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Introduction

Controlling friction is a major issue in the context of energy consumption reductions, especially in the
area of transportation. The search for tribological systems with low friction coefficients represents one
of the current challenges in tribology. The friction coefficient is defined as the ratio of the contact
overall friction force to the contact normal load. In practice, neither are measured directly. They are
usually deduced from tangential and normal forces measured through a transducer separated from
one solid involved in contact by an assembly of mechanical parts. When the shear strength of the
interface is very low, measurement of the friction coefficient becomes difficult, because of the
accuracy of measuring devices. The system may be perturbed by misalignment of the force
transducer axes relative to the interface [1, 2], or by the dynamic response of the set composed by the
solid involved in contact, the mechanical assembly and the transducer. Friction-induced vibrations
may lead to noise measurement larger than the signal [3, 4].

Furthermore, for most of mechanical systems, several sources of dissipation exist simultaneously
(See for example [5]). The main sources usually correspond to friction and viscous damping related to
viscosity of lubricants. Nevertheless, conventional tribometers allow measurement of the overall
coefficient of friction, without being able to distinguish velocity-dependent and velocity-independent
contributions, from a single experiment. Results may depend on rolling and sliding contact velocities,
so they may be valid only for the kinematics selected during the test.

This study deals with an original alternative way which allows to identify linear velocity-dependent and
velocity-independent friction contributions, without measuring any tangential force. It is based on the
analysis of the dynamic free response of a damped single degree-of-freedom oscillator, corresponding
to one of the solids involved in a sliding hertzian contact.

Jacobsen and Ayre [6] proposed analytical solution for the dynamic response of a system with both
viscous and Coulomb damping and developed an approximate scheme to estimate both parameters
from free-vibration decrements. Liang and Feeny [7, 8, 9] proposed an exact estimation scheme to
estimate these parameters from successive peaks of the free vibration displacement or acceleration
response. In this study, equivalent viscous damping £ and kinematic friction p, coefficients are
identified from the retrograde integral of the energy decay curve of the dynamic system.

In order to validate the methodology, an original experimental device is built, corresponding to a

sphere-on-flat friction machine. Free oscillations of the spherical pin connected to a biblade are
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generated. Both velocity and displacement responses of the spherical pin are measured
simultaneously from a laser velocimeter, in order to identify both kinetic and potential energies, and
then energy decay curve of the dynamic system. The capability of the built device is illustrated by
performing experiments with a tribological system corresponding to steel surfaces lubricated by
glycerol, for several contact pressures. The objective is to show how the proposed methodology

allows an accurate estimation of friction and viscous damping coefficients.

Nomenclature

a dimensionless response amplitude

Co viscous damping coefficient without contact

fymass fraction of glycerol

k spring stiffness

m mass

x displacement response

y dimensionless displacement response

y’ dimensionless velocity response

E dimensionless energy decay

N applied normal load

Y, initial dimensionless displacement

Y, dimensionless amplitude of peak n

S dimensionless parameter depending on equivalent viscous damping
dy velocity-dependent part of the kinetic friction coefficient
¢ dimensionless response phase

u overall friction coefficient

Us static friction coefficient

L velocity-independent part of the kinetic friction coefficient
v kinematic viscosity of glycerol-water solution

v4 kinematic viscosity of glycerol

vw kKinematic viscosity of water

rdimensionless time
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7, initial dimensionless time

o dimensionless circular natural frequency

¢ overall equivalent viscous damping coefficient

¢oequivalent viscous damping coefficient without contact

¢xequivalent viscous damping coefficient associated to velocity-dependent friction contribution
Ap average energy decay curve error

IT average energy decay

Qcircular natural frequency

1. Theoretical background
1.1 Assumptions
In this section, free motion of a single-degree-of-freedom mechanical oscillator with both friction and

linear viscous underdamping is studied. The system is shown in Fig. 1. The equation of motion is:

mx +coX + kx = —(xX)N (1)
where x is the displacement of the system, m is the mass, ¢, is the viscous damping coefficient without
contact, k is the spring stiffness, N is the applied normal load and y is the overall friction coefficient.
The following form is assumed for the friction coefficient x

u(x) = ps if x=0 ()
M(X) = ug sgn(x)+d,x if x=0 (3)
where coefficient ug is associated to static friction, coefficient uk is the constant part of the kinetic
friction coefficient, independent of sliding velocity, and coefficient dk(s.m'1) is the linear velocity-
dependent part of the kinetic friction coefficient (see fig. 2).
Eq. (1) becomes:
mx +(cq + N.d )X + kx = —pi sgn(x).N (4)
Cp and velocity-dependent friction contribution N.d¢ can be discriminated by performing previous

experiments in order to identify the free damped oscillations of the system without contact.

