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1 Introduction

Data assimilation (state or parameter estimation) for high-dimensional distributed param-
eter dynamical systems has become a powerful analysis tool in recent decades. It is a fusion
process of incomplete and, possibly, indirect observations of state variables with a mathemat-
ical model governed by partial differential equations, complemented by a priori information.
The applications include model initialization in meteorology and oceanography, air and water
quality monitoring, ’calibration’ of groundwater and reservoir models, discharge estimation and
forecasting in river hydraulics and hydrology, flow estimation and control in aerospace engi-
neering, process control in chemical and nuclear engineering, etc. In different applications these
estimation problems are also referred as ’inverse problems’, ’data assimilation’(DA), and ’cali-
bration’. Variational methods were introduced in meteorology by Sasaki [27]. These methods
consider the equations governing the flow as constraints and the problem is closed by using a
variational principle, e.g. the minimization of the discrepancy between the model prediction
and the observations. Optimal Control Approach (Lions [19], Marchuk [21]) for data assim-
ilation was proposed by Marchuk and Penenko [23], Penenko and Obraztsov [25], Le Dimet
[15], Le Dimet and Talagrand [18], Talagrand and Courtier [30]. Therefore, variational esti-
mation/DA is a method based on the optimal control theory, which can also be understood
as a special case of the maximum a-posteriory probability (MAP) estimator [8]. This method
is preferred for weather and ocean forecasting in major operational centers around the globe,
particularly in the form of the incremental 4D-Var [7], and in the form of the ensemble 4D-Var

[6]. Variational estimation is widely used in other scientific and engineering applications, such
as aerospace engineering [2] and astrophysics [4], to mention a few.
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Uncertainty quantification is an important topic closely associated with estimation and
data assimilation. An overview of the original work by the authors on the Hessian-based
advanced methodology for computing the estimation error covariances in the framework of
variational estimation is presented in the coming sections. The main results are given in a
general operator formulation. The accent is made on feasibility of the suggested methods for
the uncertainty quantification in high-dimensions, where the statistical methods (Monte Carlo
involving associated tricks, e.g. localization, importance sampling, etc.) may not produce a
sensible outcome due to a very small sample being available. Some of the approaches could
equally be useful for improving (in terms of acceleration, memory savings and robustness) the
estimation/DA technique itself.

2 Variational data assimilation: basic concept

Let us consider a mathematical (or numerical) model which describes behavior of a natural
system in terms of its state variables X ∈ X . Let U ∈ U be the set of the model inputs
(controls), then the model can be considered as a ’control-to-state’ mapping M : U → X , such
that

X = M(U), (2.1)

where U and X are the input and state spaces, correspondingly. For modeling the system
behavior the true input vector Ū must be specified. Under the ’perfect model’ assumption the
following can be postulated: X̄ = M(Ū). In reality, some components of Ū contain uncertain-
ties ε ∈ U . Thus, instead of Ū we use its best available approximation (background/prior)

U∗ = Ū + ε, (2.2)

where ε is also called the background error. Because of the presence of ε, the predicted state
X|U∗ = M(U∗), that is, X evaluated (or conditioned) on U∗, also contains an error δX =
M(U∗)−M(Ū).

The state observing tools are represented by an observation operator C : X → Y in the
form

Y = C(X) = C(M(U)) := G(U), (2.3)

where G : U → Y is a generalized input-to-observations mapping and Y is the ’observation’
space. The true observations would be Ȳ = G(Ū), however the actual observations usually
contain noise ξ (observation uncertainty), i.e.

Y ∗ = Ȳ + ξ. (2.4)

The aim of data assimilation is to obtain Û = U |Y ∗, i.e. an estimate of U conditioned on
observations Y ∗, which should be better than the prior U∗ in the sense ‖Û − Ū‖ < ‖U∗ − Ū‖.
In the Bayesian framework the posterior probability density of U conditioned on observations
Y ∗ is given by the Bayes formula [29]

p(U |Y ∗) =
p(Y ∗|U)p(U)

p(Y ∗)
. (2.5)
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Looking for the mode of the posterior density p(U |Y ∗), i.e. maximizing p(U |Y ∗), is the essence
of variational data assimilation (estimation). Under the Gaussian assumption on the prior
and observation uncertainties, i.e. ε ∼ N(0, B), ξ ∼ N(0, R), where B is the background
error covariance and R - the observation error covariance, maximizing p(U |Y ∗) is equivalent to
minimizing the cost-function [31]

J(U) =
1

2
‖R−1/2(G(U)− Y ∗)‖2Y +

1

2
‖B−1/2(U − U∗)‖2U . (2.6)

Thus, the estimate Û is obtained from the necessary optimality condition

J ′
U(Û) = 0. (2.7)

For the operator G(U) we define the tangent linear operator G′(U) (Gateaux derivative) and
its adjoint (G′(U))∗ [22] as follows:

G′
U(U)w = lim

t→0

G(U + tw)−G(U)

t
, w ∈ U , (2.8)

(w, (G′
U(U))

∗w∗)
U
= (G′

U(U)w,w
∗)

Y
, w∗ ∈ Y . (2.9)

Given the above operator definitions, the full gradient of J(u) in (2.7) can be expressed in the
form:

J ′
U(U) = (G′

U(U))
∗R−1(G(U)− Y ∗) + B−1(U − U∗). (2.10)

Thus, the estimate Û is the solution to the operator equation

(G′
U(Û))

∗R−1(G(Û)− Y ∗) + B−1(Û − U∗) = 0. (2.11)

The above presented general operator formulation of DA/estimation problems is common in
nonlinear regression and in the inverse problems theory.

