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Learning from imbalanced datasets with
cross-view cooperation-based ensemble methods?

Cécile Capponi and Sokol Koço

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
cecile.capponi@lis-lab.fr

Abstract. In this paper, we address the problem of learning from im-
balanced multi-class datasets in a supervised setting when multiple de-
scriptions of the data – also called views – are available. Each view
incorporates various information on the examples, and in particular, de-
pending on the task at hand, each view might be better at recognizing
only a subset of the classes. Establishing a sort-of cooperation between
the views is needed for all the classes to be equally recognized — a cru-
cial problem particularly for imbalanced datasets. The novelty of our
work consists in capitalizing on the complementariness of the views so
that each class can be processed by the most appropriate view(s); thus
improving the per-class performances of the final classifier. The main
contribution of this paper are two ensemble learning methods based on
recent theoretical works on the use of the confusion matrix’s norm as an
error measure, while empirical results show the benefits of the proposed
approaches.

Keywords: ensemble methods, imbalanced classes, confusion matrix
norm, boosting, multi-view learning

1 Introduction

In machine learning, a frequent issue for datasets coming from real-life applica-
tions is the problem of imbalanced classes: some classes (called majority classes)
are more represented than the others (the minority ones). On the other hand,
the data may be described by different sets of attributes, also called views. The
capability of views to deal with a multi-class learning problem is uneven: some
views are usually more appropriate than others to process some classes (cf. Fig.
1) : it is therefore worthwhile to encourage the right views to recognize the right
classes, especially in the case of classes that are underpopulated.

The purpose of the work presented in this paper is to address these two
imbalanced properties as one: how to exploit the specificities that each view has
on a per class basis so that the final classifier equally recognizes both majority
and minority classes?

To the best of our knowledge, multi-view and imbalanced multi-class super-
vised classification problems have always been tackled in separate ways. On one
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(a) The original images (the first view
is extracted from them, focusing on col-
ors)

(b) The animals are separated from the
background (the second view)

Fig. 1: Extract from the dataset Animals with Attributes [14]: three examples of classes
Gorilla, Polar bear, and Rabbit. One first view reflecting colors (such as histograms
of colors) would be sufficient to distinguish polar bears from gorillas, but not enough
to discriminate either gorillas from rabbits or rabbits from polar bears. For achieving
these two lattest purposes, one might expect than images descriptors reflecting edges
or segmentation would be better than colors. Multi-class and multi-view classifications
are sometimes entangled.

side, the supervised multi-view setting is often processed through early fusion
of description spaces, or through late fusion of every classifier learnt from the
various description spaces [18, 1]. Among the late fusion approaches, the indis-
putable success of MKL [2] must be balanced with the time required for its
processing of high input space dimensions [8]. On the other side, the imbalanced
classes problems have been addressed through two main approaches [10, 9]:

– resampling (e.g. SMOTE: [4]) which aims at rebalancing the sample,
– cost-sensitive methods which make use of class-based loss functions for build-

ing models that take into account the imbalanced rate of the training set
(e.g.: [21]).

Both approaches are sometimes coupled with specific feature selection tech-
niques (e.g.: [23]) such that the most appropriate features are identified for rec-
ognizing the hardest (smallest) classes.

In this paper, we advocate that promoting the cooperation between imbal-
anced views leads to finding the most appropriate view(s) for each class, thus
improving the performances of the final classifier for imbalanced classes prob-
lems. Fig. 2 depicts an example of distributed confusion between classes among
views according to the Bayes error: such a problem arises in many balanced
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datasets, and is naturally amplified with class imbalance due to the P (y) of the
Bayes’ rule1. We propose here an algorithm that encourages the cooperation
among views/classes in order to select the right view for reducing the confusion
between each couple of classes.

Fig. 2: Multi-view multi-class imbalanced confusions in a nutshell. Here are density
functions of three classes among two views: the description space is R in both views
(X = R × R), and 3 examples are pictured according to their description values in
each view. Independently from class imbalance (which is not represented), one can
easily notice that the confusion rates according to the Bayes error are not balanced
within both views: for example there is more confusion between c2 and c3 in view 1
than in view 2. If the Bayes rule would apply on the first view, then the example 3
would be classified in c2, whereas on the second view the decision would be c3. This
illustrates that both views should be considered and combined in a proper way in order
to decide the right class for each example’s data. If we consider the class imbalance
problem (which means that P (y) would favor classes over-represented in the dataset),
then example 2 is more likely to be classified as c3 rather than c2 in view 1 as far as
c2 is under-represented compared to c3, whereas that confusion is less proeminent in
view 1.

Based on recent theoretical results on the use of the confusion matrix’s norm
as an error measure (e.g. [17]), the aim of the proposed methods is to find the best
combination of views for each class ensuring a small confusion norm. Roughly
speaking, our proposal is a cost-sensitive method combined with a greedy selec-
tion among predefined groups of features (named views).

The remainder of this paper is organized as follows: Sections 2 and 3 introduce
the notation used in this paper and the motivations and frameworks on which
the proposed approaches rely on. The main contribution of this paper is given in
Sections 4 and 5, where we show step by step how to derive multi-view methods
for the imbalanced setting. Finally, Section 6 gives the experimental results, and
we conclude in Sections 7 and 8.

