploitation of natural resources (Brook et al. 2008). For
example, fisheries have had major impacts on marine ecosystems, depleting stocks with potential
impacts on fishing food webs, and impacts on habitats because of destructive fishing gear (Turner
et al. 1999; Christensen et al. 2003; Gascuel et al. 2011; Branch 2015; Drouineau et al. 2016b).
Fisheries have also shaped the life histories of exploited fishes by acting as a permanent and
continuous selection pressure (Jørgensen and Renöfält 2013; Heino et al. 2015).
Through the combined impacts of these five components, global change leads to an extremely rapid modification of ecosystems. Species can display different kinds of adaptive response to address this threat, such as local adaptation through i) a micro-evolutionary response, ii) phenotypic plasticity (Charmantier et al. 2008), or iii) modification of their distribution area (Hughes, 2000). However, adaptation is not always possible, especially in cases of synergies among components which can lead to rates of change outpacing a species adaptive capacity (Brook et al. 2008). In this context, global change threatens extinction for many species (Spurgeon 2000; Thomas et al. 2004; Steffen et al. 2005; Brook et al. 2008; Cahill et al. 2013; Urban 2015). The collapse of the three temperate anguillid eel populations is an excellent illustration of this phenomenon.

Temperate eels: endangered species impacted by diverse anthropogenic pressures

European eel, American eel and Japanese eel are three temperate catadromous species that share many remarkable ecological features (Figure 1). They have a large distribution area in continental waters (Figure 2 - from Norway to Morocco for the European eel (Tesch 2003), from Canada to Venezuela for American eel (Helfman et al. 1987), from Northern Philippines to Korea for Japanese eel (Tsukamoto 1990), which are reached after a long larval drift (larvae are called leptocephali) from distant marine spawning grounds (Sargasso Sea for *A. rostrata* and *A. anguilla* (Schmidt 1923; McCleave 1993) and west of Mariana Islands for *A. japonica* (Tsukamoto 1992)). After this migration, the larvae metamorphose into glass eels upon reaching the continental shelf (Tesch 2003). They subsequently penetrate continental waters, turning into pigmented yellow eels, where they colonise a large range of continental habitats from brackish to freshwater (Daverat et al. 2006; Arai and Chino 2012). After a growth phase lasting from 3 to over 30 years, yellow eels metamorphose into silver eels and migrate back to their spawning grounds (Béguer-Pon et al.)
The eels mature en route and presumably die following spawning. Eels have successfully adapted to very heterogeneous growth environments at both the distribution area and catchment scale. Eels are panmictic (Han et al. 2010; Als et al. 2011; Côté et al. 2013; Pujolar 2013) and their long larval drift which limit the possibility of local genetic adaptation. However, there are correlations between environmental gradients and spatial patterns in life history traits throughout the distribution area and within river catchments (Vélez-Espino and Koops 2009; Drouineau et al. 2014; Yokouchi et al. 2014). For example, sex ratio is generally female-biased in the northern parts of distribution areas (Vladykov 1966; Helfman et al. 1984; Vøllestad and Jonsson 1988; Vøllestad 1992) and in upstream parts of river catchments (Oliveira and McCleave 2000; Tesch 2003). Length-at-silvering (onset of sexual maturation) varies between between sexes and habitats. Males follow a time-minimising strategy, leaving continental waters as soon as they reach the minimal length to achieve the spawning migration, while females follow a size-maximising strategy, adapting their length-at-silvering to local growth and mortality conditions finding a trade-off between survival and fecundity (Helfman et al. 1987; Vøllestad 1992). Consequently, male length-at-silvering is rather set (Vøllestad 1992; Oliveira 1999), while females exhibit a wider range of sizes and are often larger in the northern parts of the distribution areas (Helfman et al. 1987; Davey and Jellyman 2005; Jessop 2010). These life history traits patterns are thought to be the result of adaptive phenotypic plasticity that allows individuals to adapt their life history traits to a wide range of environmental conditions (Côté et al. 2014; Drouineau et al. 2014; Mateo et al. 2017a) but also of genetic polyphormism leading to spatially varying selection and/or genetically based habitat selection producing genetically distinct ecotypes (Gagnaire et al. 2012; Côté et al. 2014; Ulrik et al. 2014; Pavey et al. 2015; Mateo et al. 2017a).
In addition to having similar life histories, the three anguillid species underwent a dramatic decline which started in the late 1970s (Dekker et al. 2003; Dekker and Casselman 2014). The collapse became evident through the analyses of the recruitment indices of the three species (Figure 3). Recruitment series of glass eels are the most reliable indices to estimate trends in eel populations throughout their range, because they are less influenced by local conditions than indices using older stages. In Europe, recruitment has decreased by 90 to 99% since the 80's (ICES 2015) while spawner abundance has also dropped (Dekker 2003a). Concerning the American eel, the recruitment in the upper Saint-Lawrence River and Lake Ontario has nearly ceased in one of the most productive areas (Casselman 2003) and commercial silver eel CPUE dropped by at least 50% in 40 years in the Saint-Lawrence River (de Lafontaine et al. 2009). Recruitment of Japanese eel has followed a very similar decline, corresponding to 80% in the last decades (Dekker et al. 2003; Tanaka 2014). As a result, IUCN classified *A. anguilla* as critically endangered in 2008 (confirmed in 2010 and 2014) (Jacoby and Gollock 2014a) while *A. rostrata* and *A. japonica* have been classified as endangered since 2014 (Jacoby and Gollock 2014b; Jacoby et al. 2014). Meanwhile, conservation regulations have flourished for the three species (Figure 4). The European Commission implemented a regulation in 2007 (Council Regulation (EC) No 1100/2007) establishing measures for the recovery of the stock of European eel and calling for a reduction in anthropogenic mortalities. The North American eel is "endangered" since 2008 as under Ontario’s Endangered Species Act, which prohibits their fishing and trading. The Canadian federal Government is currently considering whether the American eel should be listed as “Threatened” under the federal Species at Risk Act. The Japanese eel is “endangered” on the Japanese Red List published by the Ministry of Environment, Japan in 2013.

The eel population declines possibly result from oceanic changes (Castonguay et al. 1994b), overfishing (Haro et al. 2000; Dekker 2003c; Tsukamoto et al. 2003), contamination (Belpaire et al. 2011, 2016), parasitism (Feunteun 2002; Kirk 2003) and blockage due to dams (Moriarty and ...
Dekker 1997; Kettle et al. 2011). These suspected causes match the above-mentioned components of global change: oceanic modifications resulting from global warming, over-fishing corresponds to over-harvesting of natural resources, the eel swimbladder parasite is an alien species, blockage due to dams is an example of habitat loss due to land-use, and contamination is the direct result of the increased pollutant load. The respective effects of anthropogenic pressures are difficult to disentangle and probably acted synergistically in the declines of eel populations (Jacoby et al. 2015; Miller et al. 2016). Here, we focus on the timelines of events and on the spatial dimension to show how some anthropogenic pressures have had a greater impact on certain habitats (and consequently eels in these habitats) than others. Finally, we discuss why the overall decline may be interpreted as the result of the combined effect of the global change components and how the cumulative pressures have had a more drastic impact, than 50 million years of evolution, by radically reducing adaptive capacities of eels. Even though there are growing concerns about the situation of tropical eels and many similarities with temperate eels (Jacoby et al. 2015), we restricted our analysis to temperate eels of the genus Anguilla because they are in the worst situation according to IUCN criteria, and are the three most commercially important species (Jacoby et al. 2015).