1.2 Equilibrium state

Condition for the equilibrium state can be easily found as follows:
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.. . N
X =0, X =0, ]x|sx3=ﬂ% (5)

1.3 Dimensionless equation of motion

According to the Vaschy-Buckingham or n-theorem, the problem is governed by 3 dimensionless

parameters, i.e. the equivalent viscous damping coefficient ¢, and the two friction coefficients us and

Hk-
Letting:
k co +N.d kx
02==22 26=20 K =0t and y="= 6)
m Vvkm N

dimensionless equation of motion is:
y'H20y'+y = —u(y') (7)
In this equation, prime represents derivative respect to the dimensionless time z. In dimensionless
form, equilibrium state becomes:
y'=0,  y'=0, |y|<us (8)
The equivalent viscous damping coefficient can be decomposed as follows:
¢ =2%o+%k 9)

Co

Jkm

N.d,
Vkm

where {yis the equivalent viscous damping without contact and ¢y is an equivalent viscous damping

with 24/0 =

and 20 =

coefficient corresponding to the velocity-dependent friction contribution of the tribological system.

1.4 Free vibrations
The exact solution of Eq. (7) can be built piecewisely, according to the sign of y’. With the

underdamping assumption, i.e. 0<{<1, displacement response is:

Y+ sk sgn(y') = [Yo + uk sgn(y')e = [cos(a(z — 7o) + Bsin(o(z —70))]  (12)

with

= 1-¢2 (13)
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p= (14)

And YO = y(TO ), y'(To) = 0 (15)
The solution is valid until y'=0 which occurs at time 14 = 10 + /. If Y, >0 (respectively Y, <0), motion
starts with y’<0 (respectively y*-0). Solution can be expanded for all periods between z, and

o1 = T + wlw, such as y'(7,)=0, as follows:

y(2) = 115 8GN(Y,,) + (Y, — s sGN(Y,, ))e s T cos(w(z —7,,)) + Bsin(o(t —7,))]  (16)

and

y(z)=—TnH ";g“(y”)e“ =) sin(o(r - 7)) (17)
with Y, = y(z,) (18)
and sgn(Y,) = —sgn(y") (19)

Consequently, the phase planes are obtained. Trajectories consist of a series of elliptical arcs centred
alternatively at point (y=-14 y'=0) and point (y=+. y’=0). The motion ceases as soon as the trajectory
intersects the y-axis between the two points defined by y = + us. Fig. 3 shows an example of trajectory
in the phase plane, whereas the corresponding time histories of displacement and velocity are given in

Fig. 4.

1.5 Decaying law of vibration

Damping parameters can be deduced from the decaying law of the successive peaks of the free
response. For example, system subjected to purely and constant viscous damping provides peaks
with exponential decay. The equivalent viscous damping coefficient is estimated from logarithmic
decrement of peaks [10]. Similarly, system subjected to purely and constant Coulomb friction provides
peaks with linear decay and friction coefficient is estimated from linear decrement of peaks [11].

From Eq. (16) and after some simple arrangements, the relation between successive negative and

positive peaks of a system subjected to both friction and viscous damping is obtained as follows:
Yni = —Yp €xp(=p7) + py sgn(Y), )(1+ exp(-fr)) (20)
Feeny and Liang [7, 8] proposed to identify the two parameters 3 and i on the basis of this decaying

law Eq. (20). B is estimated in a first step, by examining the evolution of the sum of successive peak

values, leading to the following expression:
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,3= _ 1 Ln _Y2p _Y2p+1
2pﬂ' YO + Y1
where p is an integer. The equivalent viscous damping coefficient £ is then deduced from 3 and
Eq. (14). The kinematic friction coefficient p, is deduced in a second step, from Eq. (20). Method has

been recently extended to vibration acceleration decrements [9].