1 The Bayes rule B(x) chooses y that maximizes P (x|y)P (y)/P (x).
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2 Theoretical inspiration from multi-class boosting:
settings

2.1 General notation

Matrices and vectors are denoted by bold capital letters like C and bold small
letters like x respectively. The entry of the l-th row and the k-th column of C is
denoted C(l, k), or simply cl,k. λmax(C) and Tr(C) respectively correspond to
the largest eigenvalue and the trace of C. The spectral or operator norm ‖C‖ of
C is defined as:

‖C‖ def
= max

v 6=0

‖Cv‖2
‖v‖2

def
=
√
λmax(C∗C),

where ‖ · ‖2 is the Euclidian norm and C∗ is the conjugate transpose of C. The
inner product and the Frobenius inner product of two matrices A and B are
denoted AB and A ·B, respectively.

The indicator function is denoted by I; K is the number of classes, m the
number of views, n the number of examples, and ny the number of examples of
class y, where y ∈ {1, ...,K}. X, Y and H are the input, output and hypothesis
spaces, respectively; (xi, yi), xi or i are interchangeably used to denote the ith

training example.

2.2 Multi-class boosting framework

In this paper we use the boosting framework for multi-class classification intro-
duced in [16], and more precisely the one defined for AdaBoost.MM. Algorithms
based on the AdaBoost family maintain a distribution over the training samples
in order to identify hard-to-classify examples: the greater the weight of an ex-
ample, the greater the need to correctly classify these data. In the considered
setting, the distribution over the training examples is replaced by a cost matrix.
Let S = {(xi, yi)}ni=1 be a training sample, where xi ∈ X and yi ∈ {1, ...,K}.
The cost matrix D ∈ Rn×K is constructed so that for a given example (xi, yi),
∀k 6= yi: D(i, yi) ≤ D(i, k), where i is the row of D corresponding to (xi, yi).

This cost matrix is a particular case of cost matrices used in cost sensitive
methods (for example, [20]), where classification costs are given for each example
and each class. However, contrary to those methods, the matrix is not given prior
to the learning process, but it is updated after each iteration of AdaBoost.MM
so that the misclassification cost reflects the difficulty of correctly classifying an
example. That is, the costs are increased for examples that are hard to classify,
and they are decreased for easier ones.

In AdaBoost.MM, the cost matrix D at iteration T , is defined as follows:

DT (i, k)
def
=


efT (i,k)−fT (i,yi) if k 6= yi

−
∑
k 6=yi

efT (i,k)−fT (i,yi) otherwise,

where fT (i, k) is the score function computed as: fT (i, k) =
∑T
t=1 αtI[ht(i) = k].
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At each iteration t, AdaBoost.MM selects the classifier h and its weight α
that minimize the exponential loss:

ht, αt = argmin
h,α

n∑
i=1

∑
k 6=yi

eft(i,k)−ft(i,yi), (1)

where: ft(i, k) =

t−1∑
s=1

αsI[hs(i) = k] + αI[h(i) = k].

The final hypothesis of AdaBoost.MM is a weighted majority vote:

H(x) = argmax
k=1...K

fT (i, k).

2.3 The supervised multi-view setting

Following previous works [13, 12, 11], the multi-view setting that we considered in
this paper is supervised. In the case of mono-view classification, where a predictor
capable of reliably computing the label associated with some input data, the
learning problem hinges on a training set S = {(xi, yi)}ni=1, which is an i.i.d.
sample of n observations where xi ∈ X , yi ∈ Y, and (xi, yi) ∼ DX×Y = D. In
the multi-view setting, the input space X is a product ofm spaces X (v), v = 1..m,
and we note D(v) ∼ P (X(v), Y ) where X(v) is a random variable that ranges in
X (v).

Multi-view learning is the usual problem of learning ĥ ∈ H : X → Y such
that the generalisation risk is minimized, i.e.

ĥ = argminh∈HR(h) = argminh∈H E∼D [`(h(x), y)]

where ` : Y × Y → R+ is some loss function, for example the 0-1 loss: `(y, y′) =
1y 6=y′ .

For each view v, let ĥ(v) : X (v) → Y be such that

ĥ(v) = argminh∈H(v) E∼D(v)

[
`(h(v)(x), y)

]
In order for the multiview learning to be worthwhile, we obviously expect that
∀v ∈ [1..m],

E∼D(v)

[
`(ĥ(v)(x), y)

]
> E∼D

[
`(ĥ(x), y)

]
which means that it is beneficial to consider several views than the best one.

3 Reducing the class confusion with multi-view insights

3.1 Confusion matrix: a probabilistic definition

When dealing with imbalanced classes, a common tool used to measure the
goodness of a classifier is the confusion matrix. Previous works on the confusion
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matrix (e.g. [15, 17], etc.), advocate that using the operator norm of (a particular
formulation of) the confusion matrix as an optimization criterion is a reasonable
choice for dealing with the imbalanced classes problem. Following in their steps,
in this paper we consider a particular definition of the confusion matrix:

Definition 1. For a given classifier H ∈ H, an unknown distribution D over
X×Y , and a training set S = {(xi, yi)}ni=1 i.i.d according to D, the true and em-
pirical confusion matrices of h, denoted C=(cl,k)1≤l,k≤K and CS=(ĉl,k)1≤l,k≤K
respectively, are defined as:

cl,k
def
=

{
0 if l = k
P(x,y)∼D(H(x) = k|y = l) otherwise.