Component 1 - Global warming and ocean modification: impacts on eel migrations

Effect on leptocephalus drift and survival

The decline in eel populations is possibly linked to modifications of physical conditions in the oceans (Castonguay et al. 1994b; Knights et al. 1996; Bonhommeau et al. 2008a; Miller et al. 2009, 2016). The synchronous declines of the three eel species may indicate the involvement of large-scale drivers, such as changes in oceanic conditions that affect hatching and subsequent survival of larvae (Castonguay et al. 1994b; Bonhommeau et al. 2008a). Global warming has had a measurable impact on sea surface temperatures (Figure 5) and on different oceanic features (North Atlantic
Oscillation, El Niño Southern Oscillation and North Equatorial Current) influencing recruitment success of temperate eels. Global warming has also had visible impacts on planktonic communities: important shifts in the diversity, abundance and spatial distribution of planktonic species in the Atlantic Ocean, where plankton is crucial for eel larval growth and survival (Beaugrand 2004; Beaugrand et al. 2009; Goberville et al. 2014).

Indeed, there are correlations between glass eel recruitment and different oceanic indicators, such as the North Oscillation Index (NAO) and sea surface temperatures (Table 1). Because most studies computed statistical correlations, the underlying mechanisms are speculative. Three main mechanisms have been proposed: a limitation in trophic conditions (Desaunay and Guerault 1997; ICES 2001; Knights 2003; Kettle and Haines 2006; Friedland et al. 2007; Bonhommeau et al. 2008b, 2009; Munk et al. 2010), changes in oceanic currents modifying larval transport (Castonguay et al. 1994b; ICES 2001; Knights 2003; Friedland et al. 2007; Zenimoto et al. 2009), and/or spatial oscillations of a salinity front used by adult eels to detect the spawning grounds which then lead to oscillations in the success of larval transport (Kimura et al. 2001; Kimura and Tsukamoto 2006). In addition to statistical correlations, Lagrangian simulations of larval drift have also been carried out to explore some mechanisms (Kettle and Haines 2006; Kim et al. 2007; Bonhommeau et al. 2009, 2010; Zenimoto et al. 2009; Melià et al. 2013; Pacariz et al. 2014). These simulations suggested that, while for European eel the correlation between NAO and recruitment more likely reflects an indirect effect of trophic conditions in the Sargasso Sea (Bonhommeau et al. 2009; Pacariz et al. 2014), changes in oceanic currents directly affect Japanese eel larval drift (Kim et al. 2007; Zenimoto et al. 2009).

Analysing simultaneously the declines of the three species, Bonhommeau et al. (2008a) highlighted the synchrony between regime shifts in the Atlantic and Pacific sea surface temperature, primary production and recruitment of the three species. They postulated that an increase in sea surface
temperature due to climate change, led to a higher stratification of the Sargasso Sea and consequently to a lower primary production, which could translate into lower food availability for the leptocephali. Recently, Miller et al. (2016) proposed a more precise mechanism: the regime shift resulted in a lower abundance of diatoms and a higher abundance of cyanobacteria, which may have resulted in a lower production of carbohydrates which are crucial for the production of “marine snow”, the main food of eel larvae (Riemann et al. 2010).

Effect on silver eel spawning migration

Climate change can also affect the later stages of eel. Oceanic conditions and climate change can, indirectly, influence river discharge (Arnell 1999; Milly et al. 2005) through modifications of precipitation regimes (Kettle et al. 2011). The discharge regime is also modified by water extraction for human use, agriculture and other industrial processes (Postel and Richter 2003; Verreault et al. 2012). River discharge and rainfall are important triggers (direct or indirect) of silver eel migration (Boubée et al. 2001; Acou et al. 2008; Durif and Elie 2008; Bruijs and Durif 2009; Trancart et al. 2013; Reckordt et al. 2014; Drouineau et al. 2017). Higher river discharge increases migration speed (Vøllestad et al. 1986; Tesch 2003). Reduced discharge delays migration and eels may even be stopped until the following year if environmental conditions are not favourable (Durif et al. 2003; Drouineau et al. 2017). Finally, reduced discharge can lead to higher proportions of eels going through turbines, since at low flow a higher proportion of water is guided through the turbines, leading to higher mortalities (Jansen et al. 2007; Bau et al. 2013).
Increased contamination load: contamination of eels and consequences on its physiology

Eels are vulnerable to contamination because of their high trophic level and high level of lipid storage (Geeraerts and Belpaire 2009; Belpaire et al. 2011; ICES 2016). Contaminants that have been found in eels include: organic contaminants (Hodson et al. 1994; Ohji et al. 2006; Bilau et al. 2007; Blanchet-Letrouvé et al. 2014; Kammann et al. 2014; Guhl et al. 2014); heavy metals (Yang and Chen 1996; Maes et al. 2005; Pierron et al. 2008a,b; Nunes et al. 2014; Pannetier et al. 2016) and pesticides (Hodson et al. 1994; Gimeno et al. 1995; Couillard et al. 1997; Byer et al. 2013; Privitera et al. 2014).

Consequently, eels are sometimes used as bioindicators of contamination (Amiard-Triquet et al. 1987; Linde et al. 1996; Belpaire and Goemans 2007; McHugh et al. 2010). Contamination levels are often above human consumption standards (Bilau et al. 2007; Geeraerts and Belpaire 2009; Byer et al. 2013; ICES 2014, 2016) and have led to fishing prohibitions in various sites in European countries (Germany, Belgium, Netherlands, France, Italy) (Belpaire et al. 2016).

These contaminants are widely found in freshwater fishes (Streit 1998) and their effects on fish biology (Gilliers et al. 2006; Kerambrun et al. 2012; Fonseca et al. 2014) and the danger for human consumption have been demonstrated (Schuhmacher et al. 1994; Järup 2003; Halldorsson et al. 2007). While metallic contaminants have a long history in countries with extraction activities, organic contamination, pesticides, and nutrients loads are much more recent (Malmqvist and Rundle 2002; Morée et al. 2013). Many of them appeared in the second half of the XXth century in relation to agriculture intensification, urbanisation and industrial activities. During this period, fertiliser utilisation grew exponentially (Figure 6). PCBs and DDT production peaked around the 1960’s (Harrad et al. 1994; Van Metre et al. 1998), i.e. about 20 years before eels started to decline, and concentrations remain high in river sediments explaining why levels are still high in eels (ICES.
Persistent Organic Pollutants (POPs) had a dramatic effect on lake trout (*Salvelinus namaycush*) in Lake Ontario (Cook *et al.* 2003) and concentrations peaked in American eel in Lake Ontario in the late 1960s, about 20 years before the American eel recruitment collapse (Byer *et al.* 2015). The increased nutrient load to water bodies has caused detrimental impacts on humans and aquatic ecosystem health (Grizzetti *et al.* 2011, 2012) and continued to increase until the mid-90s before declining in many rivers (Minaudo *et al.* 2015). Fertilisers are still used at a very high level (Figure 6). Moreover, new contaminants are appearing in the water and in eels, such as Perfluorooctanesulfonic acid (PFOS), textile dyes, musk compounds, perfluorinated substances, organophosphorus flame retardants and plasticisers (ICES 2016).