In the theory of dynamical systems it is usual to formulate DA/estimation problems in
terms of non-stationary partial differential equations (PDE) [19]. Let X be the state space

such that X = L2(0, T ; Ω), with a norm ‖ · ‖X = (·, ·)1/2X , where Ω is a bounded domain of the
natural space Rd (d = 1, 2 or 3). For the initial state control problem considered in [12] one
can write







∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ|t=0 = u,
(2.12)

where ϕ = ϕ(x, t) (analog of X) is the unknown function belonging for any time instant t to
L2(Ω), x ∈ Rd is the spatial variable, u(x) ∈ L2(Ω), f(x) ∈ X are the initial state and the
source term, respectively, and F (x) is a nonlinear operator mapping L2(Ω) into L2(Ω). Suppose
that for a given pair (u, f) there exists a unique solution ϕ ∈ X to (2.12). Next, we introduce
the functional

J(u) =
1

2
‖R−1/2(C(ϕ)− Y ∗)‖2Y +

1

2
‖B−1/2(u− u∗)‖2L2(Ω), (2.13)

where u∗ is a prior (background) of u. Thus, operator G is defined by the formula G(u) = C(ϕ),
where ϕ is the solution to equation (2.12). Now, consider the following data assimilation
problem with the aim to identify the initial condition: find u ∈ L2(Ω) and ϕ ∈ X such that
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they satisfy (2.12), and on the set of solutions to (2.12), the functional J(u) takes the minimum
value, i.e.



















∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ|t=0 = u,
J(u) = inf

v∈L2(Ω)
J(v).

(2.14)

The necessary optimality condition reduces the problem (2.14) to the following optimality
system [19], [1],[24]:







∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ|t=0 = û,
(2.15)







−∂ϕ
∗

∂t − (F ′(ϕ))∗ϕ∗ = −(C ′(ϕ))∗R−1(C(ϕ)− Y ∗), t ∈ (0, T )

ϕ∗|t=T = 0,
(2.16)

B−1(û− u∗)− ϕ∗|t=0= 0 (2.17)

with the unknowns ϕ, ϕ∗, û, where (F ′(ϕ))∗ is the adjoint to the Frechet derivative of F , and
(C ′(ϕ))∗ is the adjoint to the Frechet derivative of C defined by

(C ′(ϕ)η, ψ)Y = (η, (C ′(ϕ))∗ψ)X , η ∈ X , ψ ∈ Y .

We assume that the system (2.15)–(2.17) has a unique solution. It is easy to see that this
system is a detalized representation of the estimator equation (2.11) in the case the model M
in (2.1) is a dynamical model and the input U = {u} is the initial state ϕ(x, 0). Obviously, the
general results obtained for (2.11) are valid for the system (2.15)–(2.17). However, the latter
is used for better understanding of the structure of adjoint operators, which is sometimes vital
for practical implementation of the variational DA method.

3 Estimation error covariance and the inverse Hessian

3.1 Clarification of the existing theory

Here, we use the main results from [12] and [13] using the general operator formulation, whereas
in papers the dynamic formulation is used. The latter has its own value (see Section 3.3).

Let us consider an estimation error δU = Û − Ū and equation (2.11). We notice that

G(Û)− Y ∗ = G(Û)− (G(Ū) + ξ) = G′
U(Ũ)δU − ξ,

where Ũ = Ū + τδU, τ ∈ [0, 1], and

Û − U∗ = (Û − Ū)− (U∗ − Ū) = δU − ε.

Then, equation (2.11) yields the error equation

(G′
U(Û))

∗R−1(G′
U(Ũ)δU − ξ) + B−1(δU − ε) = 0, (3.18)
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from where the estimation error can be expressed:

δU =
(

(G′
U(Û))

∗R−1G′
U(Ũ) + B−1

)−1 (

(G′
U(Û))

∗R−1ξ +B−1ε
)

. (3.19)

Using the first order approximations for operators G′
U(Û) ≈ G′

U(Ũ) ≈ G′
U(Ū) we express δU

as follows:
δU ≃ H−1(Ū)

(

(G′
U(Ū))

∗R−1ξ +B−1ε
)

, (3.20)

where
H(·) = (G′

U(·))
∗R−1G′

U(·) + B−1. (3.21)

Here, (·) denotes a placeholder for the argument of operators G and H , which shall be called
the ’origin’.

It has been shown thatH(·) represents the first-order term in the Hessian of the cost-function
J(U) in (2.6) or, otherwise, is the Hessian of the auxiliary cost-function as follows:

J (·, δU) =
1

2
‖R−1/2(G′

U(·)δU − f1)‖
2
Y +

1

2
‖B−1/2(δU − f2)‖

2
U , (3.22)

where f1 ∈ Y and f2 ∈ U are trial functions, including f1 = 0 and f2 = 0. We assume that
H is positive definite and, hence, invertible. If the errors ξ and ε indeed satisfy the conditions
ε ∼ N(0, B), ξ ∼ N(0, R), then the estimation error covariance is

P = E[δUδUT ] ≃ H−1(Ū). (3.23)

The above relationship is exact for linear G; for nonlinear G it is valid if the tangent linear
hypothesis is valid. Since in reality the true value Ū may not be known, one uses the particular
estimate (event) Û instead, i.e.

P ≃ H−1(Û). (3.24)

There are several papers presenting essentially the same result for dynamical models [26, 32].
However, there has also been some confusion. For example, H(·) is often perceived as a Hessian
of the cost-function J(U) in (2.6), whereas it is the Hessian of the auxiliary cost-function J (U)
in (3.22). Another important point is that H−1(Ū) is the best possible approximation to P
using H , whereas H(Û) is only an approximation to H(Ū). The latter fact has never been
clearly underlined before.