ĉl,k
def
=


0 if l = k
n∑
i=1

1

nl
I[H(xi) = k]I[yi = l] otherwise,

Contrary to the usual (probabilistic) definition of the confusion matrix, the di-
agonal entries are zeroed. The advantage of this formulation is two fold: first,
it takes into account only the errors of the classifier, and second, its operator
norm gives a bound on the true risk of the classifier. Indeed, let p = [P (y =
1), ..., P (y = K)] be the vector of class priors distribution, then we have:

R(h)
def
= P(x,y)∼D(H(x) 6= y) = ‖pC‖1 ≤

√
K‖C‖, (2)

where R(h) is the true risk of h and ‖ · ‖1 denotes the l1-norm. The aim of the
methods presented is this paper is thus to find a classifier Ĥ that verifies the
following criterion:

Ĥ = argmin
H∈H

‖C‖. (3)

3.2 From the confusion matrix norm to an optimization problem

The confusion matrix C, as given in Definition 1, depends on the unknown
distribution D, thus making the problem given in Equation 3 difficult to tackle
directly. In order to bypass this, we make use of Theorem 1 in [17], which bounds
the norm of the true confusion matrix by the norm of its empirical estimation.
We give here a reformulation of the theorem for the supervised setting, where
the considered loss is the indicator function I.

Corollary 1 For any δ ∈ (0; 1], it holds with probability 1 − δ over a sample
S(x,y)∼D that:

‖C‖ ≤ ‖CS‖+

√√√√2K

K∑
k=1

1

nk
log

K

δ
,

where CS is the empirical confusion matrix computed for a classifier h over S.
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The direct implication of Corollary 1 is that minimizing the norm of the
empirical confusion matrix results in the minimization of its true norm. Unfor-
tunately, due to the nature of the confusion matrix in Definition 1, an analytical
expression for the norm of the matrix is difficult to compute. We thus consider
an upper bound on ‖CS‖2:

‖CS‖2 = λmax(C∗SCS) ≤ Tr(C∗SCS) ≤
K∑
l=1

∑
k 6=l

ĉl,k = ‖CS‖1. (4)

In the last part of Equation 4, we abuse the notation and denote the entry-wise
l1-norm of the matrix by ‖C‖1. Equation 4 implies that the updated goal is:

Ĥ = argmin
H∈H

‖C‖1. (5)

Another drawback of the confusion matrix as given in Definition 1 is the
presence of the indicator function, which is not optimization friendly. One way
to handle this is to replace the indicator function with loss functions `l,k(H,x)
defined over two classes, so that ∀(x, y) ∈ S and l, k ∈ {1 . . .K}, I(h(x) 6= y) ≤
`l,k(H,x). Applying these losses to Equation 4, we have the actual upper bound
of the confusion matrix’s norm:

‖C‖1 ≤
n∑
i=1

∑
k 6=yi

1

nyi
`yi,k(H,xi). (6)

3.3 A multi-view classifier

In the multi-view setting, an example is represented by various sets of attributes,
called views. Although they represent the same objects, different views might
be suited for different tasks and/or categories (classes) of objects. For instance,
in image classification, the view color is more suited for distinguishing between
gorillas and polar bears, than between cats and dogs. The motivation behind the
work in this paper is to deal with both imbalanced data (some classes are more
represented than others in the training set) and imbalanced views (some views
are suited only for a subset of the classes). While the optimization problem given
in Equation 5 deals with the imbalanced nature of the dataset, the multi-view
aspect has not yet been considered.

Assuming that each view is more adapted only for a subset of classes, one
possible way to implement this in a classifier is to associate a coefficient to each
view based on its prediction. The better a view v recognizes a class c, the higher

this coefficient β
(v)
c should be. More precisely, the considered classifier is the

following:

H(x) = argmax
c∈1...K

m∑
v=1

β(v)
c I[h(v)(x) = c] (7)

where ∀c ∈{1, . . . ,K},
m∑
v=1

β(v)
c = 1 and β(v)

c ∈ [0, 1]. (8)
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In Equation 7, h(v) denotes the classifier learnt on view v and β
(v)
c can be seen

as the confidence that view v gets right for class c (hence the need for these
coefficients to be positives). Due to the sum condition imposed in Equation 8,

the coefficients β
(v)
c also define how the views cooperate one with another, and

we refer to them as cooperation coefficients.
In the following sections, we describe step by step how to learn a cooperation-

based multi-view classifier as defined in Eq. 7, which is a solution to the opti-
mization problem in Eq. 5 and subjected to the conditions of Eq. 8.

4 Multi-view Classification With Cooperation

The multi-view classifier in Eq. 7 associates to an example i the class k that
obtains the highest score φ(i, k), computed as follows:

φ(i, k) =
∑

v∈{1···m}

β
(v)
k I[h(v)(i) = k]

If an example i is misclassified, then there exists at least one class k 6= yi such
that φ(i, k) ≥ φ(i, yi), that is, eφ(i,k)−φ(i,yi) ≥ 1. On the other hand, i correctly
classified implies that ∀k 6= yi, φ(i, k) ≤ φ(i, yi) and 0 < eφ(i,k)−φ(i,yi) ≤ 1. Basi-
cally, the exponential loss based on the score functions φ satisfies the conditions
put on the losses in Eq. 6. Injecting these exponential losses in Equation 6, we
have:

‖CS‖1 ≤
n∑
i=1

∑
k 6=yi

1

nyi
`yi,k(h, xi) ≤

n∑
i=1

∑
k 6=yi

1

nyi
eφ(i,k)−φ(i,yi)

=

n∑
i=1

∑
k 6=yi

1

nyi
e

m∑
v=1

(β
(v)
k I[h(v)(i)=k]−β(v)

yi
I[h(v)(i)=yi])

(9)

A first approach to minimizing the norm of the confusion matrix is to find the
classifiers and the cooperation coefficients that are the solution of the optimiza-
tion problem given in Equation 9. This formulation is quite similar to the most
general formulation of Multiple Kernel Learning (MKL) methods [2], where the
kernels and the weighting coefficients are learnt at the same time. The differ-
ences are that in our case, the classifiers are not limited to kernels, the number
of coefficients is higher and we use an exponential loss function.