1.6 Identification of the damping parameters from non successive peaks
If dissipation forces are very low, the two maxima Y, and Y. of one oscillation are very close,
because signal decreasing is very slow. So, results are very sensitive to measurement errors and
experimental noise. The lower the damping is, the larger the error obtained. One way to improve the
above technique is to consider the dynamic response of the system over several periods, and non
successive peaks Yq, Yz, and Yy, of the displacement response (or peaks of the velocity response,
using -Y’k in place of Yy
Following equations are deduced from Eq. (20):

Y2 = Yoexp(-27p) - eXp(-27f) — 244, €Xp(-7f) - piy (22)

2p-—1

Yap = Yo exp(=27pp) — wy (1+ exp(-27p3) + 2 Zexp(—iﬂﬁ)) (23)
i=1

Yo exp(=27pf3) = Y,

and Hi = T (24)
1+ exp(-27B3) + 2 Y exp(—izf3)
i=1
B can be calculated from solving the following equation (where p and q are distinct integers):
Yo exp(=27pf3) — Yo, Yo exp(-27q) — Yoq
2p-1 = 2g-1 (25)
p q

1+ exp(-27B8) +2 Y exp(—inP) 1+exp(-27f)+2 ) exp(-izp)
i=1 i=1

C is then deduced from 3, and v, is deduced from Eq. (24). For low dissipation forces, dynamic
response presents a large number of oscillations before extinction, so that non successive peaks may

be selected such that they have very different amplitudes.

1.7 Energy decay curve
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For identifying damping parameters, another more elegant way is to consider the energy decay curve.
Both kinetic and potential energies of the system can be identified from simultaneous measurements

of velocity and displacement responses.

E(r) = %(y2 +y?) (26)

The energy decay curve is monotonic and contains all the knowledge on damping properties. Then,
damping parameters are no more estimated from the N few discrete points corresponding to the peaks
used in the above approach, but from the number N’ of acquisition samples and the signal duration
before extinction (N'>>N).

For viscous underdamping and low kinematic friction coefficient corresponding to the studied systems,
the energy decay curve of the system can be obtained with a good accuracy by using the well known
averaging method (see for example [12]). In this method, the displacement and velocity responses are

assumed to have the following dimensionless form:

y(7) = a(r) cos(z + ¢(7)) = acos(¢)
(27)

y'(r) = —a(r) sin(z + (7)) = —asin(¢)
where amplitude a(z) and phase ¢(7) vary slowly in time without affecting the oscillatory behaviour of

the solution. Then, the energy decay curve E() is directly related to the amplitude function:

2
E(r) = % (28)

By averaging out the variations in ¢, we obtain the following classical equations describing the slow

variations of a(7) and ¢(7):

27
g = jsin¢g(acos¢,—asin¢)d¢ (29)
2z 0

' 1 2z .
=g [eostolacoss-asingls @0

In these equation, the function g(y,y’) represents the nonlinear function of y and y’. Hence

gy, y')=-20y' = jyc sgn(y’) (31)
and Eq. (29) and (30) become:
a'=—§a—2ﬂk (32)
/4
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Solving these equations yields:

2 2
a(r) = (ap + LX) exp(—¢t) - 22K o =g, (34)
/4 /4

With the initial conditions as=Y,.

Finally, to this level of approximation, the averaged energy decay law is:

1
E(r) = (Aexp(-¢7)-T)’ (35)
where
r=2t Ay 4T (36)
g

Remarks that Eq. (35) remains valid until the motion ceases. It is then convenient to give the

associated final time T; which can be obtained from the following condition:

dE
==(T;)=0 (37)
dr
leading to:
1, T
T, =——Ln— 38
ARl (38)

Fig. 5a displays the approximate curve given by Eq. (35) compared to the exact energy decay curve
obtained from the piecewise analytical solutions, Eq. (16) and (17). The slight difference is due to the
residual oscillatory behaviour of the exact energy decay curve. In order to smooth this fluctuation, we
introduce the retrograde integration of the energy response at time 1, as proposed in [13] for the
integrated impulse method to measure reverberation time in room acoustics. Then, this averaged

energy decay curve I1(t) can be written as follows:
T
(r) = jE(e)de (39)
T
From Eq. (35), the approximate averaged energy decay curve I, (1) is easily obtained as:
A? AT r?