3.2 Computing the inverse Hessian using the LBFGS

First, we define the preconditioned (projected) Hessian in the form

H̃ = (B1/2)∗HB1/2 = (B1/2)∗(G′
U(·))

∗R−1G′
U(·)B

1/2 + I,

which is usually much better conditioned that H . Having computed H̃−1 in the limited-memory
form H−1 is recovered as follows:

H−1 = B1/2H̃−1(B1/2)∗.
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It is easy to see that H̃ is the Hessian of the following auxiliary cost-function

J̃ (·, δU) =
1

2
‖R−1/2(G′

U(·)B
1/2δU − f1)‖

2
Y +

1

2
‖δU − f2‖

2
U . (3.25)

We use the LBFGS method [20] for generating the limited-memory representation of H̃−1 as
the by-product of minimization of J̃ (·, δU). A set of secant pairs of a given (prescribed) size is
accumulated during minimization, then the product H̃−1v is recovered by the BFGS recursion.
The key improvement of the quality of approximation (for a given number of secant pairs) has
been achieved by using the exact step search, as described in Section 5.1 in [12]. The optimized
(in terms of computational expenses) version of this algorithm is presented in our later paper
[11], §6.2.

The Lanczos method is routinely used for computing H̃−1, whereas the BFGS or LBFGS are
usually seen as inferior to the Lanczos. Indeed, for the same accuracy of approximation achieved,
representation using the BFGS update formula is less compact than the eigenvalue represen-
tation. The eigenvalue analysis, however, could be noticeably more expensive to compute (in
terms of function calls). Besides, control of computational costs in the LBFGS algorithm is
easier than in the Lanczos method.

We can cite only [35] (preceding to [12, 13] in time) where the same technique is considered.
The main focus in this paper is, however, on methods for computing the inverse of the analysis
error covariance P , given the BFGS representation of H−1 obtained in the inner loop of the
incremental approach. At the same time, matrix H−1 itself is not of interest and its accuracy
is not assessed.

3.3 On the importance of dynamic formulation

Let us note that in papers [12] and [13] the dynamic formulation is used. For example in the
initial state control problem, the Hessian-vector product is defined by the successive solution
of the tangent linear (TL) and adjoint models as follows







∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(3.26)







−∂ψ
∗

∂t − (F ′(ϕ))∗ψ∗ = −(C ′(ϕ))∗R−1C ′(ϕ)ψ, t ∈ (0, T )

ψ∗|t=T = 0,
(3.27)

H(u)v = B−1v − ψ∗|t=0, (3.28)

where ϕ(u) is the solution of equation (2.12). These equations correspond to equation (3.21)
with U = {u}. The dynamic formulation is important because it shows different implementa-
tion options. For example, if operator G is considered as a black box, then operators G′

U(·)
and (G′

U(·))
∗ can be obtained by means of the Automatic Differentiation (AD) following the

’discretize-then-optimize’ approach. In one hand, the forward, tangent linear and adjoint mod-
els obtained this way are mutually ’consistent’. This is a vital property required for minimiza-
tion of realistic high-dimensional models. On the other hand, the models generated by means
of the AD are often computationally cumbersome and should be optimized manually.
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For computing H−1 one must compute the productHv several times at the same origin point
(model trajectory). Thus, the trajectory may be computed only once. In practice, computing
the solution and the perturbation in the AD produced TL model is done ’simultaneously’, i.e.
one line of the TL solver follows the corresponding line of the direct solver. Moreover, in case
of nonlinear iterations (to converge on ϕ), the TL solver follows step by step the iterative
procedure, computing the perturbation variable by increments. This is highly inefficient. For
computing the Hessian, however, it might be sufficient to have full consistency between the
TL and adjoint models only. The forward and TL models can be partially consistent, i.e.
consistent in terms of the discretized operator F (·), however the time integration method could
be different. In this case the model’s trajectory once computed and stored in memory can be
supplied into the TL solver. Since the TL model is linear, the nonlinear treatment involved
with the forward solver is not involved with the TLM. Thus, one can obtain a computationally
efficient TL model. By applying the AD to the auxiliary cost-function (3.22), one can get the
code which computes its gradient. The latter defines the product Hv according to (3.25). The
code involves the adjoint model consistent with the modified TLM. Let us note that this adjoint
may not be suitable for solving the DA problem itself.

For the parameter estimation (control) problem considered in [13], the mathematical model
is described by the evolution problem







∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T )

ϕ|t=0 = u,
(3.29)

where u is the known initial condition, λ ∈ Xp is an unknown model parameter and Xp is the
parameter space.

Let us introduce the functional

J(λ) =
1

2
‖R−1/2(C(ϕ)− Y ∗)‖2Y +

1

2
‖B−1/2(λ− λ∗)‖2Xp

, (3.30)

where λ∗ ∈ Xp is a prior (background) of λ, and B is the covariance of δλ = λ∗ − λ̄, and
consider the following DA problem with the aim to estimate the parameter λ: for given (u, f),
find λ ∈ Xp and ϕ ∈ X such that they satisfy (3.29), and on the set of solutions to (3.29), the
functional J(λ) takes the minimum value, i.e.



