The main advantage of this approach is that the cooperation between the
views is promoted both in the training phase of the classifiers and in the choice
of the coefficients. However, on the downside, the classifiers need to be learnt
at the same time — which can make the learning procedure quite tedious —
and it is not clear what the minimization goal for each classifier is. A friendlier
(and easier to interpret) expression for Eq. 9 can be obtained by limiting the
cooperation between the views only to the choice of the coefficients. The following
result is a key step in this direction.
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Lemma 1. Let n ∈ N and a1, . . . , an ≤ 1, so that
∑n
j=1 aj ≤ 1. Then the

following inequality is true:

exp(

n∑
j=1

aj) ≤
n∑
j=1

exp(aj). (10)

Proof. The proof for this result is realized by induction : first we show that the
result holds for two variables, then we prove the general case.

The first condition we set on the coefficients in the optimisation problem of
Equation 8 is that their values should be in [0, 1]. The second condition requires
that, for each class, the coefficients sum up to 1. Together, these conditions imply
that the inner sums in Equation 9 take their values in [−1, 1], same as each of
their elements. We can thus apply lemma 1 to further simplify the expression
given in Eq. 9.

‖CS‖1 ≤
n∑
i=1

∑
k 6=yi

1

nyi
e

m∑
v=1

(β
(v)
k I[hj(i)=k]−β(v)

yi
I[h(v)(i)=yi])

≤
n∑
i=1

∑
k 6=yi

1

nyi

m∑
v=1

eβ
(v)
k I[h(v)(i)=k]−β(v)

yi
I[h(v)(i)=yi]

=

m∑
v=1

n∑
i=1

∑
k 6=yi

eβ
(v)
k I[h(v)(i)=k]−β(v)

yi
I[h(v)(i)=yi]

nyi
≤

m∑
v=1

`(h(v)), (11)

where `(h(v)) =
n∑
i=1

∑
k 6=yi

1
nyi

eβ
(v)
k I[h(v)(i)=k]−β(v)

yi
I[h(v)(i)=yi], defines the loss of the

classifier h(v) — whose predictions are weighted by the coefficients β
(v)
k ,∀k ∈

{1, . . . ,K} — on the training set S.

Minimizing the norm of the confusion matrix for a multi-view classifier H,
as defined in Equation 7, ends up finding the classifiers and coefficients that

minimize the loss
m∑
v=1

`(h(v)). Remark that for fixed values of the coefficients,

Equation 11 suggests that for each view, it suffices to find the classifier minimiz-
ing the loss `(·), instead of finding the classifiers that minimize a loss depending
on their combination (which was the case in Equation 9).

Although the training procedure where all the coefficients and classifiers are
learnt at the same time is still a viable solution, the previous remark suggests
that a two-step procedure is better adapted for this case. The first step consists
in finding, for each view, the classifier whose error `(·) is minimal. The second
step consists in finding the coefficients that minimize the whole loss (Equation
11). Due to the formulation of Equation 11, the coefficients of one class can be
computed independently from the coefficients of the other classes. More precisely,

let S
(v)
+ denote the set of examples correctly classified by h(v) and S

(v)
− the set
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of misclassified ones. The right-handed side of Eq. 11 can be written as:

m∑
v=1

n∑
i=1

∑
k 6=yi

1

nyi
eβ

(v)
k I[h(v)(i)=k]−β(v)

yi
I[h(v)(i)=yi] =

m∑
v=1

∑
i∈S(v)

+

K − 1

nyi
e−β

(v)
yi +

m∑
v=1

∑
i∈S(v)
−

(K − 2

nyi
+
e
−β(v)

h(v)(i)

nyi

)
=

K∑
c=1

m∑
v=1

(
e−β

(v)
c A+ eβ

(v)
c B

)
+ C, (12)

where:

A =
∑
i∈S(v)

+

K − 1

nyi
I[yi = c], B =

∑
i∈S(v)
−

1

nyi
I[h(v)(i) = c]

and C =

K∑
c=1

m∑
v=1

∑
i∈S(v)
−

K − 2

nyi
I[h(v)(i) = c].

The first equality is obtained by splitting the training sample in S
(v)
+ and S

(v)
− ,

for all views v. In the third equality, we replace yi and h(v)(i) by a label c, which

allows us to regroup the non constant terms (that is, those depending on β
(v)
c ).

Equation 12 suggests that for a given class c, the coefficients β
(v)
c ,∀v ∈

{1, . . . ,m} should be the ones that minimise the per class loss `(c):

m∑
v=1

(
e−β

(v)
c A+ eβ

(v)
c B

)
. (13)

The pseudo-code of the two-step method is given in Algorithm 1. The stop-
ping criterion can be related to the empirical loss of the classifier computed on
S, or the drop of the loss in Eq. 12, and so on. Contrary to the MKL-like ap-
proach suggested in Eq. 9, in the two-step method, the classifiers can be learnt
in parallel, reducing the training time for the algorithm.

