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ABSTRACT 
The reconstruction of mechanical sources from vibration measurements is known to be an ill-posed inverse 
problem. A classical solution to overcome this difficulty consists in including prior information on the spatial 
distribution of the sources to constrain the space of solutions. Among all the methods developed to this end, 
the Tikhonov regularization is certainly the most popular. However, it assumes a global a priori on the spatial 
distribution of sources. Incidentally, poor results can be obtained if a structure is subjected to localized and 
distributed sources. This paper aims at providing an identification methodology able to take advantage of 
prior local information on both the nature and location of excitation sources. For this purpose, the Bayesian 
framework is well adapted, since it offers a rigorous probabilistic approach to exploit our a priori knowledge 
on the sources to identify. The proposed Bayesian formulation is based on the use of generalized Gaussian 
priors, which provide a flexible way to introduce local a priori information. Practically, the resulting 
optimization problem is solved from a Generalized Iteratively Reweighted Least-Squares algorithm. The 
validity of the proposed methodology is illustrated numerically. It is especially shown that local information 
improves drastically the quality of the source identification. 
Keywords: Source identification, Vibration, Regularization 

1. INTRODUCTION 
The source identification of mechanical sources from vibration measurements is an ill-posed inverse 

problem, meaning that the existence of a unique stable solution is not guaranteed. A classical approach to 
bypass this difficulty consists in including in the formulation of the inverse problem some prior information 
on the measurement noise and the spatial distribution of sources to constrain the space of solutions. This idea 
is at core of Tikhonov-like regularization methods [1]. In such a regularization procedure, however, the a 
priori on the spatial distribution of sources is global. Incidentally, this can lead to poor identification if actual 
sources combine both localized and distributed sources, since the a priori has to reflect a compromise 
between two contradictory distributions. 

The present paper aims at remedying this problem using available local information on the distribution 
and the nature of sources to identify. The proposed approach relies on the Bayesian inference, which offers a 
rigorous mathematical framework allowing combining both probabilistic and mechanical data [2]. To exploit 
our a priori knowledge of excitation sources, the structure is divided into different zones in which it is 
assumed that local priors on the sources to identify follow generalized Gaussian distributions. In doing so, 
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prior information can be accurately tuned in each zone of the structure. From a mathematical point of view, 
the solution of the problem is defined as the maximum a posteriori estimate. Practically, one seeks the 
solution of the dual minimization problem, which is solved from a Generalized Iteratively Reweighted 
Least-Squares algorithm [3]. To assess the validity of such an approach, a numerical validation is proposed. 
Obtained results clearly show that using prior local information significantly improves the quality of the 
identification. 

2. BAYESIAN SOURCE IDENTIFICATION 

2.1 Problem description 

Let consider the practical situation where the vibration field X, measured over the surface of a 
structure, is caused by an unknown excitation field F. If the structure is linear, it dynamic behavior is 
completely determined by the transfer functions matrix H, relating the vibration field X to the 
unknown field F. Now, let suppose that the measured vibration field is corrupted by a measurement 
noise N. In such a situation, the measured vibration field X is obtained from the following direct 
formulation: 

NHFX += . 

 
(1) 

The structural source identification problem consists in estimating the unknown excitation field F 
acting on a structure from the vibration field X measured on its surface. To this end, the Bayesian 
framework is adopted. The Bayesian paradigm consists in considering all the parameters of the 
problem as random variables. Consequently, the uncertainty on each parameter is modeled by a 
probability distribution, describing the state of knowledge or the prior on this parameter. The Bayesian 
source identification formulation relies on the Bayes’ rule: 

( ) ( ) ( )FFXXF ppp ∝ , (2) 

where: 
- ( )XFp  is the posterior probability distribution, representing the probability of observing F 

given a vibration field X. In other words, it defines what it is known about the excitation field 
F after making vibration measurements; 

- ( )FXp  is the likelihood function, representing the probability of measuring X given an 

excitation field F. It reflects the uncertainty related to the measurement of the vibration field 
X; 

- ( )Fp  is the prior probability distribution, representing our knowledge on the unknown 
excitation field F before measuring the vibration field X. 

 

In this paper, one will seek the most probable excitation field F̂  given a measured vibration field 

X. From the Bayesian point of view, it consists in finding a point estimate of F̂  corresponding to a 
mode of the posterior probability distribution. Mathematically speaking, the solution of the 
identification problem is sought as the maximum a posteriori estimate, that is: 

( ) ( ) ( )FFXXF  F
FF

ppp argmaxargmaxˆ == . 