∂ϕ
∂t = F (ϕ, λ) + f, t ∈ (0, T )

ϕ|t=0 = u,
J(λ) = inf

v∈Zp

J(v).
(3.31)

The Hessian-vector product is defined by the successive solution of the tangent linear and
adjoint models as follows:







∂ψ
∂t − F ′

ϕ(ϕ̄, λ̄)ψ = F ′
λ(ϕ̄, λ̄)v, t ∈ (0, T ),

ψ|t=0 = 0,
(3.32)







−∂ψ
∗

∂t
− (F ′

ϕ(ϕ̄, λ̄))
∗ψ∗ = −(C ′(ϕ̄))∗R−1C ′(ϕ̄)ψ, t ∈ (0, T )

ψ∗|t=T = 0,
(3.33)
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H(λ̂)v = B−1v − (F ′
λ(ϕ̄, λ̄))

∗ψ∗. (3.34)

These equations correspond to equation (3.21) with U = {λ}. From (3.26)-(3.28) and (3.32)-
(3.34) one can understand the difference between G′

u(·) and G
′
λ(·). That is, there exists a basic

TL equation (system of PDE-based equations) which describes the evolution of perturbations
through the system. However, the perturbations are applied at different entries: at the initial
condition (case of the initial value control), and as a source term (case of parameter control).
The adjoint equations coincide, the expression for the gradient expressed via the adjoint variable
ψ∗ is different. This structure suggests an easy way of modifying the system (3.26)-(3.28) into
(3.32)-(3.34). It is important to keep consistency between operator F ′

λ(·, ·) and its adjoint. Since
F ′
λ(·, ·) is not acting on ψ, it may not necessarily be consistent with F ′

ϕ(·, ·). All these details
are important to design a computationally efficient TL and adjoint models for computing the
Hessian-vector product (possibly not suitable for computing the gradient of J(U)).

3.4 On the role of the Hessian and its inverse

The importance of the Hessian matrix and its inverse in variational DA for geophysical applica-
tions is underlined in [32], although this has been a well-known fact in statistics for decades (see,
for example, [3]). The previous Section illustrates that for linear and moderately non-linear
DA/estimation problems H−1(·) can serve as an approximation of the estimation (analysis)
error covariance matrix. In particular, confidence intervals for the components of the estimate
Û can be defined by the corresponding diagonal elements (variance) of H−1(Û). A column
ci of H−1(·) which includes the ith diagonal element can be obtained by solving the equation
H(·)ci = ei (where ei is a Euclidean unit vector). If the number of requested diagonal elements
is significant, it would be much less expensive to evaluate H−1(·) once and keep it in some
limited-memory form, than to retrieve necessary diagonal elements using the Hessian-vector
product rule.

In addition, H−1(·) is involved in several other aspects of statistical pre- and post-processing
and design of DA systems. Firstly, as the Hessian H(·) is equivalent to the Fisher information
matrix (up to a constant multiplier), the diagonal elements of the inverse Hessian can also
be used in the context of optimal experimental design involving such optimality criteria as l-
optimality [34], for example. Secondly, the analysis probability density function (pdf) is defined
by the estimate Û and the estimation error covariance. Random functions from the Gaussian
distribution N (Û , H−1(Û)) can therefore be used as ‘particles’ of the ensemble of initial states,
which may be useful for ensemble forecasting [33]. These functions can be generated using
U = U∗ +H−1/2(Û)ξ, where ξ ∼ N (0, I), or using the eigenvalues of H(Û) [10]. However, in
highly non-linear cases the ‘particles’ generated using this approach are unlikely to belong to
the true posterior distribution, thus one must solve perturbed DA problems. This approach is
referred to as the fully non-linear ensemble method [12], or randomised maximum likelihood
method [5]. In these cases, an approximation of H−1/2(Û) can be used for preconditioning
the non-linear minimization process to accelerate convergence, often with impressive results.
Thirdly, the analysis error δU and the data errors ε and ξ are related via the approximate error
equation (3.20), which can be used as a meta-model for investigating the effects of non-Gaussian
data errors on the estimation error pdf. Lastly, if the model depends on parameters θ ∈ Θ,
where Θ is the parameter space, an important problem is to evaluate the sensitivity of the
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estimation error to uncertainty ξθ in these parameters. This can be done using the relationship

H(·)δU = (G′
U(·))

∗R−1G′
θ(·)ξθ.

Once again, H must be inverted to obtain δU .
Another application is related to the use of H as a coefficient matrix (and preconditioner)

in incremental 4D-Var [7]. Here each step of an outer iterative Gauss-Newton process is of the
form U j+1 = U j + αj δU j , with a discrete approximation U j of the unknown initial state at
iteration j, descent step αj and update (descent direction) δU j . As the update satisfies

H(U j)δU j = −G(U j), (3.35)

where G(U j) is the gradient of the cost function, a system of linear equations involving H has
to be solved at each step. Given a Hessian-vector product evaluation routine, the systems in
(3.35) are usually solved iteratively using, for example, the conjugate gradient (CG) algorithm.
An approximation of H−1 or H−1/2, if available at a reasonable cost, can therefore be used to
precondition equation (3.35) to accelerate convergence of this inner iteration.

4 Effective inverse Hessian method

4.1 Theory of the method

Here, we use the main results from [11] and [28]. As mentioned above, the DCA error contains
two components: linearization error component and the origin error component. First, we will
see how the linearization component can be reduced.