5 Boosting The Cooperation

5.1 A multi-view boosting method from the confusion matrix norm
minimization

The two-step procedure in Algorithm 1 suggests that at each iteration the learnt
classifiers should minimize some training error weighted by cooperation coeffi-
cients associated to the training examples. More precisely, the training procedure
for each view consists in learning a classifier that minimizes a weighted empirical
error, re-weighting the examples based on the performances of the classifier and
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Algorithm 1 Carako

Given :
S = {(xi, yi)}ni=1 where xi ∈ X (1) ×X (2) × ...×X (m), yi ∈ {1, ...,K}
Initialise :
For all 1 ≤ c ≤ K, 1 ≤ v ≤ m,β(v)

c = rand(0,1) (w.r.t. to Eq. 8)

while stopping criterion not met:

1. ∀v ∈ {1, . . . ,m}, train h(v) minimizing the loss `(h(v)) (eq. 11)

2. ∀c ∈ {1, . . . ,K}, compute β
(v)
c minimizing the loss `(c) (eq. 13), w.r.t. conditions

in Eq. 8

Output :

H(·) = argmaxc∈{1,··· ,K}

m∑
v=1

β(v)
c I[h(v)(·) = c]

reiterating until a stopping criterion is met. Interestingly, this procedure is fairly
similar to iterative boosting methods, such as AdaBoost [6] and its multi-class
formulation AdaBoost.MM, recalled in Section 2.2. In this section, we study the
case where the classifiers h(v) in Equation 11 are replaced with boosted classi-
fiers.

An iterative boosting method runs for T rounds and its output hypothesis is
computed as follows:

h(·) = argmaxc∈{1,...,K}

T∑
t=1

αtI[ht(·) = c],

where, ht are classifiers performing slightly better than random guessing (also
called weak classifiers) and αt are positive real-valued coefficients that represent
the importance given to ht. The main advantage of weak classifiers is that they
can be used to exploit localized informations. Thus the motivation for replacing
the per-view classifiers in Eq. 11 with multiple weak classifiers learnt on the views
is to better use the localized information in each view, in particular information
related to how the view recognizes the various classes.

When defining the multi-view classifier in Equation 7, we argued that each
classifier should be associated with an importance coefficient depending on the
prediction. However, having a single coefficient per class and view might not be
a good strategy when dealing with boosted classifiers, since each of the weak
classifiers has different performances. Thus we propose to associate to each clas-
sifier not only its importance coefficient, but also coefficients depending on its
actual prediction:

h(v)(·) = argmaxc∈{1,...,K}

T∑
t=1

α
(v)
t β

(v)
t,c I[h

(v)
t (·) = c], where β

(v)
t,c ∈ [0, 1]. (14)
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In this case the coefficient associated to a view v for a class c is :

β(v)
c = (

T∑
t=1

α
(v)
t β

(v)
t,c )/

T∑
t=1

α
(v)
t .

The condition ∀t ∈ {1, . . . , T},∀c ∈ {1, . . . ,K},
∑m
v=1 β

(v)
t,c = 1 ensures that

β
(v)
c is always smaller than 1. The downside is that it does not guarantee that

∀c ∈ {1, . . . ,K},
∑m
v=1 β

(v)
c = 1, but rather that

∑m
v=1 β

(v)
c ≤ 1.

The classifier defined in Equation 14 is similar to the classifier defined in
Equation 7: for a given example, it computes a score for each class. In particular
for examples in the training sample S = {(xi, yi)}ni=1, these scores correspond to:

f
(v)
T (i, c) =

T∑
t=1

α
(v)
t β

(v)
t,c I[h

(v)
t (i) = c], for 1 ≤ v ≤ m, 1 ≤ c ≤ K, 1 ≤ i ≤ n.

Armed with these score functions, we are now ready to tackle the last opti-
mization problem in this paper. Continuing from Equation 11, we have:

‖CS‖1 ≤
m∑
v=1

n∑
i=1

∑
c 6=yi

1

nyi
eβ

(v)
c I[h(v)(i)=c]−β(v)

yi
I[h(v)(i)=yi]

≤
m∑
v=1

n∑
i=1

∑
c6=yi

1

nyi
eI[h

(v)(i)=c] ≤
m∑
v=1

n∑
i=1

∑
c6=yi

1

nyi
e
ln(2+exp

[
f
(v)
T (i,c)−f(v)

T (i,yi)

]
)

=
∑

v,i,c6=yi

1

nyi
e∆f,T (v,c,yi) + 2mK(K − 1), (15)

where: ∆f,T (v, c, yi) = f
(v)
T (i, c)− f (v)T (i, yi).

The second inequality follows from the fact that the coefficients β
(v)
c are

positive and at most 1. For the third inequality a particular case of the logistic
loss is used. If h(v) predicts class c for example i (I[h(v)(i) = c] = 1), then

f
(v)
T (i, c) ≥ f

(v)
T (i, yi) and exp(f

(v)
T (i, c) − f (v)T (i, yi)) ≥ 1. Since the difference

between the scores may be infinitely small, we use 2 in the logistic loss, which

ensures ln(2 + exp
[
f
(v)
T (i, c) − f (v)T (i, yi)

]
) ≥ 1. In the case where h(v) predicts

another class for i, other than c, then ln(2 + exp
[
f
(v)
T (i, c)− f (v)T (i, yi)

]
) > 0.