There have been a few cases of direct eel mortalities due to contaminants (Dutil 1984; Dutil *et al.* 1987) but in the majority of cases the impact is at the sublethal level ranging from tissue damage, stress, effects on osmoregulation, behaviour alteration, hormonal perturbation and genotoxic effects (Couillard *et al.* 1997; Geeraerts and Belpaire 2009). Contaminants may also be transferred to the offspring resulting in larval malformation (Robinet and Feunteun 2002; Byer *et al.* 2013; Rigaud *et al.* 2016; Foekema *et al.* 2016). As a fatty fish, eels are particularly sensitive to contamination. Most contaminants are highly concentrated in the lipid stores (Robinet and Feunteun 2002) and affect lipid metabolism (Fernández Vega *et al.* 1999; Corsi *et al.* 2005; Pierron *et al.* 2007). This is especially critical at the silver eel stage when lipid levels are highest (over 13%) to achieve their transoceanic migration to the spawning grounds (van Ginneken and van den Thillart 2000; Van Den Thillart *et al.* 2004, 2007; Belpaire *et al.* 2009). For female eels, 67% of their fat store is spent on the spawning migration and oocyte maturation (Palstra and van den Thillart 2010). As lipids are mobilised during spawning migration, contaminants are more likely to be released into the blood at high concentrations, thus negatively affecting gonad maturation and oocyte production, as they do in other fish species (Pierron *et al.* 2014; Baillon *et al.* 2015; ICES 2016), and also impairing migration success (Robinet and Feunteun 2002; Pierron *et al.* 2008a; Geeraerts and Belpaire 2009).
As a summary, contaminants can act as a classical stressor during the continental stage of eel, but then have the potential to dramatically impair maturation and migration success, i.e. the whole reproduction success.

Component 3 - Fragmentation and habitat loss: fragmentation by weirs and dams and consequences on upstream and downstream migration

Movements, habitats and fragmentation

Movement is a key feature of living organisms to find food, mates and avoid predation (Nathan et al. 2008). Several types of movements can be distinguished. The first type, called “station-keeping” (Dingle 1996) takes place within the home range of the animal and corresponds to simple movements for foraging and predation avoidance. The two other types of movement, ranging and migration, occur outside the home range (Dingle and Drake 2007). Ranging is dedicated to the search of a specific resource (mate, food, etc.) and stops when the resource is found (Jeltsch et al. 2013). Migration is generally triggered by physiological and environmental cues and not by the search for a specific resource such as food or mates. It affects most individuals in the population, occurs over a long timescale, requires orientation, and suggests a return journey (Dingle 1996; Dingle and Drake 2007).

Diadromous fish, such as eels undergo two long migrations (Tesch 2003): the first migration, from the spawning grounds to their growth habitat, includes a phase of active upstream migration in river catchments during the early years of their continental life-stage (Castonguay et al. 1994a; Imbert et al. 2010; Fukuda et al. 2016). During the second migration, eels return to the oceanic spawning grounds from their growth habitats in rivers or coastal waters. Eels may also move between different habitats during their continental stage (Daverat et al. 2005; Kaifu et al. 2010; Arai and...
Chino 2012; Yokouchi et al. 2012; Béguer-Pon et al. 2015a), movements which correspond to station keeping and ranging.

The construction of dams accelerated worldwide during the 1950/60s (Dynesius and Nilsson 1994; Postel and Richter 2003; MacGregor et al. 2009) (Figure 7), about 20 years before the eel population declined. This massive construction of dams has restrained eel movements and available habitats. The construction of hydropower dams during the XXth century in the St. Lawrence catchment caused a 40% habitat loss for the North American eel in this basin (Verreault et al. 2004). The situation is similar or worse in the United States (Busch et al. 1998), especially since most dams lack fishways (MacGregor et al. 2009). In Europe, 50-90% of habitats were lost by the end of XXth century (Feunteun 2002). For the Japanese eel, approximately 75% of effective habitats were lost between 1970 and 2010 in Japan, Korea, Taiwan and China, with a maximum in China (>80%) and Taiwan (~50%) (Chen et al. 2014).

Intensive dam constructions in Spain, Morocco and Portugal, have had drastic consequences on European eel distribution (Nicola et al. 1996; Lobon-Cervia 1999; Clavero and Hermoso 2015), possibly affecting the sex ratio since this area yields mainly male eels and is closest to the spawning area (Kettle et al. 2011).

Dams and weirs are not the only factors affecting eel habitats: rivers provide multiple goods and services to society (Postel and Richter 2003; Wolanski et al. 2011; Elliott and Whitfield 2011) that have led to river channelization, hydro-morphological modifications, drying out of lateral wetland, wetland drainage, water extraction, modification of land use in the floodplain that can lead to higher erosion and sedimentation (Elliott and Hemingway 2002; Postel and Richter 2003; Basset et al. 2013). As an example, typical eel habitats, such as estuarine marshes and intertidal zones have been lost because of flood protection walls, agriculture activities and navigation (Gros and Prouzet 2014). In Japan, catch reduction rates in several rivers and lakes were positively correlated with the
rate of revetment along rivers and around lakes (Itakura et al. 2015b), also the condition factor of
eels and prey diversity were significantly lower in these modified habitats (Itakura et al. 2015a).

Blockage during upstream migrations
During their first year in continental waters, eels display an active migratory behaviour and then
shift to a resident behaviour (Imbert et al. 2010; Benchetrit et al. 2017). Resident behaviour does
not exclude habitat shifts (Daverat and Tomás 2006) though these types of movement correspond
more to ranging than strict migration (Dingle and Drake 2007). Upstream migration has a cost and
its evolutionary benefit is still unclear since eels can settle in a wide range of habitats (Tsukamoto et
al. 1998; Daverat et al. 2006; Yokouchi et al. 2012; Marohn et al. 2013). Glass eels with high
feeding rate and fast weight gain have a higher propensity to migrate (Bureau du Colombier et al.
2008). These glass eels also display a more gregarious and less aggressive behaviour (Geffroy and
Bardonnet 2012). Habitat selection could be a trade-off between growth (generally higher in
downstream habitats), survival (generally higher in upstream habitats), competition avoidance
(higher competition in downstream habitats) and energetic cost of migration (Mateo et al. 2017a;
Edeline 2007; Drouineau et al. 2014). Habitat selection is also partly related to genetic or epigenetic
polymorphism (Gagnaire et al. 2012; Côté et al. 2014; Pavey et al. 2015; Podgorniak et al. 2015b;
Mateo et al. 2017a). In such a scheme, habitat selection would be the result of a fitness optimisation
process in which fitness in a habitat would depend on habitat characteristics, competition in the
habitat, but also individual variability of growth rates due to the existence of genetically distinct
clusters of individuals (Côté et al. 2015; Mateo et al. 2017a).

Given this plasticity in habitat use, the consequences of obstacles on upstream migrations are
difficult to assess. Methods have been proposed to assess the passability of obstacles (Briand et al.
2005; Drouineau et al. 2015; Tremblay et al. 2016). Densities of eels are higher downstream of
obstacles. This leads to (i) increased competition between individuals, which can subsequently result in lower survival (Vøllestad and Jonsson 1988; Bevacqua et al. 2011), (ii) increased susceptibility to predation (Drouineau et al. 2015; Larinier 2001; Garcia De Leaniz 2008; Agostinho et al. 2012), and overfishing (Dekker 2003c; Briand et al. 2005) and, (iii) possible modification to the sex ratio, since sex determination is density-dependent (Poole et al. 1990; De Leo and Gatto 1996; Roncarati et al. 1997; Tesch 2003; Davey and Jellyman 2005).

Finally, obstacles to upstream migration can act as a permanent selection pressure (Podgorniak et al. 2015a,b; Mateo et al. 2017b). Côté et al. (2014) demonstrated the existence of two clusters of individual eels with differing genetic basis: a cluster of slow growers and a cluster of fast growers, while Pavey et al. (2015) demonstrated the existence of genetically distinct ecotypes, with different growth rates and different sex ratios. By impairing migration within catchments, obstacles can decrease the fitness of some types of individuals; those individuals who genetically belong to the “freshwater habitat” may not be able to reach suitable habitats, or will suffer damage during their downstream migration (Mateo et al. 2017b).