Hopp(7) = Eexp(—Zg“r) - ?exp(—g“r) - 71’ +A (40)

with the constant
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r2(3 r
A _?(Z—Ln(x)j (1)

Fig. 5b shows that the exact averaged energy decay and the approximate one are very similar. This

last one can be used for identifying the damping parameters £ and .

2. The original dynamic tribometer

On the basis of the theoretical background reported in the above section, an original dynamic
tribometer has been designed and built, in order to discriminated the different friction contributions. It
corresponds to a sphere-on-flat friction machine which allows a sliding contact between a spherical pin
and a plane. The spherical pin is connected to a 35 g aluminium support mounted on a biblade

connected to the rigid flat. The mechanical device principle is depicted Fig. 6.

2.1 Oscillating system

The biblade is made of (76x10x0.1 mm) steel blades. It allows oscillations of the spherical pin
according to the horizontal direction. With additional mass corresponding to the spherical pin support,
its first natural frequency is equal to 32.6 Hz. The corresponding horizontal vibrations are associated
to the first flexural mode eigenshape. The dimensions of two steel blades were selected in order to
uncouple this mode and the first mode corresponding to vertical vibrations and governed by the
Hertzian contact law [14, 15].

Materials used and connections between mechanical parts were designed in order to minimize
equivalent viscous damping coefficient of the system without contact .

An electromagnet is used to obtain a displacement of the spherical pin far from its equilibrium position.
The amplitude of the initial displacement can vary up to 2 mm. Then, the electromagnetic force is
removed in order to initiate the free response of the oscillator. The first oscillation is not taken into
account in order to remove perturbation due to the magnetic force. The maximum velocity of the

spherical pin can vary up to 0.4 m.s™.

2.2 Load application

Load is applied from micrometric vertical displacement of the spherical pin support relative to the flat.
Load is accommodated through elastic deformation of a steel blade corresponding to a cantilever-
beam. The system has been calibrated using a precision balance in place of the flat. Evolution of

measured force is linear with vertical displacement and corresponds to a variation equal to
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0.32 N/mm. Vertical displacement range (0-2 mm) allows variation of the applied load from 0 to
0.64 N. The device has been designed such that the spherical pin motion is parallel to the flat, so that

the applied load remains constant during the oscillations.

2.3 Measuring device

The dynamic response is identified using a laser viborometer system which operates on the Doppler
principle, measuring back-scattered laser light from the vibrating structure, to determine its vibrational
velocity and displacement. It allows the simultaneous measurement of the velocity and the
displacement, so that, the exact energy of the system can be acquired directly. The second advantage
is that there is no extra mass adding on the experimental device. For the selected measurement
ranges (1 m/s for the peak to peak velocity and 10 mm for the peak to peak displacement), the velocity

resolution is 0.015 ym/s and the displacement resolution is 0.15 pym.

2.4 Tribological system

Experiments reported in this study have been performed with a spherical pin radius equal to 3 mm.
The opposing surfaces used are made of AISI 52100 steel. They are polished with diamond solutions
(6, 3 and 1 uym) to a surface roughness R, less than 15 nm. From Hertzian theory, the applied load
corresponds to a contact pressure up to 0.56 GPa. Experiments are performed at ambient
temperature (20°C).

Contact is lubricated by glycerol (C3HgO3). This lubricant has also been chosen because it is very easy
to vary and to control the kinematic viscosity over a large range by adding a mass fraction of water in
the lubricant, in order to analyze its influence on viscous damping and friction coefficients. In fact,
Sabot and al. [16] have observed that dissipation induced by fluid pumping phenomenon observed in
an Hertzian contact excited by normal load is related to the viscosity of the fluid surrounding the
contact. Glycerol has also been chosen because it leads to low friction in lubrication of steel surfaces

[17].