We have thus:

‖CS‖1 ≤
m∑
v=1

`(h(v)) + 2mK(K − 1), (16)

where `(h(v)) =
n∑
i=1

∑
c6=yi

1
nyi

exp
(
f
(v)
T (i, c) − f

(v)
T (i, yi)

)
, defines the loss of the

combinations of all the classifiers learnt on view v. Equation 16 suggests that at
each iteration, for each view, a classifier that minimizes the loss `(hj) should be
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learnt. It is interesting to notice that the loss `(h(v)) is quite similar to the loss
of AdaBoost.MM, as given in Equation 1 in Section 2, except for the coefficients

β
(v)
c,t and the re-weighting coefficients 1

nyi
. In other words, an AdaBoost.MM-

like process should take place in each view. It follows that a cost matrix should
be maintained for each view and the classifier (and its importance coefficient)
should be computed in a similar way as in AdaBoost.MM or in MuMBo [13].

Algorithm 2 µCoMBo : MUlti-view COnfusion Matrix BOosting

Given
– S = {(x1, y1), ..., (xn, yn)} where xi ∈ X (1) × ...×X (m), yi ∈ {1, ...,K}
– T the number of iterations
– ∀i ∈ {1 . . . n}, ∀v ∈ {1 . . .m}, ∀c ∈ {1 . . .K}

f
(v)
0 (i, c) = 0, β

(v)
0,c = 1/m and

D
(v)
0 (i, c) =

{
1
nyi

if c 6= yi

−K−1
nyi

if c = yi

for t = 1 to T do

∀v: Get h
(v)
t and α

(v)
t = 1

2
ln

1+δ
(v)
t

1−δ(v)
t

, where δt =
−

∑n
i=1 D

(v)
t−1(i,h

(v)
t (xi))∑n

i=1

∑
c 6=yi

D
(v)
t−1(i,c)

Compute β
(v)
t,c , ∀v ∈ {1 . . .m}, c ∈ {1 . . .K} minimizing Eq. 15

Update cost matrices (for each v = 1 . . .m):

D
(v)
t (i, c) =


1
nyi

ef
(v)
t (i,c)−f(v)

t (i,yi) if c 6= yi

−
K∑
l6=yi

ef
(v)
t (i,l)−f

(v)
t (i,yi)

nyi
if c = yi

where f
(v)
t (i, c) =

t∑
z=1

α
(v)
z β

(v)
z,c I1[h

(v)
z (i) = c]

end for
Output final hypothesis :

H(·) = argmaxc∈{1,...,K}

T∑
t=1

m∑
v=1

β
(v)
t,c α

(v)
t I[h(v)

t (·) = c]

Similarly to the two-steps procedures in Carako (Algorithm 1), the algorithm
µCoMBo derived from the minimization of the loss in Equation 16 uses a two
step procedure at each iteration: first a classifier is learnt for each view and the
importance coefficient is computed as in Algorithm 2, and second the cooperation
coefficients are computed so that they minimize the loss. The pseudo-code of
µCoMBo is given in algorithm 2. Due to the boosting nature of the method, the
stopping criterion used is the number of iterations.
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5.2 On the theoretical properties of µCoMBo

One of the most important properties of (adaptive) boosting algorithms is that
the total loss (Eq. 1 for AdaBoost.MM) drops at each iteration, provided that
the chosen classifier weight verifies the boostability conditions. In the binary
case, the classifier is required to perform slightly better than random guessing
(that is, its error should be smaller than 0.5). For multi-class algorithms, such as
AdaBoost.MM and µCoMBo, the condition consists in finding classifiers whose
classification cost (that is, error) should be smaller that the one for an arbitrary
baseline. Theorem 1 states that, for a given view, if the selected classifier verifies
the multi-class boostability condition, then the total loss of µCoMBo (computed
from that view) decreases.

Theorem 1. For a given view v ∈ {1, . . . ,m}, suppose the cost matrix D
(v)
t

is chosen as in the Algorithm 2, and the returned classifier h
(v)
t satisfies the

edge condition for the baseline U
δ
(v)
t

and cost matrix D
(v)
t , i.e. D

(v)
t · 1

h
(v)
t
≤

D
(v)
t ·Uδ

(v)
t

, where 1h is the matrix defined as 1h(i, l) = I[h(i) = l].

Then choosing a weight α
(v)
t > 0 for h

(v)
t , allows

`t(h
(v)) ≤ κ(v)t `t−1(h(v)),

to hold, with:

κ
(v)
t = 1− 1

2

(
eα

(v)
t − e−α

(v)
t

)
δ
(v)
t +

1

2

(
eα

(v)
t + e−α

(v)
t − 2

)
Proof. The proof is similar to the one provided for AdaBoost.MM in [16].

The result given in Theorem 1 implies that choosing the importance coeffi-

cient as in Algorithm 2, the drop of the loss for a view v is

√
1− δ(v)t . That is,

at each iteration, after the first step which consists in choosing a classifier per
view, the total drop in loss is:

m∑
v=1

`t(h
(v)) ≤

m∑
v=1

√
1− δ(v)t `t−1(h(v)). (17)

As long as the classifiers learnt on the views achieve positive edges on their
corresponding cost matrices, the whole loss is guaranteed to decrease.