Impaired downstream migrations

Most studies dealing with downstream migration have focused on mortality due to passage through hydropower turbines (Coutant and Whitney 2000; Gosset et al. 2005; Boubée and Williams 2006; Winter et al. 2006; Carr and Whoriskey 2008; Calles et al. 2010; Pedersen et al. 2012). Several factors influence the mortality induced by hydropower plants:

- **Turbine characteristics:** The mortality due to strikes by Kaplan turbines are generally greater than 15% and sometimes as high as 100% depending on fish length, wheel diameter, nominal discharge flow and speed of rotation (Gomes and Larinier 2008). For Francis turbines, Calles et al. (2010) estimated a mortality rate of 60% at a Swedish site while a
mortality rate of about 16% was found at an American site (Richkus and Dixon 2003). Even if they survive passage through the turbines, eels can be wounded and have a reduced chance of reaching the spawning area.

- Site configuration can greatly influence the probability that a fish will pass through or bypass the turbines. Since silver eels follow the main flow (Jansen et al. 2007), the orientation of the water intake with respect to the main channel influences the probability of turbine passage (Bau et al. 2013). Different types of barriers have been proposed to divert eels from turbine passage, such as fish-friendly trashracks (Raynal et al. 2013, 2014), flow field manipulation (Piper et al. 2015), light (Patrick et al. 1982; Hadderingh et al. 1992) and infrasound barriers (Sand et al. 2000, 2001). The installation of bypasses is also a mitigation measure to prevent passages through turbines (Durif et al. 2003; Gosset et al. 2005; Haro et al. 2016).

- Environmental conditions: In a period of low discharge, when the flow through the turbine is high compared to the flow over weir, more eels will pass through the turbines than at high discharge, when the turbine flow is small compared to the weir flow.

- Obstacle location within the catchment: since eels are not uniformly distributed within a river catchment (Ibbotson et al. 2002), the number of eels impacted by a given facility depends on the number of eels that settle upstream the facility. Therefore, it is necessary to estimate the distribution of fish within catchments to assess the effect of hydropower plants at the catchment scale. In the SEAHOPE model, the total mortality induced by hydropower plants in a given catchment was estimated by coupling a model that predicts the proportion of fish killed when passing each individual plant with a model that predicts the spatial distribution of eels within the catchment (Jouanin et al. 2012).

However, direct mortality is not the only impact obstacles can have on downstream migrants. First, sub-lethal injuries can occur during obstacle passages because of impingements on hard structures...
(even in the absence of turbins), which can then impair spawning migration success (Bruijs and
Durif 2009). Predation during downstream passage has also been recorded for many fish species
(Williams et al. 2001; Muir et al. 2006; Garcia De Leaniz 2008). Moreover, increased energy costs
induced by obstacle passage may have a delayed impact on migration success and fecundity: silver
eels stop feeding during the spawning migration and their lipid stores are crucial to achieve the
oceanic migration and produce oocytes (van Ginneken and van den Thillart 2000). Delays induced
by obstacles can impair escapement, especially when the environmental migration suitability
window is limited (Verbiest et al. 2012; Drouineau et al. 2017). Finally, similarly to obstacles to
upstream migration, obstacles to downstream migration affect specific types of individual:
individuals that settle upstream of the obstacle (i.e. individuals that settle in upstream habitats and
individuals that were able to pass the obstacle), as such, obstacles may have the potential to exert a
selection pressure on the population (Mateo et al. 2017b).

Component 4 - Alien species: effects of alien parasitoid Anguillicola crassus

Though competition is possible with some alien species such as the European catfish (Bevacqua et
al. 2011), or even with introduced American (Han et al. 2002) and European eels in East Asia
(Aoyama et al. 2000), Anguillicola crassus is the alien species that has the most documented and
widespread impact on eels, at least for European and American eels. Anguillicola crassus is a
natural parasite of Japanese eel which was introduced into Europe in the mid 70’s, early 80’s,
probably through the aquaculture trade (Koops and Hartmann 1989). It is now widespread in
Europe (Kennedy and Fitch 1990; Evans and Matthews 1999; Lefebvre et al. 2002; Kirk 2003;
Norton et al. 2005; Neto et al. 2010; Becerra-Jurado et al. 2014), and Northern Africa (Koops and
Hartmann 1989; El Hilali et al. 1996; Maamouri et al. 1999; Hizem Habbechi et al. 2012; Dhaouadi
et al. 2014). Systematic monitoring of eel diseases is still limited to a few countries, impairing our
ability to assess the overall prevalence (ICES 2015). However, many studies have reported a
significant prevalence at sites in both North America and Europe (Aieta and Oliveira 2009; Denny
et al. 2013; Becerra-Jurado et al. 2014) and an analysis of the European Eel Quality Database
confirmed the prevalence of the infection in Europe (Belpaire et al. 2011).

The invasion in North America started for the same reason, a few years after its introduction into
Europe. The first record occurred in the second half of the 90’s in Texas (Fries et al. 1996) and then
in Chesapeake Bay and the Hudson River (Barse and Secor 1999). The invasion then quickly spread
in the United States and in Canada (Machut and Limburg 2008; Aieta and Oliveira 2009; Rockwell
et al. 2009; Denny et al. 2013; Hein et al. 2014). Though transmission is possible in brackish waters
(Reimer et al. 1994; Kirk et al. 2000a,b; Lefebvre et al. 2002), the level of infection is lower than in
freshwater (Kirk et al. 2000a,b; Kirk 2003).

This swimbladder parasite has multiple impacts on its host. The parasite causes inflammation of the
swimbladder leading to multiple bacterial infections, stress and loss of appetite (Kirk 2003;
Lefebvre et al. 2013). However, the most serious damage is on the swimbladder itself. The infection
may alter the gas composition of the swimbladder, block the pneumatic duct, impairing the organ’s
function (Kirk et al. 2000b; Lefebvre et al. 2013) leading to necrosis in the most extreme cases
(Molnár et al. 1994; Würtz and Taraschewski 2000). The alteration of the swimbladder has a direct
impact on swimming capacity (Sprengel et al. 1991; Székely et al. 2009). It may imperil the
transoceanic spawning migration (Palstra et al. 2007; Clevestam et al. 2011), especially because
migrant eels display important diurnal vertical migrations (Chow et al. 2015; Béguer-Pon et al.
2015b; Righton et al. 2016) that require buoyancy control. This higher energetic cost of migration,
due to a malfunctioning swimbladder, will affect individuals which may already have reduced lipid
storage available, due to the infection (Marohn et al. 2013).
Component 5 - Exploitation of natural resources: an intensive exploitation of eels at all their stages

Eels are targeted by recreational and commercial fisheries at all continental life stages (glass eels, yellow eels and silver eels) with a great variety of active and passive gears (Haro et al. 2000; Tesch 2003). Yellow and silver eels have been exploited for a long time as attested by representations of eels in prehistoric pictographs (Citerne 1998, 2004). Eel was an important food resource for Native Americans (MacGregor et al. 2009) and is a traditional food in Japan and East Asia (Tatsukawa 2003). The first official record of European eel fisheries dates back to 1086 (Dekker and Beaulaton 2016). In contrast to the situation for many commercial species, the culture of eel is not a closed system in that it is still dependent on wild caught glass eels. Artificial reproduction and rearing of glass eels has only been achieved for the Japanese eel (Tanaka et al. 2001, 2003; Kagawa et al. 2005) although these operations are still not commercially viable (Okamura et al. 2014). Artificial reproduction has been achieved in European (Palstra and Thillart 2009) and American eels (Oliveira and Hable 2010) but not rearing of glass eels.