2.5 Dynamic tests without contact

Experiments without contact between the spherical pin and the flat have been performed, in order to
identify dynamic and damping characteristics of the test apparatus alone and the test apparatus with a
lubricant meniscus. Apparatus dissipation can have several origins: inner damping inherent to the

materials used, damping caused by micro-sliding in the connections between mechanical parts,
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damping caused by the acoustic radiation of vibrating surfaces and vibrations transmitted to the flat.
Fig. 7 displays oscillations of the spherical pin in the air. The modelling of the device by a single
degree-of-freedom linear oscillator is validated. The vibrational behaviour is linear as dynamic
response remains small relative to the biblade length, and the measured natural frequency (32,6 Hz)
does not vary with amplitude of the dynamic response.

Fig. 7 shows that dynamic response is characterized by peaks with exponential decay, so that power
dissipation corresponds to purely velocity-dependent dissipation and can be modelled by an
equivalent viscous damping (o, identified from the least mean square method. The average energy
decay curve error Ay is defined from the experimental data and the simulated exact dynamic curve

given by Eq. (26):

N
Ap = \/%Z(H(exp)—n(num))z (42)

i=1
The result corresponding to minimization of Ay is:

£6=0.0033

3. Measurement of friction and equivalent viscous damping coefficients
3.1 Contact lubricated by glycerol
We performed experiments for five different loads, from 0.07 N to 0.60 N, corresponding to contact
pressure from 0.28 to 0.56 GPa. The natural frequency of the tribological system is identical to that
measured without contact. Once the load applied, each experiment was repeated three times. Fig. 8
displays the experimental free responses for several applied loads.
The dynamic response shows a decay that is neither linear nor exponential. Unlike the system without
contact characterized by a purely viscous damping, velocity-dependent and velocity-independent
friction contributions coexist in the contact.
¢ and p, have been identified from the least mean square method. ¢, i, and dimensionless initial
displacement values are optimized with an absolute error equal to 10 in order to minimize energy
decay curve error Ar. Fig. 9 shows that identified coefficients ¢ and ., are almost constant with the
applied load. The several experiments give the following results:

£=0.0236

1= 0.0294
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with standard deviations:

o(£) =0.0012

o(pe) = 0.0036
The equivalent viscous damping coefficient has significantly increased compared with that measured
without contact {o. So, {, =, corresponds to the linear velocity-dependent part of the contact friction
coefficient, associated to shear forces in the interfacial gap.
Unlike the system without contact characterized by a purely equivalent viscous damping, the contact
friction exhibits a velocity-independent friction contribution p,, even for full-film elasto-hydrodynamic
lubrication. The behavior of the lubricant under pressure is not only governed by its viscosity. It
behaves partly like a solid subjected to elastic deformations. Nevertheless, friction contribution ., is
almost constant, despite a slight variation of the contact pressure. Alternatively, velocity-independent
friction may be due to non-linear velocity distribution in the interfacial gap or to slippage at the wall.
Additional experiments allowing visualization of the interface are necessary to validate these
assumptions.
The dissipation force induced by p, increases with the applied load and the signal extinction is getting
faster, as confirmed by Fig. 8. Comparison between experimental results and simulations confirm that
dynamic responses are very close for the whole studied loads. Displacement or velocity successive
peaks are very well adjusted for the entire duration of the signal. In addition, the estimated duration of
the signal before its extinction (eq. 38) is very consistent with experimental one.
Each period of the free oscillations response corresponds to different amplitude and velocity ranges,
due to the decreasing of the signal. So that, evolution of frictions characteristics with amplitude range
can be analyzed by moving an observation window with fixed length along the time axis [18]. These
different estimations lead to pairs of values (g, 1) substantially identical in all cases. This result
confirms assumptions of a constant velocity-independent friction contribution and of a linear velocity-
dependent one. The entire duration of the signal before extinction can be retained for the friction
coefficients estimation.
Prior experiments have been performed using a reciprocating sphere-on-flat tribometer equipped with
triboscopy and data processing [19]. This tribometer allows several operating conditions,
corresponding to large amplitude of motion, stationary sliding velocity and normal load ranges. The

tangential force is measured with a piezoelectric transducer. The spherical pin was loaded on the
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stationary flat. The stroke length was fixed to 2.5 mm. The tribological system has also been lubricated
with glycerol (C3HgO3). The sliding speed was very low (0.001 m/s). At ambient temperature (20°C)
and for a contact pressure equal to 0.42 GPa, the overall friction coefficient measured was equal to
0.035 [17].

