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ABSTRACT

The reconstruction of mechanical sources from tidmameasurements is known to be an ill-posed sever
problem. A classical solution to overcome thisidifity consists in including prior information oimet spatial
distribution of the sources to constrain the spd@®lutions. Among all the methods developed i® ¢ind,
the Tikhonov regularization is certainly the mogpplar. However, it assumes a global a priori engbatial
distribution of sources. Incidentally, poor resw#n be obtained if a structure is subjected taliped and
distributed sources. This paper aims at providingdantification methodology able to take advantafje
prior local information on both the nature and toma of excitation sources. For this purpose, thgdsian
framework is well adapted, since it offers a riggr@robabilistic approach to exploit our a priorokledge
on the sources to identify. The proposed Bayesamdlation is based on the use of generalized Gauss
priors, which provide a flexible way to introducecél a priori information. Practically, the resngi
optimization problem is solved from a Generaliztstdtively Reweighted Least-Squares algorithm. The
validity of the proposed methodology is illustratagmerically. It is especially shown that localarhation
improves drastically the quality of the source iifezation.
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1. INTRODUCTION

The source identification of mechanical sourcesnfrabration measurements is an ill-posed inverse
problem, meaning that the existence of a uniguaestsolution is not guaranteed. A classical apgrdac
bypass this difficulty consists in including in tfiemulation of the inverse problem some prior mfiation
on the measurement noise and the spatial distibofi sources to constrain the space of solutibiis.idea
is at core of Tikhonov-like regularization methddg In such a regularization procedure, howeues, &
priori on the spatial distribution of sources islgl. Incidentally, this can lead to poor identtfion if actual
sources combine both localized and distributed cgsyrsince the a priori has to reflect a compromise
between two contradictory distributions.

The present paper aims at remedying this problengusvailable local information on the distribution
and the nature of sources to identify. The propeggutoach relies on the Bayesian inference, whifelsoa
rigorous mathematical framework allowing combinbagh probabilistic and mechanical data [2]. To ekpl
our a priori knowledge of excitation sources, thicture is divided into different zones in whidhis
assumed that local priors on the sources to ideftifow generalized Gaussian distributions. Inrdpso,
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prior information can be accurately tuned in eamhezof the structure. From a mathematical pointied,

the solution of the problem is defined as the maxma posteriori estimate. Practically, one seeks th
solution of the dual minimization problem, whichdgslved from a Generalized Iteratively Reweighted
Least-Squares algorithm [3]. To assess the valafigsuch an approach, a numerical validation ippsed.
Obtained results clearly show that using prior laoformation significantly improves the quality dfie
identification.

2. BAYESIAN SOURCE IDENTIFICATION

2.1 Problem description

Let consider the practical situation where the atlim field X, measured over the surface of a
structure, is caused by an unknown excitation ffeldf the structure is linear, it dynamic behavisr i
completely determined by the transfer functions rirat, relating the vibration fieldX to the
unknown fieldF. Now, let suppose that the measured vibratiordfielcorrupted by a measurement
noiseN. In such a situation, the measured vibration fi¥lds obtained from the following direct
formulation:

X=HF+N. 1)

The structural source identification problem cotsia estimating the unknown excitation figtd
acting on a structure from the vibration fiekdmeasured on its surface. To this end, the Bayesian
framework is adopted. The Bayesian paradigm comdistconsidering all the parameters of the
problem as random variables. Consequently, the nmicdy on each parameter is modeled by a
probability distribution, describing the state ofdwledge or the prior on this parameter. The Bayesi
source identification formulation relies on the Bayrule:

p(F[X) 0 p(X|F)p(F), )
where:

- p(F|X) is the posterior probability distribution, repretiag the probability of observing
given a vibration fieldX. In other words, it defines what it is known abthu excitation field
F after making vibration measurements;

- p(X|F) is the likelihood function, representing the probability of measurikggiven an
excitation fieldF. It reflects the uncertainty related to the measwnt of the vibration field
X,

- p(F) is the prior probability distribution, representirmur knowledge on the unknown
excitation fieldF before measuring the vibration fiexd

In this paper, one will seek the most probable ttimin field F given a measured vibration field

X. From the Bayesian point of view, it consists imding a point estimate of corresponding to a
mode of the posterior probability distribution. Mamatically speaking, the solution of the
identification problem is sought as the maximumoatgriori estimate, that is:

F= argmaxp(F|X) = argmaxp(X|F)p(F) :
F F

(3)
Practically, it is generally easier to find a sodut of the following dual minimization problem:
F =argmin-log p(F|X) = argmin-log p(X|F)— log p(F). (4)
F F