The main shift in the traditional artisanal eel fisheries occurred as a result of the demand from on-growing aquaculture (Moriarty and Dekker 1997; Haro et al. 2000). According to FAO statistics, eel farming is now responsible for 90% of total eel production (versus wild-caught eels) and Japan is thought to consume 70% of total freshwater eel production (Shiraishi and Crook 2015). While eel aquaculture started in the late XIXth century and early XXth century in eastern Asia, it turned into a stable industry after World War II (Ringuet et al. 2002). The high value of eel in Eastern Asia food markets led to the development of highly competitive aquaculture farms (Liao 2001; Lee et al. 2003). The development of intensive farming explains why despite the decline in the wild population, the production of Anguilla spp. increased nearly 20-fold between 1950 and 2007 (Crook and Nakamura 2013). Since these farms depend on wild-caught animals, the demand for glass eel...
increased considerably and prices climbed to very high levels, completely transforming the industry. The shortage of Japanese glass eels since the early 1970s lead aquaculture farms to import European and American glass eels (Moriarty and Dekker 1997; Haro et al. 2000; Ringuet et al. 2002; Lee et al. 2003), leading to an increase in fishing effort in Europe and a peak in landings in 1976 (Briand et al. 2008) and to the development of a large fishery targeting glass eels from North America (Meister and Flagg 1997). After a period of less favourable market conditions, the prices soared again during the early 1990s (Briand et al. 2008). A threefold increase in prices of European glass eel was observed between 1993 and 1997 (Ringuet et al. 2002), resulting in a “gold rush” for entry into the North-American fishery (Haro et al. 2000). Because of these incredibly high prices, eel became the most valuable species landed in France in the early 2000s (Castelnaud 2000) and Europe exported half of its production to Asia in the mid-2000s (Briand et al. 2008). The increase in fishing effort led to very high exploitation rates in certain French and Spanish catchments (Prouzet 2002; Briand et al. 2005; Aranburu et al. 2016) since Spain and France recruit the highest proportion of European eel (Dekker 2000a). Similarly, high exploitation rates were observed in catchments on Canadian Atlantic seaboard (Jessop 2000; 2000) or in Taiwan (Tzeng 1984). In France, about 25% of the arriving glass eels were harvested by commercial fisheries, and this estimate did not include the catch from illegal fisheries (Figure 8 - (Drouineau et al. 2016a)). In Japan, these proportions rose from about 25% in the early 1950s to approximately 40% in the 1980s (Tanaka 2014). The Eel European Regulation has limited the fishing effort and required that 60% of caught eels be dedicated for restocking. Moreover, European eel exports have been restricted after its inclusion on Appendix II of the Convention on Trade of Endangered Species in 2009 and a ban of all imports and exports from and to the European Union implemented in 2010 (Nijman 2010). In Japan, glass eel fisheries are forbidden and a special licence is required to capture seed for aquaculture and research. Specific permission is now required for aquaculture, and restrictions have
also been implemented in China and Taiwan. In 2014, China, Japan, the Republic of Korea and Taiwan agreed to restrict “initial input” into farms of glass eel of *A. japonica*.

The catch of silver eels has decreased throughout the world (Dekker 2003a; Tatsukawa 2003; Tsukamoto et al. 2009; Cairns et al. 2014) because of a reduction in abundance of the stock and because of a decrease in fishing effort, accelerated by recent management measures. Silver eel fisheries have for example completely disappeared in Taiwan (Tzeng 2016) and are restricted in 11 prefectures in Japan (Jacoby and Gollock 2014b). In Europe, the decline in the silver eel catches has preceded the decline in recruitment (Dekker 2003a). Silver eel fisheries used to predominate at the northern edge of their distribution area and in the western Mediterranean (Dekker 2003b,c; Amilhat et al. 2008; Aalto et al. 2016) and in some catchments exploitation rates can still be high. Regarding the American eel, silver eel landings used to be dominated by catches in the Saint-Lawrence River (Castonguay et al. 1994a), but they have also severely declined and a large-scale licence buyout in Quebec has recently accelerated this trend (Cairns et al. 2014).

When forty years of global change has had a greater impact than the ice ages or continental drift

The genus *Anguilla* appeared more than 50 million years ago during the Eocene (Tsukamoto and Aoyama 1998). *A. japonica* is thought to have appeared about 15 million years ago (Lin et al. 2001) and *A. rostrata* and *A. anguilla* separated about 3 million years ago during the emergence of the isle of Panama (Jacobsen et al. 2014). Those species have survived enormous changes: a succession of ice ages (the last ice age maximum occurred approximately 22,000 years ago) and continental drift that has progressively increased the distance between the spawning grounds and growth habitats (Knights 2003). This demonstrates their evolutionary robustness (Knights 2003) and remarkable adaptive capacity (Mateo et al. 2017a) based on adaptive phenotypic plasticity (Daverat et al. 2006;
Côté et al. 2014; Drouineau et al. 2014) and genetic polymorphism (Gagnaire et al. 2012; Pujolar et al. 2014; Ulrik et al. 2014; Pavey et al. 2015). Despite millions of years of adaptation, these three eel species have undergone a dramatic decline in only a few decades.

Identifying the main drivers of the eel decline is still in debate. The main arguments to support the importance of specific stressors are based on the synchrony between the time of the collapse in eel and the stressor. However, many factors impair our ability to disentangle their respective effects.

First, the simultaneous decline of the three species strongly suggests the influence of large-scale factors and therefore of a possible oceanic influence. However, other stressors display very similar increasing trends at the global scale before the beginning of the decline (Figures 4, 6, 7). Moreover, the beginning of the eel decline is very difficult to identify because of the complex life cycles of the species (Figure 2) and their long life expectancy (up to 30 years). It would be interesting to compare with tropical species that also show signs of decline but comparative data with Southern hemisphere tropical species are scarce (Jacoby et al. 2015, Jellyman 2016). Secondly, robust quantitative historical data on eel and the anthropogenic pressures are lacking for this period. Third, where these data do exist they mainly come from specific river catchments and it is not possible to extrapolate these data to the whole distribution area because the anthropogenic pressure do not have the same effect everywhere and eels display a great diversity in life history traits. Each stressor probably played a role in the collapse and the combination of stressors in the second half of the XXth century probably had a cumulative effect that heightened the overall effect of the individual stressors (Jacoby et al. 2015; Miller et al. 2016). The decline occurred about 30 years after the Second World War, i.e. approximately 1-3 eel generations. This period corresponds to a period of high economic development “Les Trentes Glorieuses”, in which agricultural production process, industrial process and energy consumption quickly increased. This can be seen through the acceleration of many indicators since the 1950s / 1960s listed in the study of Steffen et al. (2005), for example world population, Gross Domestic Product (increased by a factor of 15 since 1950), world petroleum
consumption which has increased by 3.5x since 1960, motor vehicles by a factor of 16 since the
early 50s and increased water use for human consumption and agriculture (Figure 9). This
acceleration of human activity and consumption has been referred to as the “Great Acceleration”
(Steffen et al. 2005, 2015), and occurred about 20 years before the first signs of the decline in eel
populations, i.e. 1-2 eel generations. As mentioned earlier, river, estuaries and ecosystems have
suffered intense modifications over this period (Elliott and Hemingway 2002; Postel and Richter
Eel populations are likely affected by global change as a whole, rather than by one specific
anthropogenic pressure, explaining why Castonguay et al. (1994a) could not identify a primary
cause for the decline of the American eel.