Estimation of tangential forces induced by both velocity-independent and velocity-dependent friction
contributions shows that, for a very low sliding speed, the velocity dependant friction contribution ¢ is
negligible. So that the overall friction coefficient measured during these prior experiments should be
compared with the velocity-independent friction contribution p,.. Measured values are in good
agreement, even if the operating conditions are different. In fact, contact pressures are almost the

same, but kinematics corresponding to the two experimental systems are very different.

3.2 Contact lubricated by glycerol-water solutions
According to [20], viscosity of a glycerol-water solution can be represented by empirical law:

Inv-Inv,
—==Xx,[1+(1-f,)(a+ bf, +cf,? 43
Invg =Inv,, g[ (=) g g )] 43)

where vq, vy, and v are the kinematic viscosities of glycerol, water and glycerol-water solution and fg is
the mass fraction of glycerol. At ambient temperature (20°C), vg=1160 mm?s, v,,=1.01 mm?/s, a=-
0.76728, b=0.12153 and c=-1.41519. Five different mass fractions of water have been added in the
lubricant in order to vary the kinematic viscosity from 1160 mm?/s to 200 mm?/s. For each tested
solution, this one has been measured using a capillary viscometer, from the flow time required for a
fixed volume of the solution to drain through a capillary under gravity (see table 1). The measured
kinematic viscosity are quite close to the empirical value obtained from eq. 43 [20]. As glycerol is a
hygroscopic substance, the viscosity measured for initial glycerol (1040 mm?/s) has also been used to
control its purity: the estimated mass fraction of water is 0.55%.

We performed experiments for each tested solution and £ and p, have been identified. Fig 10a
displays the evolution of the equivalent viscous damping coefficient £ versus kinematic viscosity.
Adding a mass fraction of water in the lubricant leads to a decreasing of the equivalent viscous
damping coefficient. This result confirms that the velocity-dependent part of the contact friction is
related to the kinematic viscosity of the lubricant.

Fig. 10b displays the evolution of the friction coefficient ., versus kinematic viscosity. For a very few

mass fraction of water (less than 6 %, corresponding to a kinematic viscosity equal to 360 mm?/s), the
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velocity-independent friction contribution is almost the same. Therefore, signal duration before
extinction is longer, compared to contact lubricated by pure glycerol, because of the decreasing of the
velocity-dependent part of the contact friction.

Adding a larger mass fraction of water leads to a drastic increase of the friction coefficient 1 so that
the dynamic response decay is more pronounced and the signal extinction is getting faster, as
confirmed by Fig. 11. Friction coefficient u, presents larger variations with load than for a null or a very
few mass fraction of water. These phenomena are probably attributed to a transition from elasto-
hydrodynamic full-film regime to mixed or boundary lubrication and to the occurrence of metal/metal
contact. Further works including experimental devices allowing to visualize the interface and to identify

film thickness and lubrication regime are necessary to confirm this last point.

4. Conclusion

We proposed an original methodology that allows discrimination of velocity-dependent and velocity-
independent energy dissipations, from the analysis of the free response of a single degree-of-freedom
oscillator. Identification of equivalent viscous damping ¢ and friction p, values is based on minimization
of the error defined from the least squares method applied to the retrograde integrals of the energy
decay curve.

An experimental device was built, in order to implement the methodology. A spherical pin on flat
contact lubricated by glycerol was studied. Experiments have confirmed that, unlike the system
without contact characterized by a purely viscous damping, the contact friction is characterized by
both velocity-dependent and velocity-independent contributions. Despite the extent of the applied
loads, we were able to get an accurate estimation of friction coefficients. Simulations of the dynamic
behaviour from identified values whenever give very satisfactory results. The successive peaks are
very well fitted for the entire duration of the signal. In addition, the estimated duration of the signal
before its extinction is very consistent with experimental ones. Complementary experiments using
glycerol-water solutions have confirmed that the velocity-dependent part of the contact friction is
related to the kinematic viscosity of the lubricant.