Let us first consider a related abstract problem. Let g be a random vector of dimension n
defined as follows

g = A(u, η)ξ,

where ξ is a Gaussian random vector of dimension n with zero mean and the covariance matrix
Bξ, η(ξ) is a random vector with elements which are linearly or nonlinearly dependent on ξ, u
is a given non-random vector and A is a n×n matrix with elements ai,j nonlinearly dependent
on u and η. Let us assume that the matrix A can be presented in the form

A(u, η) = A(u, 0) + δA(u, η),

where A(u, 0) is the non-random part of A and δA(u, η) is the random part. The covariance
matrix of the vector g is

Pg = E
[

(A(u, η)ξ − E[g])(A(u, η)ξ −E[g])T
]

. (4.36)

One can see that if η does not depend on ξ, i.e. vectors η and ξ are not correlated, then
E[g] = 0, and E

[

A(u, η)ξξTAT (u, η)
]

= E
[

A(u, η)E[ξξT ]AT (u, η)
]

. For correlated vectors η

and ξ (since we assume that η = η(ξ)), the following proposition can be put forward. Matrix

E
[

A(u, η)E[ξξT ]AT (u, η)
]

= E
[

A(u, η)BξA
T (u, η)

]

is a better approximation to Pg in (4.36)

thanA(u, 0)BξA
T (u, 0), both in terms of the Frobenius and Riemann distances. The approxima-

tion accuracy increases when the correlation level between η and ξ decreases. The justification
of this proposition is provided in [11], and its validity has been analyzed numerically.
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Let us consider equation (3.19) in the form

δU =
(

H(Ū , δU, τ)
)−1 (

(G′
U(Ū + δU))∗R−1ξ +B−1ε

)

, (4.37)

where
H(Ū , δU, τ) = (G′

U(Ū + δU))∗R−1G′
U(Ū + τδU) + B−1. (4.38)

Since the nonlinear least-squares estimator is asymptotically unbiased, we assume that E[δU ]
is small and, therefore, for the covariance P we have an expression as follows:

P := E[δUδUT ] = E
[

H−1(G′
U)

∗R−1 ξξT R−1G′
U(H

−1)∗
]

+ E
[

H−1B−1 εεT B−1(H−1)∗
]

+ E
[

H−1B−1 εξT R−1G′
U(H

−1)∗
]

+ E
[

H−1(G′
U)

∗R−1 ξεT B−1(H−1)∗
]

.

(4.39)

As discussed in the beginning of this Section, we approximate the products ξξT , εεT , ξεT and
εξT in (4.39) by E[ξξT ] = R, E[εεT ] = B, E[ξεT ] = 0 and E[εξT ] = 0, respectively. Thus, we
write an approximation of P as follows:

P = E
[

H−1(Ū , δU, τ)
(

(G′
U(Ū + δU))∗R−1G′

U(Ū + δU) + B−1
)

(H−1(Ū , δU, τ))∗
]

, (4.40)

where the expression in the round brackets is the Hessian (3.21) at the point Ū+δU . Therefore,
the equation (4.40) can be written in the form

P = E
[

H−1(Ū , δU, τ) H(Ū + δU) (H−1(Ū , δU, τ))∗
]

. (4.41)

The value τ = 1/2 is the optimal one to achieve the best approximation of a difference
E[G(Ū + δU) − G(Ū)] by E[G′

U(Ū + τδU)δU ], for δU ∼ N(0, P ). In this case, however, one
must deal with operator H(Ū , δU, τ = 1/2), which is neither symmetric, nor positive definite,
which may seriously complicate its eigenvalue analysis and the subsequent limited-memory
representation. Besides, the double product formula is sensitive to the errors which result from
the already accepted approximations. By assuming τ = 1 in H(Ū , δU, τ) and keeping in mind
that H(Ū , δU, τ = 1) := H(Ū + δU) this formula can be further simplified by the following
expression:

P = E
[

H−1(Ū + δU)
]

. (4.42)

The right-hand side of (4.42) may be called the ’effective inverse Hessian’, hence the name of
the suggested method. In order to compute P directly using this equation, the expectation
must be substituted by the ensemble mean:

P =
1

L

L
∑

l=1

H−1(Ûl), (4.43)

where Ûl are elements from the ensemble of estimates {Ûl}, l = 1, . . . , L, being obtained using
perturbed data. Obviously, having such ensemble evaluated, the covariance matrix can be
computed according to its definition as follows:

P̂ =
1

Ls

Ls
∑

l=1

(Ûl − Ū)(Ûl − Ū)T . (4.44)

The advantage of (4.43) is, however, that for L = Ls it gives much better approximation of P
than (4.44), particularly for small Ls.
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4.2 Key implementation details

4.2.1 Preconditioning

Implementation of formula (4.43) implies that L inverse Hessians have to be computed. This
looks like an extremely laborious task, however, computational costs can be drastically reduced
by preconditioning. We notice that the inverse Hessians are evaluated at the origin points
perturbed around the true input value Ū , which means that the difference between H−1(Ū+δUl)
and H−1(Ū) can be described by just a few low-rank updates. Thus, we consider a projected
Hessian in the form

H̃(·) = (B1/2)∗H(·)B1/2 = (B1/2)∗(G′
U(·))

∗R−1G′
U(·)B

1/2 + I, (4.45)

and use H̃−1/2(Ū) for the second-level preconditioning of H̃(Ū + δUl) as follows:

˜̃H(Ū + δUl) = H̃−1/2(Ū)H̃(Ū + δUl)H̃
−1/2(Ū). (4.46)

One can see that ˜̃H(·) is the Hessian of an auxiliary cost-function

J̃ (·, δU) =
1

2
‖R−1/2(G′

U(·)H̃
−1/2(Ū)B1/2δU − f1)‖

2
Y +

1

2
‖δU − f2‖

2
U . (4.47)

The limited memory approximation of ˜̃H(·) is evaluated as a by-product of minimization of
this cost-function by the LBFGS method, then, H−1(Ū + δUl) is recovered by the formula