2.2 Choice of the likelihood function and the prior probability distribution
2.2.1 Choice of the likelihood function

The likelihood function reflects the uncertaintyated to the measurement of the vibration fi¥ld
By definition, this uncertainty is mainly related the measurement noig¢. Consequently, the

likelihood function p(X|F) can be rewritten under the following form:
p{X|F)= plx ~HFN). )



representing the probability of obtaining —HF =0 given the measurement noisle

If the noise is supposed to be due to multiple pedelent causes, then the likelihood function
p(X|F) can be represented by a normal distribution wittamtéF and variance?:
2
1[X-HF[,

p(X|F) D exq - et (6)

where

, is the l,-norm. It can be noticed that the form of the proitity distribution implicitly

assumes that all the elements of the vecXor HF are independent identically distributed variables
with same standard deviation

2.2.2 Choice of the prior probability distribution

The prior probability distribution reflects the wertainty related to the unknown excitation fiéld
It can be seen as a measure of the a priori knayeled the experimenter on the sources to idenlfify.
one supposes that the structure is excited in mifferegions by uncorrelated excitations of various
types (localized or distributed), then local extida fields F; can be considered as independent
identically distributed variables. As a result, fréor probability distribution is written:

o(F)=[] plF). )

whereN is the number of selected zones ap(Fi) is the local prior probability distribution refléng
the prior knowledge of the expert on the natur¢hef sources in the zone

For practical reasons, one assumes that the eadfagan fieldsF; follows a generalized Gaussian
distribution with zero mean, that is:

1Rl

p(F ) O ex o A

(8)

where:
- @, isthe shape parameter controlling the shapeeptbbability distribution in the zorieThe

shape parameter is defined in the inter\}ﬁh-oo[ X

is Lqi -norm or quasi-norm;

- B is a scaling factor which defines the dispersidrih@ distribution around the mean. It is
therefore a generalized measure of the variantedrzons;
- L, is a differentiation operator that allows contnodl the regularity of the solution.

2.3 Practical form of the identification problem

In order to derive the practical form of the idéitttion problem, one just has to introduce Eq$. (6
and (8) in Eq.(4). In doing so, one finally obtaiasformulation of the identification problem
equivalent to a generalized Tikhonov regularization

2 Gi
- X-HF N LF
F:argminlu 5 ”2 +Z 1 " 1 I"qi , (9)
F 2 a EL A

At this stage, one h&@N+1 parametersd, 5, @ ) to mathematically transcribe prior information
on the measurement noise and the nature of thessto identify. However, it can be emphasized that
parametersg; and S, play a similar role. Therefore, only one set ofgpaeters ¢, orf;) can be

used. Here, it has been chosen to work with théesparameterg;, while setting the values of the
scale parameterg® to a unique constant valyk Taking this observation into account, one finally
gets the practical form of the identification prebi:



E = argminZ[X - HE|Z + 4> = L F |®
F—arglen2||X HF||2+/1£qi I iFillg - (10)

whereA :az/g is generally known as the regularization paramekeican be noticed that the
proposed formulation is equivalent to the standékthonov regularization ifg; = 2for alli D[L N].

3. BAYESIAN SOURCE IDENTIFICATION

In this paper, the solution of the minimization pkem given by Eq. (10) is computed from a
general version of the Ilteratively Reweighted Leagtiares (IRLS) algorithm [3].

3.1 General principle
The core idea of the Generalized lteratively Rew&dd Least-Squares (GIRLS) algorithm is to
replace, within an iterative scheme, tl1uai -norm, that appears in Eq. (10), by a weighted-narm,

so that the functional to minimize has an explésipression at each iteration. For this purpose josie
has to notice that:

1 1 1
0%, Dq,alMIZ =a§|xn|q =§§""(Xn)|xn|2v (11)

where W(xn)=§|xn|q_2 is the weighting coefficient.

As part of an iterative scheme, one tries to fiheé solution x(""l) at iterationk+1 from the

solution x® at iterationk by settingw(xn):vv(x,gk)), in order to find the equality (11) when the
process has converged. Here, the direct applicatidhis idea consists in replacing the minimizatio

problem given by Eqg.(11) by an equivalent iteratprecess, for which the excitation field®*) at
iterationk+1 is the solution of the following minimization prigm:
R (k+1) N
(42) = argmin £[X = HF|? + 2 O
P =argmin - e[+ 47 Ewi a2
where Wi(k) is a definite positive matrix of the form:
Wi(k) = d|a{q£-rg (I- i IE|(k))i| ' (13)
i
with:
%2 gy 5 oK)
X six\ > g
TE (X(k))— ‘ ‘ ! (14)

) ‘fi(k)‘q_z six) < gl

Whereei(k) is ais a small real positive number acting aampled parameter. It allows avoiding infinite

weights When‘x(k)‘ ~ 0 andg < 2

3.2 Choice of the tuning parameters, initial guess and stopping criterion

According to Eqg.(12), the tuning parameters of fireblem are the shape parametgrsthe
regularization parametelp”l) and the damping parameté'f).
To properly choose the shape paramedggr®ne has to keep in mind that these parameternsaldahe
general shape of the distribution. So, usigg=  whHl give priority to smooth solutions, while ugjn
g, <1 will favor sparse solutions.