The resilience of eels severely impaired by global change

Several factors contribute to the resilience of eel populations. First, the presence of a brackish/
marine contingent (which skip the freshwater phase) can buffer the pressures specific to the
catadromous contingent such as dams, contamination, fishing or the parasite (ICES 2009).
Additionally, their very large diet spectrum (Sinha and Jones 1967; Tesch 2003), their resistance to
fluctuations in temperature, salinity, oxygen, food availability and temporary emersion (Brusle
1991; Tesch 2003) allow them to grow in a very large range of habitats. This plasticity in growth
habitat can generate a “storage effect” and a “portfolio effect” that mitigate against environmental
variability (ICES 2009). In a complex life cycle, a storage effect corresponds to a situation where a
specific stage of long duration and of limited sensitivity to environmental conditions, buffers the
effects of environmental conditions on other stages. For eels, the long duration of the continental
growth phase and its variability across habitats with generational overlaps allows the species to
buffer the faster cyclic variations of oceanic conditions affecting recruitment (even in a single
cohort, some individuals are likely to face unfavourable oceanic conditions while others will face
more favourable oceanic conditions during their spawning migration, reproduction and larval drift
of their offspring) (Secor 2015a). A portfolio effect corresponds to the expression “don’t put all your
eggs in the same basket”. For eels, their large adaptive capacity allows them to settle in a wide
range of habitats, smoothing out environmental fluctuations in each habitat: if one habitat is
temporarily unsuitable, it is compensated by other habitats that remain suitable (Secor 2015a). More
generally, the large diversity of tactics during the continental phase and presumably during the
spawning migration may correspond to remarkable bet-hedging well suited to address
environmental variability (Daverat et al. 2006; Righton et al. 2016). The environmental sex
determination may also be a compensatory mechanism: the higher production of females in a
context of depleted population may mitigate the reduction in eggs production that would resulted
from the decline in silver eel abundance (Geffroy and Bardonnet 2015; Mateo et al. 2017b),
especially since eels have a high fecundity.

Then, how might have global change led to such a fast collapse despite eel adaptive capacities and
those compensatory mechanisms? Eels are panmictic and thus have long been considered
genetically homogeneous, however, recently a genetic polymorphism in eel populations was found
to be correlated with environmental gradients (Gagnaire et al. 2012; Côté et al. 2014; Pujolar et al.
2014; Ulrik et al. 2014; Pavey et al. 2015). These correlations are thought to result from spatially
variable selection (some individuals are genetically more adapted than others to survive in some
habitats) or of genetically based habitat selection (some types of individuals tend to settle
preferentially in some habitats to maximise their fitness). The existence of genetically distinct types
of individuals which are more or less adapted to the different types of habitats available within their
distribution area (northern vs southern habitats, marine vs brackish vs freshwater habitats), i.e.
ecotypes (Pavey et al. 2015), combined with a large phenotypic plasticity are assumed to play the
main role in eel adaptive capacity, enabling the species to address the wide environmental
heterogeneity at both the distribution and catchment scale (Drouineau et al. 2014; Mateo et al. 2017a). In such a scheme, individuals are able to grow and survive in a wide range of habitats thanks to phenotypic plasticity but some individuals are more adapted to some habitats than others (ecotypes), and all individuals reproduce together (panmixia) ensuring that ecotypes are reshuffled in each generation. The synergy of phenotypic plasticity and genetic polymorphism could explain how a panmictic population can survive in such a wide and varied distribution area and be the basis for the adaptive capacities of eels.

In this review, we have highlighted that not all pressures affect all habitats and individuals evenly. Indeed, obstacles affect mostly individuals that settle preferentially in upstream habitats and habitat loss mainly affects males located in the south-western part of the range of the European eel. *Anguillicola crassus* has a greater impact on individuals that settle in freshwater habitats as opposed to estuarine or marine (Kirk 2003). Finally, fisheries are not uniformly distributed, with European silver eel fisheries mainly occurring at the edge of the distribution area, especially the northern edge, though fisheries are also important along the Mediterranean coast (Castonguay et al. 1994a; Moriarty and Dekker 1997; Dekker 2003b,c), and glass eel fisheries in the core (Dekker 2003c). By affecting different habitats, anthropogenic pressures affect life history traits and ecotypes in different ways (Figure 10). Climate change and glass eel fisheries probably affect all ecotypes: climate change affects recruitment success. Glass eel fisheries, though not evenly distributed in the distribution area, generally operate downstream of river catchments and consequently harvest evenly all incoming glass eels. On the other hand, all the other anthropogenic pressures tend to affect ecotypes corresponding to more upstream habitats. As such, these anthropogenic pressures reduce the fitness of those individuals and can become an important selective pressure (Mateo et al. 2017). For example, half the American silver eels migrating down the St. Lawrence River, one of the most productive areas for American eel (Casselman 2003), have been killed by hydropower dams and fisheries (Verreault and Dumont 2003). Such selection pressure over 30 years or more...
(one to two eel generations) may have reduced the prevalence of individuals adapted to such types
of habitats (northernmost area, longest migration from spawning grounds) in the panmictic eel
population and explain why recruitment to the St. Lawrence River has been so much more reduced
than elsewhere in their distribution range. Reducing this genetic polymorphism as a result of
anthropogenic-induced selection may irrevocably alter the species capacity to adapt and modify its
sex ratio.

Additionally, by decreasing the diversity of ecotypes and consequently, decreasing the capacity of
eels to live in a wide range of habitats, anthropogenic pressures may have reduced the portfolio and
storage effects which, as we said before, are crucial to address environmental variability and to
improve resilience. In view of this, diversity is crucial for temperate eels (Secor 2015b) and
management should preserve this diversity to ensure population resilience. Moreover, it is crucial to
improve our knowledge of the mechanisms involved in eel adaptation and of the effects of
anthropogenic pressures on their capacity to adapt to the global change. A recent analysis outlines
that even pressures that do not kill any eels can have impacts on eel populations by penalising some
ecotypes more than others (Mateo et al. 2017b).

Other implications for eel management and research

The eel decline due to global change has several implications for management. First, global causes
means global solutions are warranted. By global solutions, we do not mean that there should be a
unique set of management measures across all distribution areas, but rather coordinated
international management acting on each source of anthropogenic pressure. This was proposed in
the Quebec declaration of concern (Dekker et al. 2003; Dekker and Casselman 2014) that called for
immediate action and coordination at all scales. Though some progress has been made since the first
declaration, there is clear need to improve management coordination among regional, national and
international authorities. Dekker (2016) pointed out the difficulties in the implementation of the Eel Management Plan in Europe. International coordination has not yet started for the American eel (MacGregor et al. 2008, 2009; Jacoby et al. 2014; Castonguay and Durif 2016). The East Asia Eel Resource Consortium does not yet have any official support (Jacoby and Gollock 2014b), and the first attempt at international coordination took place in 2014 between South Korea, China, Taiwan and Japan with an agreement on the amount of glass eel that can be used for aquaculture.