H−1(Ū + δUl) = B1/2H̃−1/2(Ū) ˜̃H
−1

(Ū + δUl)H̃
−1/2(Ū)(B1/2)∗. (4.48)

Taking into account (4.43) and (4.48), the expression for the optimal solution error covariance
P reads

P = B1/2H̃−1/2(Ū)

(

1

L

L
∑

l=1

˜̃H
−1

(Ū + δUl)

)

H̃−1/2(Ū)(B1/2)∗. (4.49)

The first step is, therefore, to find a limited-memory approximation of H̃−1(Ū). This is done
by minimizing the auxiliary cost-function (3.25) using the LBFGS algorithm. Next, having the

product H̃−1(Ū)·v defined, one can evaluate the leading eigenpairs ({λ(0)k ,W
(0)
k }, k = 1, . . . , K0)

of H̃−1(Ū) using the Lanczos algorithm.
Given the leading (maximum magnitude) eigenpairs ({λk,Wk}, k = 1, . . . , K) of any sym-

metric operator A, the limited-memory representation of A in power β can be constructed as
follows:

Aβ · v = I · v +
K
∑

k=1

(λβk − 1)Wk(Wk)
∗ · v, (4.50)

In particular, for the square-root H̃−1/2(Ū) we get:

H̃−1/2(Ū) · v = I · v +
K0
∑

k=1

((λ
(0)
k )1/2 − 1)W

(0)
k (W

(0)
k )∗ · v, (4.51)

Let us note that at this factorization stage we do not run PDE models, so the Lanczos method
is affordable. The product H̃−1/2(Ū) · v is involved in (4.47).
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4.2.2 Quasi-random approach

The implementation of formulas (4.43) or (4.49) requires a set of estimates Ûl = Ū + δUl, l =
1, . . . , L to be computed. Each estimate is a solution to the original data assimilation problem
for the cost-function (2.6) with perturbed data U∗

l = Ū + ξl and Y ∗
l = Ȳ + εl, where ξl and

εl are random events from ξ ∼ N(0, R) and ε ∼ N(0, B), respectively. Evaluating such a set
could be fairly expensive.

Here, an alternative approach is suggested. If we denote by fδU the multivariate probability
density of the estimation error δU , then the equation (4.42) can be re-written in the form

P =
∫ +∞

−∞

H−1(Ū + v)fδU (v)dv. (4.52)

Since we assume that the estimation error is approximately Gaussian with zero mean and
covariance P we obtain

P =
1

(2π)M/2|P |1/2

∫ +∞

−∞

H−1(Ū + v) exp
(

−
1

2
vTP−1v

)

dv. (4.53)

In contrast to formula (4.43), the above expression is a nonlinear matrix integral equation
(deterministic) with respect to P , while v is a dummy variable. This equation can be solved
by the fixed point iterative process

P k+1 =
1

(2π)M/2|P k|1/2

∫ +∞

−∞

H−1(Ū + v) exp
(

−
1

2
vT (P k)−1v

)

dv, (4.54)

for k = 0, 1, ..., starting with P 0 = H−1(ū).
The evaluation of the multi-dimensional integral in (4.54) using the quasi-Monte Carlo

method means returning to formula (4.43). Taking into account (4.54), the iterative process
takes the form















P k+1 = 1
L

L
∑

l=1

H−1(Ū + δUk
l ),

P 0 = H−1(ū), k = 0, 1, ...

(4.55)

where δUk
l ∼ N(0, P k).

One can see that for each k the last formula looks similar to (4.43) with one key difference:
δUk

l in (4.55) is not an estimation error itself, but a vector having the statistical properties of
this error. It is generated as follows:

δUk
l = (P k)1/2ηl, ηl ∼ N(0, I).

where ηl is a quasi-random sequence from N (0, I). This approach is similar to the inflation
approach used in statistical estimation methods (ensemble Kalman and particle filtering). If
the preconditioning (4.45)-(4.46) is involved, the process (4.55) reads as follows:















˜̃P
k+1

= 1
L

L
∑

l=1

˜̃H
−1

(Ū + δUk
l ),

˜̃P
0

= I, k = 0, 1, ...,

(4.56)
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where δUk
l ∼ N(0, P k), and the perturbation is defined as follows:

δUk
l = ( ˜̃P

k

)1/2H̃−1/2(Ū)(B1/2)∗ηl, ηl ∼ N(0, I).

Finally, the covariance P in the original space is recovered by the formula

P = B1/2H̃−1/2(Ū) ˜̃PH̃−1/2(Ū)(B1/2)∗. (4.57)

5 Estimation error covariance versus Bayesian posterior

covariance

5.1 General theory

Here, we use the main results from [14], which point out the difference between the classical es-
timation (analysis) error covariance and the Bayesian posterior covariances, both in theoretical
and computational aspects.