Note that in the right side of Equation 17, the loss `t−1(h(v)) depends on the
score functions defined as:

f
(v)
t (i, c) =

t−1∑
z=1

α(v)
z β(v)

z,c I[h(v)z (i) = c] + α
(v)
t β

(v)
t,c I[h

(v)
t (i) = c],

since the classifiers are learnt before the cooperation coefficients β, that is, we
simply suppose that all these coefficients are equal to 1. Obviously the drop in
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the final loss, after the second step of iteration t, is much bigger given that all the

β take their values in [0, 1] and at most one of the β
(v)
t,c is at 1 for a given class c.

However, since these coefficients are computed as a solution to an optimization
problem, finding an analytical expression for the actual drop after iteration t is
quite challenging.

6 Experimental results

Experimental results of algorithms Carako and µCoMBo are compared with
results obtained with state-of-the-art methods.

These experiments are intended to ascertain the relevance of the herein pro-
posed algorithms, by checking the experimental gaps achieved when comparing
mono and multi-view confusion imbalanced within a multi-class setting. As such,
no tuning of hyperparameters was done (default hyper-parameters are consid-
ered), and only one – reduced – dataset was considered.

In order to have a first insight into the relevance of the approaches, we pro-
cessed experiments on a subset of the Animal with Attributes (AwA) images
open database proposed in [14], because it regroups the two problems addressed
in this paper: (1) AwA is highly imbalanced: some classes are way more rep-
resented than others, and (2) AwA comes with six pre-extracted feature rep-
resentations (thus, views) for each image, related to different properties of the
images.

6.1 AwA presentation and experimental protocols

Originally, AwA comes with 50 classes and six views on images. We extracted2

six classes, from the less represented to the most populated; class names (and
number of examples) are: beaver (184), buffalo (559), deer (1072), gorilla (802),
lion (483), and polar+bear (815). Four views (for a total of 6940 real attributes)
among six were selected both on the nature of information contained therein
(local versus global) and the possibility of the view to recognize all the classes
or some of them. More precisely, we consider: Color Histogram features (2688 at-
tributes), Local Self-Similarity features (2000 attributes), PyramidHOG (PHOG)
(252 attributes), and Scale-Invariant Feature Transform features (2000 attributes).

Some examples of the animal classes are given in Figure 3.

Classifiers Six methods are tested: (1-2) early fusion: AdaBoost.MM and µCoMBo
on the concatenation of the views, (3-4) late fusion: AdaBoost.MM and Carako,
(5) multi-view methods: µCoMBo, and (6) multiclassMKL from the Shogun tool-
box ([19]).

2 The original dataset comes with a high number of examples (more than 30000),
classes (50), and real features (10520). Currently, intensive experiments are on their
way, with grid-search hyper-parameters tuning over more learning methods, running
over the while AwA datasets: it should take several months.
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Fig. 3: Some examples of the six selected classes of AwA.

For the boosting-based methods, we used 1-level decision trees (stumps) as
weak learners and they were run for 100 iterations; for Carako, the depth of the
trees was limited to 10. The MKL were learnt with gaussian kernels on each
view (same parameters: mean=8, width=2), with a regularized L1 norm and the
regularization parameter C = 1., and ε = 0.001).

Evaluation protocol Through a 5-folds cross-validation process, we evaluated
each classifier along five measures: recall per class, overall accuracy, MAUC,
G-Mean, and norm of the confusion matrix. If K is the number of classes:

MAUC =
∑
i 6=j

AUCi,j
K(K − 1)

and G-mean =

( ∏
j=1..K

recallj

) 1
K

G-mean and MAUC consider each class independently from its population in
the learning sample; a G-mean is zero whenever one minor class has a zero recall.

6.2 Performance results

Table 1 gives the results for Accuracy, Gmean, MAUC and norm of the confu-
sion matrix, as well as an indication of the training time3. About the overall
accuracy, the better performing method is MultiClassMKL, while the recalls per
class indicate that MKL focus on majority class, mechanically improving the
overall accuracy. Second best method is µCoMBo, which is encouraging since
it means that adding the cooperation between the views leads to good results
while promoting equity among imbalanced classes. The difference between early
CoMBo and µCoMBo relies on the fact that the latter encourages such a coop-
eration among views, while the former only learns a model after the normalized
concatenation of all the views. It is then worth noticing that multi-view learning

3 The MulticlassMKL is quite long for it is a QCQP problem, hardly depending on
the number of classes and views (kernels); boosting approaches benefits from the
possibility of parallelizing the weak classifiers training.
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Table 1: Overall accuracy, per class recall, MAUC, G-mean and norm of the confusion
matrix, for the six methods on AwA (the suffix -e indicates an early fusion). Results
in boldface indicate when one algorithm is significantly better than the others (student
test with 95% confidence). The rate of train examples is given under each class. The
training time of a 10-folds cross-validation is given in minutes, on a 4-cores processor
with limited RAM.