Second, though it is difficult to disentangle the relative effects of various anthropogenic pressures implicated in the decline, it is important to develop tools and methods to monitor and quantify their effects in the future. Eels grow in very small and almost independent units corresponding to river catchments (Dekker 2000b) with specific anthropogenic pressures, within which eels have different life history traits. Consequently, it is difficult to assess the stock and extrapolate the overall effect of anthropogenic pressure at the population scale, from observations collected at the river catchment scale (Dekker 2000a). However, the improvement in data quality and the recent development of a generic model that can be used at a larger geographic scale is a first step. For example, the GEREM model provides estimates of glass eel recruitment that can be used to assess glass eel fishery exploitation rates (Drouineau et al. 2016a; Bornarel et al. 2018). The models EDA (Briand et al. 2015) or SMEP (Aprahamian et al. 2007) can be used to assess the abundance of yellow eels in river catchments. These can then be coupled with other models to assess spawner escapement and the effect of different anthropogenic pressures such as hydropower production or fisheries (Jouanin et al. 2012). Stock assessment models have also been proposed to support management (Dekker 2000a; Bevacqua and De Leo 2006; Oeberst and Fladung 2012; Bevacqua et al. 2015). However, few tools are currently available to assess the impact of contaminants on eel populations. Similarly, there is a lack of tools to quantify the effect of lost habitats on population dynamics, though some methodologies are available which can quantify the amount of habitat lost due to fragmentation. Though it is not possible to quantify the historical effects of anthropogenic pressures, quantifying
and predicting pressures in the future would provide valuable information to prioritise management actions. Quantification is even more important since (1) it is not possible to mitigate some of the pressures affecting eels (parasitism, climate change) so it is necessary to compensate their effects with mitigation measures on the other pressures (fishery, fragmentation, contamination), (2) management practices cannot mitigate anthropogenic pressures at similar temporal scales: reduction in fishing efforts are recent but are thought to operate quickly, whereas effort to mitigate contamination or fragmentation are older but are much more complex and longer to implement.

Of course, temperate eels are not the only species endangered by global change and most diadromous fishes have undergone severe declines (McDowall 1999; Limburg and Waldman 2009; Mota et al. 2015). The effects of fragmentation (Larinier 2001; Limburg and Waldman 2009; Haxton and Cano 2016), global warming (Friedland 1998; Friedland et al. 2000; Lassalle et al. 2008, 2009; Jonsson and Jonsson 2009; Elliott and Elliott 2010; Rougier et al. 2014), fisheries and pollution (McDowall 1999; Limburg and Waldman 2009) have been documented for most of these species. More generally, most migratory animals regardless of taxa have undergone similar declines (Sanderson et al. 2006; Berger et al. 2008; Wilcove and Wikelski 2008) raising the question of sustainability of migratory tactics in the face of global change. In this context, why should eels be considered as a symbol of the effect of global change? Because the original life cycle of eels make them vulnerable to all five components of global change, and the cumulated impacts of those five components has outpaced the adaptive capacities of these species acquired through million years of evolution. The rate of change during the Great Acceleration in the second half of the XXth century, was too fast for the adaptive capacity of the eel, especially since the five components of global change acted simultaneously. It explains how a species that was considered a vermin species in French salmonid rivers until the 1980s has become critically endangered in only 25 years, after millions of years of existence.
Acknowledgements

The total number of eels passing Moses-Saunders Hydroelectric Dam are monitored and reported by Ontario Power Generation and the New York Power Authority since 2006 and were provided by Alastair Mathers. Hilaire Drouineau and Kazuki Yokouchi were partially supported by the fund for international exchange and collaboration of the Japan Fisheries Research and Education Agency. We thank Miran Aprahamian for his help and the improvements he made to the manuscript. We also would like to thank the editor and two anonymous referees for their suggestions and comments.

References

Boubée, J., Mitchell, C., Chisnall, B., West, D., Bowman, E. and Haro, A. (2001) Factors regulating the downstream migration of mature eels (*Anguilla* spp.) at Aniwhenua Dam, Bay of Plenty,

availability of Atlantic Coast freshwater habitats for American eel (Anguilla rostrata).*
Administrative report 982, Lower Great Lakes Fishery Ressources Office, U.S. Fish and
Wildlife Service.

Byer, J. D., Lebeuf, M., Alaee, M., R. Stephen, B., Trottier, S., Backus, S., Keir, M., Couillard, C.
M., Casselman, J., & Hodson, P. V. (2013) Spatial trends of organochlorinated pesticides,
polychlorinated biphenyls, and polybrominated diphenyl ethers in Atlantic Anguillid eels.

Byer, J. D., Lebeuf, M., Trottier, S., Raach, M., Alaee, M., Stephen Brown, R., Backus, S.,
American eel (*Anguilla rostrata*) from eastern Lake Ontario, Canada, and their potential
doi:10.1016/j.scitotenv.2015.05.054.

Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y.,

M., Bradford, R. G., Pratt, T., Verreault, G., Clarke, K., Veinnot, G., & Bernatchez, L.
(2014) Recovery potential assessment for the American Eel (*Anguilla rostrata*) for eastern
Canada: life history, distribution, reported landings, status indicators, and demographic

1075 10.1641/B570206.

Durif, C.M., Gjøsæter, J. and Vøllestad, L.A. (2011) Influence of oceanic factors on *Anguilla anguilla* (L.) over the twentieth century in coastal habitats of the Skagerrak, southern

biphenyls (PCBs) in the British environment: sinks, sources and temporal trends.

10.3354/esr00767.

Rapport final convention Irstea-Onema. 70 pp.

Krmelj). Australian Bureau of Meteorology and CSIRO Marine and Atmospheric
Research, Melbourne, Australia, pp 62–66.

Opportunities, challenges and conflict resolution. FAO fisheries technical paper 419. pp 45–
90.

need to consider global warming issues: an approach using biogeographical models.

diadromous fishes: An approach integrating regional anthropogenic pressures. Freshwater

aquaculture in Taiwan, Japan, and China. Aquaculture 221, 115–124. doi:10.1016/S0044-
8486(03)00004-8.

between fishway operation and timing of fish movements: a risk for cascading effects in

variation in Anguillicola crassus counts: results of a 4 year survey of eels in Mediterranean

eel Anguilla anguilla affected by the parasitic invader Anguillicoloides crassus?

1769 10.1126/science.253.5021.744.
1770 Sprengel, G., Lüchtenberg, H. and others (1991) Infection by endoparasites reduces maximum
1771 swimming speed of European smelt *Osmerus eperlanus* and European eel *Anguilla anguilla*.
1774 doi:10.1038/35025266.
1777 10.1177/2053019614564785.
1778 Steffen, W., Sanderson, A., Tyson, P. D., Jäger, J., Matson, P. A., Moore III, B., Oldfield, F.,
1780 and the Earth System*, (Global Change — The IGBP Series). Springer-Verlag,
1781 Berlin/Heidelberg.
1784 Sutherland, W., Freckleton, R., Godfray, H., Beissinger, S., Benton, T., Cameron, D., Carmel, Y.,
1785 Coomes, D., Coulson, T., Emmerson, M., Hails, R., Hays, G., Hodgson, D., Hutchings, M.,
1786 Johnson, D., Jones, J., Keeling, M., Kokko, H., Kunin, W., Lambin, X., Lewis, O., Malhi, Y.,
1787 Mieszkowska, N., Milner-Gulland, E., Norris, K., Phillimore, A., Purves, D., Reid, J.,
1790 10.1111/1365-2745.12025.
1792 Parasite on the health and performance of European eels. In: *Spawning Migration of the

Tsukamoto, K., Chow, S., Otake, T., Kurogi, H., Mochioka, N., Miller, M. J., Aoyama, J., Kimura, S., Watanabe, S., Yoshinaga, T., Shinoda, A., Kuroki, M., Oya, M., Watanabe, T., Hata, K.,

Table 1 Main references exploring the impact of oceanic conditions on recruitment