The estimation error covariance is associated with trying to find an approximation around
the truth Ū , whereas the data is also assumed to come from the truth: Y ∗ = G(Ū) + ξ,
U∗ = Ū + ε, where ξ ∼ N (0, R) and ε ∼ N(0, B) are the observation and background error,
respectively. The estimation error is defined as δU = U − Ū and its covariance is given by

P = Ea[(U − Ū)(U − Ū)T ] = Ea[δUδU
T ],

where Ea denotes averaging (expectation) with respect to the probability density function (pdf)
ρa which, taking into account the definitions of the data Y ∗ and U∗, can be defined as follows:

ρa(U) = const · exp
(

−
1

2
‖R−1/2(G(U)−G(Ū))‖2Y −

1

2
‖B−1/2(U − Ū)‖2U

)

. (5.58)

The Bayesian posterior covariance is given by

P = Ep [(U − Ep[U ])(U −Ep[U ])
T ], (5.59)

where Ep denotes averaging (expectation) with respect to the pdf

ρp(U) = const · exp
(

−
1

2
‖R−1/2(G(U)− Y ∗

0 )‖
2
Y −

1

2
‖B−1/2(U − U∗

0 )‖
2
U

)

. (5.60)

In the above formula Y ∗
0 stands for the actual observations made by an instrument. It could

be, in principle, seen in the form Y ∗
0 = G(Ū) + ξ0, where ξ0 is no longer a random variable,

but a particular event (number) from N (0, R). However, this representation is not used in the
Bayesian approach. Similarly, U∗

0 stands for the actual background. Then, the estimate Û0

satisfies the equation

(G′
U(Û0))

∗R−1(G(Û0)− Y ∗
0 ) + B−1(Û0 − U∗

0 ) = 0. (5.61)

The posterior covariance is often approximated by trying to find the second moment of ρp
centered around Û instead of Ep[U ], which is natural because Û is the output of 4D-Var. In the
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linear Gaussian setup Ep[U ] and Û coincide. This is not true in general, but can be expected
to be a good approximation if the volume of data is large and /or noise is small (due to the
asymptotic properties of the nonlinear least-square estimator, see [3], Vol. 1, Ch.6). Most
importantly, due to different centering of Gaussian data, the Bayesian posterior covariance and
the estimation error covariance are different objects and should not be confused. However, they
are equal in the linear case.

In order to simulate the distribution (5.60) we define perturbed data as follows: Y ∗ = Y ∗
0 +ξ

and U∗ = U∗
0 + ε. Then, the perturbed estimate Û satisfies equation

(G′
U(Û))

∗R−1(G(Û)− Y ∗) + B−1(Û − U∗) = 0. (5.62)

One way to derive the error equation is to subtract (5.61) from (5.62). For the difference in the
residual terms we obtain

(G′
U(Û))

∗R−1(G(Û)− Y ∗)− (G′
U(Û0))

∗R−1(G(Û0)− Y ∗
0 ) =

= {(G′
U(Û))

∗R−1G(Û)− (G′
U(Û0))

∗R−1G(Û0)} − {(G′
U(Û))

∗R−1Y ∗ − (G′
U(Û0))

∗R−1Y ∗
0 }

= {(G′
U(Û))

∗R−1G(Û)− (G′
U(Û))

∗R−1G(Û0)}1

+{(G′
U(Û))

∗R−1(G(Û0)− Y ∗
0 )− (G′

U(Û0))
∗R−1(G(Û0)− Y ∗

0 )}2

−(G′
U(Û))

∗R−1ξ. (5.63)

Using the Taylor-Lagrange formula [22] the expressions in the brackets take the form

{·}1 = (G′
U(Û))

∗R−1G′
U(Ũ1)δU,

{·}2 = [(G′(Ũ2))
∗]′UδUR

−1(G(Û0)− Y ∗
0 ),

where Ũi = Û0 + τi(Û − Û0), τi ∈ [0, 1], i = 1, 2. For the difference in the penalty terms we
obtain

B−1(Û − U∗)−B−1(Û0 − U∗
0 ) = B−1(δU − ε). (5.64)

Combining (5.63) and (5.64) we obtain the error equation as follows:

(G′
U(Û))

∗R−1(G′
U(Ũ1)δU − ξ) + [(G′(Ũ2))

∗]′UδUR
−1(G(Û0)− Y ∗

0 ) + B−1(δU − ε) = 0. (5.65)

In the operator form this equation can be rewritten as

H(Û , Ũ1, Ũ2) · δU = (G′
U(Û))

∗R−1ξ +B−1ε, (5.66)

where

H(Û , Ũ1, Ũ2) · v = ((G′
U(Û))

∗R−1G′
U(Ũ1) +B−1) · v+ [(G′(Ũ2))

∗]′U · v R−1(G(Û0)− Y ∗
0 ). (5.67)

Let us note that, generally, H is neither symmetric, nor positive definite.
The estimation error is expressed from (5.66) as follows:

δU = H−1(Û , Ũ1, Ũ2)((G
′
U(Û))

∗R−1ξ +B−1ε). (5.68)
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Next, we approximate (5.59) by the formula

P = Ep [(δUδU
T ]. (5.69)

Since operators H(Û , Ũ1, Ũ2) and G
′
U(Û) nonlinearly depend on δU , it is not possible to con-

sider them as constant multipliers when applying the expectation operator. One way is to fix
Û , Ũ1, Ũ2 at the value Û0. In this case H(·) becomes the Hessian of the cost-function (2.6) at
the origin point Û0. Next, by applying (5.69) we obtain

P = H−1(Û0)H(Û0)H
−1(Û0), (5.70)

(compare this equation to (3.24)).
Since the condition number of the double product H−1HH−1 is usually larger than the

condition number of its components H and H , the above formula could be quite sensitive to
the approximation errors. One way is to simplify this formula assuming H and H are not very
different. These simplification is

P = H−1(Û0), (5.71)

and, subsequently,
P = H−1(Û0). (5.72)

Another approach is to use the ’effective inverse Hessian’ method presented in Sect. 4. In this
case equation (5.70) becomes

P =
1

L

L
∑

l=1

H−1(Ûl)H(Ûl)H
−1(Ûl). (5.73)

5.2 Implementation

As before, the computationally efficient and, therefore, feasible implementation is achieved
using preconditioning. The first-level preconditioning yields

H̃(·) = (B1/2)∗H(·)B1/2, H̃(·) = (B1/2)∗H(·)B1/2,

and the second-level preconditioning yields

˜̃H(·) = H̃−1/2(Û0) H̃(·) H̃−1/2(Û0), (5.74)

˜̃H(·) = H̃−1/2(·) H̃(·) H̃−1/2(·). (5.75)

At the first step we compute the leading eigenpairs ({λ(0)k ,W
(0)
k }, k = 1, . . . , K0) of H̃(Û0).