The proposed innovative methodology appears well suited, especially for low and ultra-low friction
systems. In fact, for most tribometers, measurement of the friction coefficient becomes difficult,
because of the accuracy of mechanical devices measuring friction tangential force. On the contrary,

the proposed methodology is very powerful because the signal duration before extinction becomes
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longer when the dissipation forces decrease. Consequently, lower the friction is, higher the accuracy
of the friction coefficients evaluation.

Coupling of such measurements with electrical contact resistance measurements are currently under
investigations, in order to extract information on the film thickness and the associated lubrication

regime.
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Tables and figures

Figure 1: The viscous and friction damped mass spring oscillator.

Figure 2: Linear velocity-dependent friction coefficient.

Figure 3: Trajectory on the phase plane. £ =0.05, y¢ =0.02, ys =0.03 and initial conditions y = 15,
y’ =0.

Figure 4: Displacement (a) and velocity (b) time responses. £ = 0.05, yx = 0.02, ys = 0.03 and initial
conditions y =15, y' = 0.

Figure 5: Energy decay curve E(t) (a) and averaged energy decay curve I1(t) (b). Exact curves (=) and
approximate ones (—). £ = 0.05, p¢ = 0.02, ys = 0.03 and initial conditionsy = 15, y’ = 0.

Figure 6: Schematic of the mechanical device.

Figure 7: Free response in the air without contact. Displacement response (a), velocity response (b),
experimental (+) and simulated (—) energy decay curves (c), experimental (+) and simulated (—)
averaged energy decay curves (d).

Figure 8: Experimental (=) and simulated (—) velocity responses (a) and averaged energy decay
curves (b). N=0.07 N, N=0.12 N, N=0.31 N, N=0.46 N and N=0.59 N.

Figure 9: Evolution of the equivalent viscous damping (a) and friction (b) coefficients versus normal
load.

Figure 10: Evolution of the equivalent viscous damping & (a) and friction p, (b) coefficients versus
kinematic viscosity.

Figure 11: Experimental velocity response for N=0.46 N. Mass fraction of water is 6 % (a) and 9 % (b).



Table 1: kinematic viscosity of glycerol-water solutions

Mass fraction of water 055% 23% 3% 6 % 8% 9%
Experimental kinematic viscosity (mm?/s) | 1029 696.4 600.0 353.3 257.6 210.7
Empirical value 1029 718.8 6255 356.7 2525 214.2
Relative error - 32% 41% 1.0% 20% 16%

20



Fig.1: The viscous and friction damped mass spring oscillator




Fig. 2: Linear velocity-dependent friction coefficient
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Fig. 3: Trajectory on the phase plane
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Fig. 4: Displacement (a) and velocity (b) time responses
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Fig. 5: Energy decay curve (a) and averaged decay curve (b)
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Fig. 6: Schematic of the mechanical device

Elastic blade

Clamped biblade

Laser vibrometer *

Sphere-plan contact

Movable rigid frame

Electromagnet
Pin support

26



Fig. 7: Free response in the air without contact
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Fig. 8: velocity responses (a) and energy decay curves (b)
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Fig. 9: viscous damping (a) and friction (b) coeff vs load
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Fig.10: viscous damping (a) and friction (b) coeff vs viscosity
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Fig. 11: velocity response. Water mass fraction 6%(a), 9%(b)

<.

LSt
ottt
%ooo:oo
W 000000000,
o 380
000 ¢ 60000 000000H

DA A RORIE T2 -

0,2

~ - -~ N
O,Am\éoxn_u,o,

sz
-

94000000 40
s

0000000004 0000,
X
T Soo O S00 0¥

9000000004 4000
g2
oooooooooooooo 4
-tvds
I

9000000945000 044000

h 'ae asdsSive

~ - ~ AN
c (SWXx o o

0,6

0,0

(b)

(a)

31