 

(3) 

Practically, it is generally easier to find a solution of the following dual minimization problem: 

( ) ( ) ( )FFXXF  F
FF

ppp loglogminarglogminargˆ −−=−= . (4) 

2.2 Choice of the likelihood function and the prior probability distribution 

2.2.1 Choice of the likelihood function 

The likelihood function reflects the uncertainty related to the measurement of the vibration field X. 
By definition, this uncertainty is mainly related to the measurement noise N. Consequently, the 

likelihood function ( )FXp  can be rewritten under the following form: 

( ) ( )NHFXFX −= pp , (5) 
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representing the probability of obtaining 0HFX =−  given the measurement noise N. 
 

If the noise is supposed to be due to multiple independent causes, then the likelihood function 

( )FXp  can be represented by a normal distribution with mean HF and variance 2α : 

( )
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where 
2

•  is the L2-norm. It can be noticed that the form of the probability distribution implicitly 

assumes that all the elements of the vector HFX −  are independent identically distributed variables 
with same standard deviationα . 
 

2.2.2 Choice of the prior probability distribution 

The prior probability distribution reflects the uncertainty related to the unknown excitation field F. 
It can be seen as a measure of the a priori knowledge of the experimenter on the sources to identify. If 
one supposes that the structure is excited in different regions by uncorrelated excitations of various 
types (localized or distributed), then local excitation fields Fi can be considered as independent 
identically distributed variables. As a result, the prior probability distribution is written: 

( ) ( )∏
=

=
N

i
pp

1
iFF , (7) 

where N is the number of selected zones and ( )iFp  is the local prior probability distribution reflecting 

the prior knowledge of the expert on the nature of the sources in the zone i. 
 

For practical reasons, one assumes that the each excitation fields Fi follows a generalized Gaussian 
distribution with zero mean, that is: 
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where: 
- iq  is the shape parameter controlling the shape of the probability distribution in the zone i. The 

shape parameter is defined in the interval ] [+∞,0 ; 

- 
iq

•  is 
iqL -norm or quasi-norm; 

- iβ  is a scaling factor which defines the dispersion of the distribution around the mean. It is 
therefore a generalized measure of the variance in the zone i; 

- iL  is a differentiation operator that allows controlling the regularity of the solution. 

2.3 Practical form of the identification problem 

In order to derive the practical form of the identification problem, one just has to introduce Eqs. (6) 
and (8) in Eq.(4). In doing so, one finally obtains a formulation of the identification problem 
equivalent to a generalized Tikhonov regularization: 
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(9) 

At this stage, one has 2N+1 parameters (iq , iβ ,α ) to mathematically transcribe prior information 
on the measurement noise and the nature of the sources to identify. However, it can be emphasized that 
parameters iq  and iβ  play a similar role. Therefore, only one set of parameters ( iq  or iβ ) can be 

used. Here, it has been chosen to work with the scale parametersiq , while setting the values of the 

scale parameters iq
iβ  to a unique constant valueβ . Taking this observation into account, one finally 

gets the practical form of the identification problem: 
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where βαλ 2=  is generally known as the regularization parameter. It can be noticed that the 

proposed formulation is equivalent to the standard Tikhonov regularization if 2=iq for all [ ]Ni ,1∈ . 

3. BAYESIAN SOURCE IDENTIFICATION 
In this paper, the solution of the minimization problem given by Eq. (10) is computed from a 

general version of the Iteratively Reweighted Least-Squares (IRLS) algorithm [3]. 

3.1 General principle 

The core idea of the Generalized Iteratively Reweighted Least-Squares (GIRLS) algorithm is to 

replace, within an iterative scheme, the 
iqL -norm, that appears in Eq. (10), by a weighted  L2-norm, 

so that the functional to minimize has an explicit expression at each iteration. For this purpose, one just 
has to notice that: 
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where ( ) 22 −= q
nn x

q
xw  is the weighting coefficient. 

As part of an iterative scheme, one tries to find the solution ( )1+kx  at iteration k+1 from the 

solution ( )kx  at iteration k by setting ( ) ( )( )k
nn xwxw = , in order to find the equality (11) when the 

process has converged. Here, the direct application of this idea consists in replacing the minimization 

problem given by Eq.(11) by an equivalent iterative process, for which the excitation field ( )1ˆ +kF  at 
iteration k+1 is the solution of the following minimization problem: 
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where ( )k
iW  is a definite positive matrix of the form: 
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where ( )k
iε  is a is a small real positive number acting as a damped parameter. It allows avoiding infinite 

weights when ( ) 0→kx  and 2<iq . 

3.2 Choice of the tuning parameters, initial guess and stopping criterion 

According to Eq.(12), the tuning parameters of the problem are the shape parametersiq , the 

regularization parameter( )1+kλ  and the damping parameter( )k
iε . 