This allows H̃−1/2(Û0) to be defined in the limited-memory form. Then, inside the ensemble
loop (index l) we compute:

a) the leading eigenpairs ({λ(l)k ,W
(l)
k }, k = 1, . . . , Kl) of ˜̃H(Ûl), which allows us to define

H̃−1/2(Ûl) in (5.75);

b) the leading eigenpairs ({λ̃(l)k , W̃
(l)
k }, k = 1, . . . , K̃l) of

˜̃H(Ûl).
For a reasonably small δUl = Ûl − Û0, the number Kl of eigenpairs describing the Rie-

mann distance between H̃(Ûl) and H̃(Û0) has to be small as compared to K0. Similarly, K̃l
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has to be small as compared to Kl because the difference between H̃(Ûl) and H̃(Ûl) is only
due to the presence of the second-order term. Thus, the expenses of computing the eigen-
pairs {λ(l)k ,W

(l)
k } and {λ̃(l)k , W̃

(l)
k } for given l can make only a fraction of those associated with

computing {λ(0)k ,W
(0)
k }.

Given all eigenpairs are computed, the posterior covariance in (5.73) is evaluated as follows:

P = B1/2H̃−1/2(Û0) A(Ûl) H̃
−1/2(Û0)(B

1/2)∗, (5.76)

where

A(Ûl) =
1

L

L
∑

l=1

˜̃H
−1/2

(Ûl)
˜̃H

−α

(Ûl)
˜̃H

−1/2

(Ûl). (5.77)

In (5.77), cases α = 2, α = 1 and α = 0 correspond to approximations (5.70), (5.71) and (5.72),
respectively. The quasi-random implementation described in Sect.4.2.2 is applied to substitute
Ûl by Û0 + δUl.

In the dynamic formulation the Hessian-vector product H(·)v is defined by the successive
solutions of the following problems [12]:







∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(5.78)







−∂ψ
∗

∂t − (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )

ψ∗|t=T = 0,
(5.79)

H(u)v = V1v − ψ∗|t=0. (5.80)

Here ϕ and ϕ∗ are involved, being taken from (2.15)–(2.16). The problem (5.79) is the so-
called second-order adjoint problem [16]. One can see that it is a standard adjoint problem with
a specially defined source term (F ′′(ϕ)ψ)∗ϕ∗. For certain F , this term is relatively expensive to
compute as compared to (F ′(ϕ))∗ψ∗, which could be a difficulty if the explicit time integration
scheme is used. This is not an issue, however, when the implicit or semi-implicit schemes are
used.

6 Conclusions

The main issue considered in this paper is the relationship between the Hessian of the cost-
function and the estimation error covariance matrix in variational DA, whereas the discussion
is focused on the essentially nonlinear case. In the classical (frequentist) statistical approach
the estimation error δU is considered as a difference between the estimate Û and the ’truth’ Ū .
The corresponding covariance matrix can be approximated by the inverse of the Hessian H of
an auxiliary cost-function computed at the ’truth’ point. If the ’truth’ is known (the identical
twin experiment framework only), this is the first-order approximation with respect to δU . In
practice, the Hessian is computed at the estimate Û0, which is obtained after assimilating the
real data. The difference between Û0 and Ū yields an additional error in the covariance (the
origin error), which can not be removed in principle. Evaluating the inverse Hessian using the
LBFGS algorithm with exact step search has been a novel computational approach.
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In the Bayesian approach the estimation error δU is considered as a difference between the
estimates Û and Û0, conditioned on a perturbed and unperturbed data, respectively. Due to
different centering of data, the first-order (with respect to δU) approximations of the estimation
(analysis) error covariance and the Bayesian posterior covariance are different and should not
be confused. The latter is computed via the Hessian-product formula (5.70), which involves
both the Hessian of the original cost-function H, and the Hessian of the auxiliary cost-function
H (often called the Jacobian). In the dynamic formulation the Hessian-vector product H(·)v
is defined by the second-order adjoint problem. The formulas of the type (5.70) occasionally
appear in the literature on statistics and nonlinear regression in the general context of nonlinear
least-squares (see e.g. [9]).

Introducing the ’effective’ Hessian-based covariance approximations (4.43) and (5.73), as
well as the relatively feasible methods for their evaluation, is our main contribution in terms
of novelty. The concept of such approximations stems from the exact error equations (3.18)
and (5.65), the idea of which, in turn, has been first presented in [17]. In practice, evalu-
ating (4.43) or (5.73) requires an ensemble of the inverse Hessians H−1(Ûl), or the products
H−1(Ûl)H(Ûl)H−1(Ûl) to be computed, however the size of such ensemble can be small enough
(L = 25 − 50). The suggested method can be regarded as an alternative to the standard
sampling-based covariance evaluation method (involving localization and other possible tricks).
The latter requires much larger ensemble size to achieve a similar approximation quality. The
ways of improving the accuracy of the ’effective’ Hessian-based covariance approximations are
the matter of future research.
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