Regarding the choice of the regularization param(fél) and the damping parametq(F),

automatic selection procedures have been implerdeRt@r the regularization parameter, the L-curve
principle is used [4], while for the damping pardereits value is set so that a fixed percentpg®f



the smallest values O{Lilii(k)‘ are be|OV\£i(k). In the next of the papep, =5 %.

Since the algorithm is iterative, another criticsdue is the choice of the initial solution as wasl
that of the stopping criterion. Choosing a goodiaiguess is a key point of the convergence of the

algorithm, since the functional to minimize is noorvex wherm, < 1The question that arises here is:

What is a good initial guess? Actually, it is a sEsolution of the problem, easy to calculate, but
sufficiently close to the final solution to ensutlee convergence of the iterative process. Such
requirements are fulfilled by the solution of tharsdard Tikhonov regularization. Finally, it remain
to define a stopping criterion for the GIRLS algbm. In this paper, a stopping criterion relatedh®

~ ~ ()12 (k) N
variation of the functionaIJ(F(k)):%"X—HF(k)”Z+%Z"Wi(k"l)LiFi(k)"z between two successive
i=1

iterations is used. The algorithm is automaticaligpped when a prescribed tolerance defined by the
user is reached. Here, the tolerance is skt ta

4. NUMERICAL VALIDATION

In the present numerical validation, one seekslémiify a point force of unit amplitude acting on
a thin simply supported steel plate with dimensigis5x0.017 ni. The coordinates of the point force,
measured from the lower left corner of the plate,@®&y) = (1.04 m, 0.93 m). Moreover, to simulate the
vibration fieldX, a finite element model of the plate made up B7 quadrilateral shell elements has
been used. It is worth to mention that an additBaussian white noise has been added to the data to
simulate the measured vibration field. The noise haen computed so as to have a signal-to-noise
ratio of 6 dB. Finally, a FE model of the structuvigh free boundary conditions is used to comphte t
transfer functions matri¥l. This has the advantage of enabling the identiidcaof the point force
acting on the structure as well as reacting foatesoundaries.

As shown in Figure 1a, in such a configuration, ttypes of spatial distributions can be
distinguished over the structure: a smooth distidru of the reacting forces at boundaries and a
singular distribution around the location of thardorce.

-
‘

-

i

_— —
Z £
@ 08~ @ 08~
- <
2 06~ 2 o
= =
E 04 E o.
] (-]

o : @
Eo.zg g ;
e S w

00058

y (m) x(m) y(m) x(m)

Figure 1 — Numerical validation — (a) Excitatioalfl to identify at 450 Hz and (b) Identified extiba field

from standard Tikhonov regularization

Figure 1b presents the excitation fiek from the standard Tikhonov regularization. Thiguie
clearly shows that the location of the point forsgroperly estimated while the amplitude is grgatl
underestimated. On the contrary, reacting forceboaindaries are well identified. This contrasted
result can be explained by the fact that the glabatiori used in the standard Tikhonov regulaiitrat
gives priority to smooth solutions. To improve tigality of the identification, the prior knowledga
the nature of sources acting on the source hag &xploited. Indeed, as presented in Figure la, one
knows that the excitation field to identify is vesparse, except in the vicinity of the boundariethe
plate. Consequently, the structure can be diviged iwo regions: (i) a region, containing the point



force, in which a sparsity-promoting regularizatiterm is required ¢, = 05) and (ii) a region,
corresponding to the boundaries of the plate, inctvha regularization term that promotes the
smoothness of the solution has to be employgd< ) [s@e Figure 2a].
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Figure 2 — Numerical validation — (a) Definitiontble selected zonesi)(zone 1 (sparse)x) zone 2

(smooth) and{) location of the point force and (b) Excitatioelfl identified using the proposed approach
with L, =Identity

Figure 2b presents the excitation field identiffedm the proposed approach. The comparison of
this result with the reference solution clearly wisadhat the proposed methodology allows identifying
properly not only the location and the amplitudetloé point force (0.995 instead of 1), but also the
reacting forces at boundaries.

5. CONCLUSIONS

In the present study, the motivation was to propp8ayesian formulation of the structural source
identification problem able to fully exploit spattiaformation available a priori on the nature ghé
location of the sources. To this end, the strucisitBvided into several regions, in which it igppwsed
that local priors follow generalized Gaussian lawkis formulation is very flexible, insofar as the
tuning parameters of these laws can be preciséglyséetl to mathematically transcribe the a priori
knowledge of the experimenter on the studied systemmally, the solution of the problem is defined
as the maximum a posteriori estimate, but pradgicahe seeks the solution of the dual minimization
problem, which is solved from a Generalized Iteraly Reweighted Least-Squares algorithm.
Numerical results show that exploiting local infation substantially improves the quality of the
source identification.
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