To properly choose the shape parametersiq , one has to keep in mind that these parameters control the 

general shape of the distribution. So, using 2≥iq  will give priority to smooth solutions, while using 

1≤iq  will favor sparse solutions. 

Regarding the choice of the regularization parameter ( )1+kλ  and the damping parameter( )k
iε , 

automatic selection procedures have been implemented. For the regularization parameter, the L-curve 
principle is used [4], while for the damping parameter, its value is set so that a fixed percentageip  of 
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the smallest values of ( )k
iiFL ˆ  are below ( )k

iε . In the next of the paper, 5=ip %. 

Since the algorithm is iterative, another critical issue is the choice of the initial solution as well as 
that of the stopping criterion. Choosing a good initial guess is a key point of the convergence of the 
algorithm, since the functional to minimize is non-convex when 1<iq . The question that arises here is: 
What is a good initial guess? Actually, it is a coarse solution of the problem, easy to calculate, but 
sufficiently close to the final solution to ensure the convergence of the iterative process. Such 
requirements are fulfilled by the solution of the standard Tikhonov regularization. Finally, it remains 
to define a stopping criterion for the GIRLS algorithm. In this paper, a stopping criterion related to the 

variation of the functional ( )( ) ( )
( )
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iterations is used. The algorithm is automatically stopped when a prescribed tolerance defined by the 

user is reached. Here, the tolerance is set to810− . 

4. NUMERICAL VALIDATION 
In the present numerical validation, one seeks to identify a point force of unit amplitude acting on 

a thin simply supported steel plate with dimensions 2x1.5x0.017 m3. The coordinates of the point force, 
measured from the lower left corner of the plate, are (x,y) = (1.04 m, 0.93 m). Moreover, to simulate the 
vibration field X, a finite element model of the plate made up with 567 quadrilateral shell elements has 
been used. It is worth to mention that an additive Gaussian white noise has been added to the data to 
simulate the measured vibration field. The noise has been computed so as to have a signal-to-noise 
ratio of 6 dB. Finally, a FE model of the structure with free boundary conditions is used to compute the 
transfer functions matrix H. This has the advantage of enabling the identification of the point force 
acting on the structure as well as reacting forces at boundaries. 

 
As shown in Figure 1a, in such a configuration, two types of spatial distributions can be 

distinguished over the structure: a smooth distribution of the reacting forces at boundaries and a 
singular distribution around the location of the point force. 

 

Figure 1 – Numerical validation – (a) Excitation field to identify at 450 Hz and (b) Identified excitation field 

from standard Tikhonov regularization 

Figure 1b presents the excitation field F̂  from the standard Tikhonov regularization. This Figure 
clearly shows that the location of the point force is properly estimated while the amplitude is greatly 
underestimated. On the contrary, reacting forces at boundaries are well identified. This contrasted 
result can be explained by the fact that the global a priori used in the standard Tikhonov regularization 
gives priority to smooth solutions. To improve the quality of the identification, the prior knowledge on 
the nature of sources acting on the source has to be exploited. Indeed, as presented in Figure 1a, one 
knows that the excitation field to identify is very sparse, except in the vicinity of the boundaries of the 
plate. Consequently, the structure can be divided into two regions: (i) a region, containing the point 
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force, in which a sparsity-promoting regularization term is required ( 5.01 =q ) and (ii) a region, 
corresponding to the boundaries of the plate, in which a regularization term that promotes the 
smoothness of the solution has to be employed ( 22 =q ) [see Figure 2a]. 
 

 
Figure 2 – Numerical validation – (a) Definition of the selected zones: (o) zone 1 (sparse), (x) zone 2 

(smooth) and (◊) location of the point force and (b) Excitation field identified using the proposed approach 

with IdentityL i =  

Figure 2b presents the excitation field identified from the proposed approach. The comparison of 
this result with the reference solution clearly shows that the proposed methodology allows identifying 
properly not only the location and the amplitude of the point force (0.995 instead of 1), but also the 
reacting forces at boundaries. 

5. CONCLUSIONS 
In the present study, the motivation was to propose a Bayesian formulation of the structural source 

identification problem able to fully exploit spatial information available a priori on the nature and the 
location of the sources. To this end, the structure is divided into several regions, in which it is supposed 
that local priors follow generalized Gaussian laws. This formulation is very flexible, insofar as the 
tuning parameters of these laws can be precisely adjusted to mathematically transcribe the a priori 
knowledge of the experimenter on the studied system. Formally, the solution of the problem is defined 
as the maximum a posteriori estimate, but practically, one seeks the solution of the dual minimization 
problem, which is solved from a Generalized Iteratively Reweighted Least-Squares algorithm. 
Numerical results show that exploiting local information substantially improves the quality of the 
source identification. 
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