Algos Acc. beaver buffalo deer gorilla lion p.bear MAUC Gmean ‖C‖ time

4.7% 14.3% 27.4% 20.5% 12.3% 20.8%

Ada.MM-e 40.2% 0.0% 0.0% 77.8% 68.1% 0.0% 22.8% 0.694 0.000 1.385 90

Ada.MM-l 44.8% 0.0% 0.0% 93.7% 34.9% 0.0% 57.9% 0.731 0.000 1.594 71

Carako 34.4% 23.1% 20.1% 36.4% 33.5% 25.0% 50.7% 0.631 0.069 0.964 122

MKL 58.6% 0.0% 19.9% 77.3% 73.4% 13.6% 85.6% 0.669 0.000 0.980 2825

µCoMBo-e 43.4% 28.6% 30.8% 28.3% 66.9% 38.7% 55.6% 0.731 0.365 0.899 98

µCoMBo 55.5% 44.5% 35.3% 48.3% 71.9 % 38.8 % 74.4% 0.821 0.481 0.552 75

(µCoMBo) actually helps to achieve better results when minimizing a bound of
the confusion norm when facing class-imbalanced datasets.

Concerning the per-class recalls, early-µCoMBo, Carako, and the multi-view
µCoMBo all tend to reduce the impact of majority classes, while focusing on
the minority ones. This behavior was expected through the minimization of the
confusion norm. Symmetrically, AdaBoost.MM (both early and late fusion) and
MKL clearly all favor the majority classes over the minority ones.

About measures dedicated to multi-class approaches, G-mean and MAUC
point out the smoothing effect of µCoMBo on errors which helps to better take
into consideration the minority classes. According to G-mean and MAUC, the
results strongly suggest that the best method is µCoMBo, which was expected
since µCoMBo was designed to deal with imbalanced multi-view datasets. As for
accuracy, the performances of the various methods on the G-mean imply that
both µCoMBo and Carako promote some sort of leveling process among the
classes, thus a better equity among them; however, µCoMBo ends up with better
results than Carako, thanks to the cooperation among views. AdaBoost.MM and
MKL have poor G-mean since they fail to recognize beaver, the minority class.

7 Discussion

This work merges imbalanced multi-view and multi-class learning, and proposes
a boosting-like algorithm to address it. As far as we know, albeit many even
recent results about ensemble-based imbalanced multi-class learning have been
published [7, 22, 5, 9, 3, 23], no other approach has emerged that would meanwhile
consider the capabilities of multi-view diversity of information sources. As a
consequence, the proposed approach here is quite original, and cannot be fairly
compared with any other state-of-the-art theory or algorithm.
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Our preliminary experimental results show that our approach seems to be
relevant for facing imbalanced views and classes, together with theoretical guar-
antees. As such, this work raises several questions and prospect works.

On the confusion matrix In Equations 4, 5 and 6, the operator norm of the
confusion matrix is bounded by the l1-norm. First, remark that due to the
equivalence between norms in finite dimension, minimizing the (entry-wise) l1-
norm is a viable alternative to the original goal and it ensures that the learning
procedure outputs a classifier with a low error. Second, as briefly commented
upon in Section 3, it is quite difficult to find an analytical expression for the
operator norm of the confusion matrix in the supervised setting as given in
Definition 1. In order to bypass these shortcomings and to tackle the original
goal (minimizing the operator norm of the confusion matrix), future works will be
focused on exploring alternative definitions for the confusion matrix, such as loss-
based confusion matrices as in [17], entry-wise decomposition of the confusion
matrix as in [15], three-dimensional tensors, etc.

On the optimized norm Aside from the choice of the confusion matrix, another
research question touched upon in this paper is the choice of the norm. We
think that it would be interesting to define and study other norms, such as the
l1-norm, other p-norms, or even more exotic norms. In particular, a challenging
problem is the definition of confusion matrices and confusion matrices’ norms
for the multi-view setting either as a generalization of the usual definitions to
the three-dimensional tensor, or based on the tensor’s theory.

On the loss functions The main advantage of the result in Equation 6 is the
flexibility of the loss functions. Although our work is mainly based on the expo-
nential losses, Equations 9 and 15 show that other information can be embedded
in the losses. As such, Equation 6 can be used to derive other (novel) multi-view
imbalanced learning methods by either choosing other loss functions, or modify-
ing the information contained therein (such as enforcing the cooperation between
the views, embedding prior information on the classes, etc.).

On the combined learners In Section 4, we argued that the main advantage of
Carako (Algorithm 1) over MKL is the fact that our method is not limited to
kernel methods. Other, more empirical, works will be focused on testing Carako
with other learning methods and studying the effect that the cooperation be-
tween the views has on the final combined classifier.

On theoretical improvements Finally, future work will also be focused on finding
tighter bounds for the result given in Equation 15. As is, the constant term (right-
handed side of the equation) depends on the number of classes and when this
number is important, the constant might overshadow the true objective in the
left-handed side of the equation. Although this might not present a real challenge
for current multi-view imbalanced datasets, we think that finding tighter bounds
will not only address a crucial issue for our approach, but it might also allow to
derive novel algorithms in the same spirit as µCoMBo.
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8 Conclusion

In this paper, we proposed various multi-view ensemble learning methods, pro-
posed in Sections 4 and 5, for dealing with imbalanced views and classes. The
novelty of our approach consists in injecting a cooperation-based multi-view clas-
sifier (Eq. 7) in the imbalanced classes framework (Eq. 5). This choice is mainly
motivated by the promotion of the cooperation between the views in the output
space, so that each view is associated with the classes it recognizes best. Our
intuition is further confirmed by the empirical results in Section 6. We think
that the work presented here is a first clear answer to the question posed in
the introduction, while at the same time raising various research questions (e.g.
the choices of the confusion matrix, its norm, the multi-view classifier, etc.). In
the next future, a deep study of the complexity of µCoMBo is required, which
mainly involves the specific properties of the non-linear convex optimization it
relies on.
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