<table>
<thead>
<tr>
<th>Reference</th>
<th>Species</th>
<th>Oceanic index</th>
<th>Proposed mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Desaunay and Guerault 1997)</td>
<td>European eel</td>
<td>Oceanic temperature</td>
<td>Food availability</td>
</tr>
<tr>
<td>(Kimura et al. 2001)</td>
<td>Japanese eel</td>
<td>Southern Oscillation Index, El Niño/Southern Oscillation</td>
<td>Oscillations of the salinity front that affects larvae growth and survival during their migration</td>
</tr>
<tr>
<td>(ICES 2001)</td>
<td>American and European eels</td>
<td>North Atlantic Oscillation Index</td>
<td>Changes of transport due to modification of Gulf Stream path, Trophic limitations due to oscillation in plankton abundance</td>
</tr>
<tr>
<td>(Knights 2003)</td>
<td>American and European eels</td>
<td>North Atlantic Oscillation Index, Sea Surface Temperature</td>
<td>Changes of transport due to modification of Gulf Stream path, Trophic limitations due to oscillation in plankton abundance</td>
</tr>
<tr>
<td>(Kettle and Haines 2006)</td>
<td>European eel</td>
<td>Lagrangian circulation model,</td>
<td>Food availability</td>
</tr>
<tr>
<td>(Kimura and Tsukamoto 2006)</td>
<td>Japanese eel</td>
<td>Field observation on salinity front</td>
<td>Oscillations of spawning location due to movements of salinity front induced by El Niño</td>
</tr>
<tr>
<td>(Friedland et al. 2007)</td>
<td>European eel and presumably American eel</td>
<td>North Atlantic Oscillation</td>
<td>Food availability in the Sargasso Sea larval drift</td>
</tr>
<tr>
<td>(Kim et al. 2007)</td>
<td>Japanese eel</td>
<td>Lagrangian circulation model</td>
<td>Success of larval transport due to oscillation of the North Equatorial Current</td>
</tr>
<tr>
<td>(Bonhommeau et al. 2008b)</td>
<td>European eel</td>
<td>Sea surface temperature in the Sargasso Sea</td>
<td>Food availability</td>
</tr>
<tr>
<td>(Bonhommeau et al. 2009)</td>
<td>European eel</td>
<td>Lagrangian circulation model, North Atlantic Oscillation Index, Transport Index</td>
<td>Oscillations biological production in the Sargasso Sea</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Species</td>
<td>Method</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>(Zenimoto et al. 2009)</td>
<td>Japanese eel</td>
<td>Lagrangian circulation model</td>
<td>Success of larval transport due to oscillation of the North Equatorial Current</td>
</tr>
<tr>
<td>(Munk et al. 2010)</td>
<td>European eel and presumably American eel</td>
<td>Field observations of oceanic fronts in the Sargasso Sea</td>
<td>Oscillations of fronts that alter the efficiency of retention on feeding grounds</td>
</tr>
<tr>
<td>(Durif et al. 2011)</td>
<td>European eel</td>
<td>Analysis of a 100-year old time series of eel abundance</td>
<td>Relationship to NAO and temperature conditions in the Sargasso Sea</td>
</tr>
<tr>
<td>(Pacariz et al. 2014)</td>
<td>European eel</td>
<td>Lagrangian circulation model</td>
<td>Decline of success of larval transport due to current modifications (rejected)</td>
</tr>
<tr>
<td>(Miller et al. 2016)</td>
<td>European, Japanese and American eels</td>
<td>Field measurement of diatoms and cyanobacterial abundances in the Sargasso Sea</td>
<td>Lower availability of food after oceanic regime shift</td>
</tr>
</tbody>
</table>
Figure 1 Lifecycle of the 3 *Anguilla* species and effects of global change components.
Figure 2 Spawning grounds (Tsukamoto et al. 2011; Miller et al. 2015) (open circles) and continental distribution of yellow eels (filled shapes) (Jacoby et al. 2015) for *A. rostrata* (red), *A. anguilla* (blue) and *A. japonica* (green).
Figure 3 Recruitment series for the three temperate eel species. European eel series (black solid line) corresponds to the Elsewhere Europe index provided by ICES (2015a). American eel recruitment (grey solid line) corresponds to the recruitment in Lake Ontario through monitoring of eel passage at Moses Saunders hydroelectric dam (A. Mathers, Ontario Ministry of Natural Resources, personal communication). Japanese eel recruitment (black dotted line) corresponds to Japanese catch statistics (Data may include young yellow eels larger than glass eels during 1957-1977 – provided by Statistics Department, Ministry of Agriculture, Forestry and Fisheries, Japan till 2002 and from Fisheries Agency, Japan since 2003). Data were smoothed using a 5 years moving geometric mean and expressed as a percentage of 1960s-1970s geometric mean.
1992

Figure 4 Timelines of main events with respect to the five global change components and management of eel populations. Committee on the Status of Endangered Wildlife in Canada (COSEWIC) is a committee of experts that assesses and designates which wildlife species are in some danger of disappearing from Canada.
Figure 5 Ocean temperature anomalies (left panel). Source (Morice et al. 2012; Steffen et al. 2015)
Figure 6 Global fertiliser consumption in OECD countries (grey) and in the world (black). Source (Steffen et al. 2015, International Fertilizer Industry Association Database)
2003

2004 Figure 7 Accumulative number of large dams in OECD countries (grey) and in the world (black).

2005 Source (World Commission on Dams 2000; Steffen et al. 2015)
Figure 8 French glass eel exploitation rates expressed as the ratio of catch (tonnes) to recruitment (tonnes). Catches corresponds to an appraisal of historical catches based upon market and fishery data (Briand et al. 2008) while recruitments was estimated using the model GEREM (Drouineau et al. 2016a).
Figure 9 Various indicators of the Great Acceleration for OECD countries (grey) or the entire world (black). GDP=gross domestic product. Carbon dioxide from firn and ice core records (Law Dome, Antarctica) and Cape Grim, Australia (deseasonalised flask and instrumental records). Sources (Steffen et al. 2005), population (Goldewijk et al. 2010), CO2 (Etheridge et al. 1996; MacFarling Meure 2004; MacFarling Meure et al. 2006; Langenfelds et al. 2011), water use (Alcamo et al. 2003; aus der Beek et al. 2010; Flörke et al. 2013), energy use (GEA Writing Team 2012), GDP (World Bank indicators)
Figure 10 Adaptation mechanisms to environmental heterogeneity as proposed in (Mateo et al. 2017a,b; Gagnaire et al. 2012; Côté et al. 2014; Drouineau et al. 2014; Boivin et al. 2015). A red arrow stands for “unfavourable”, a green arrow stands for “favourable”. A blue arrow stands for a relationship which is either favourable” or “unfavourable” depending on situations. There is a double arrow between genotypes and “settlement in upstream habitats” because it represents spatially varying selection” and “genetic-dependent habitat selection”. Regarding phenotypes, female is considered as opposite to male and “settlement in upstream habitats” as opposite to “settlement in downstream habitats”.

2019

2020 2017a,b ; Gagnaire et al. 2012; Côté et al. 2014; Drouineau et al. 2014; Boivin et al. 2015). A red arrow stands for “unfavourable”, a green arrow stands for “favourable”. A blue arrow stands for a relationship which is either favourable” or “unfavourable” depending on situations. There is a double arrow between genotypes and “settlement in upstream habitats” because it represents spatially varying selection” and “genetic-dependent habitat selection”. Regarding phenotypes, female is considered as opposite to male and “settlement in upstream habitats” as opposite to “settlement in downstream habitats”.

2021

2022

2023

2024

2025

2026

2027

2028