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Abstract. To identify mechanical sources acting on a structure, Tikhonov-like regularizations
are generally used. These approaches, however, only provide point estimates, meaning that the
uncertainty about the regularized solution is not quantified. In practice, such information is
essential to guarantee the quality of reconstructed sources. In this contribution, three possible
Bayesian formulations of the source identification problem are presented and their limitations
discussed. To assess the posterior uncertainty on the parameters appearing in each formulation
given a simulated vibration field and a mechanical model, a Gibbs sampler is implemented. The
proposed numerical validations highlight the practical interest of these formulations in terms
of parameters estimations and posterior uncertainty quantification.
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1 INTRODUCTION

In structural dynamics, most of the research papers are generally focused on the modeling
of the dynamic response of structures subject to perfectly determined excitation sources. How-
ever, the latter are only roughly or partially known in practice. As a result, an error in the
definition of the excitation vector is propagated to the dynamic response through the model and
can have a significant impact on the subsequent mechanical analysis. However, direct measure-
ment of excitation sources can be practically unfeasible. A possible alternative is to perform
indirect measurements using a model of the dynamic behavior of the studied structure and ac-
cessible quantities such as displacement or acceleration fields. Unfortunately, the reconstruction
of mechanical sources from vibration measurements is an ill-posed inverse problem. A classi-
cal approach to bypass this difficulty consists in constraining the space of solutions by using
prior information on the noise and the sources to reconstruct. A convenient and efficient way
to deal with such prior information is the Bayesian framework, because it allows combining
both probabilistic and mechanical data. The most widespread and popular approaches deriving
from Bayesian statistics are certainly Tikhonov-like regularizations [1, 2, 3]. Although widely
used and deeply studied, these methods generally provide only point estimates. In other words,
there is no information on the uncertainty about the regularized solution given the measured
data and the mechanical model. However, such information is of primary interest for industrial
applications, in which it is essential to guarantee the quality of obtained results. In the present
contribution, three possible Bayesian formulations of the source identification problem, based
on the use of Generalized Gaussian distributions, Gamma and truncated Gamma distributions,
are proposed. The limitations of each formulation are discussed from the identification of two
close point forces acting on a free-free beam. To assess the posterior uncertainty on the param-
eters appearing in each formulation given a simulated vibration field and a mechanical model, a
Gibbs sampler [4], including Hamiltonian Monte Carlo [5] updates, is implemented to perform
the inference. The proposed MCMC procedure is detailed in this contribution. The proposed
numerical validations highlight the practical interest of the proposed formulations in terms of
parameters estimations and posterior uncertainty quantification.

2 BAYESIAN FORMULATIONS OF THE RECONSTRUCTION PROBLEM

This section aims at introducing the three formulations of the Bayesian force reconstruction
problem as well as the related parameters. To render this section more didactic, each formula-
tion is applied on an academic test case in order to better highlight its advantages and limitations.
The MCMC algorithm used to perform the inferences will be detailed in section 3.

2.1 Description of the benchmark test case

Before presenting the three Bayesian formulations of the reconstruction problem, we pro-
pose to introduce the test case that will serve as a benchmark to analyze and compare each of
them. The studied structure is a free-free steel beam with dimensions 1×0.03×0.01 m3 excited
by two point forces of unit amplitude at 350 Hz. The coordinate of the point forces, measured
from the left end of the beam, are x1 = 0.6 m and x2 = 0.7 m [see Fig. 1].

To perform the reconstruction, a model has to be derived to relate the measured vibration
field and the excitation field. For this purpose, let us consider the practical situation where the
vibration field X, measured over the surface of a structure, is caused by an unknown excitation
field F. If the structure is linear and time invariant, its dynamic behavior is completely deter-
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Figure 1: Reference force field

mined by the transfer functions matrix H, relating the vibration field X to the excitation field F,
so that:

X = HF + N, (1)

where N is the measurement noise vector.

A finite element model of the beam made up with 20 plane beam elements has been used to
compute the transfer functions matrix H by assuming that only bending motions are measurable.
In other words, the transfer functions matrix is dynamically condensed over the measurable
dofs, corresponding here to the bending motions. To simulate the measured vibration field X,
Eq. (1) is applied using a noise vector N corresponding to a Gaussian white noise, which is
calculated assuming a signal-to-noise ratio equal to 34 dB. Finally, it is worth mentioning that
the model defined in Eq. (1) is the basis of the proposed Bayesian formulations, meaning that
the transfer functions matrix H is also used in the inverse problem. In other words, modeling
errors are not considered here.

2.2 Standard Bayesian formulation

Formally, the Bayesian paradigm considers all the parameters of the problem as random
variables. Consequently, the uncertainty on each parameter is modeled by a probability distri-
bution, describing the state of knowledge or the prior on this parameter. From a mathematical
standpoint, the Bayesian reconstruction problem relies on the Bayes’ rule:

p(F|X) ∝ p(X|F) p(F), (2)

where:

• p(F|X) is the posterior probability distribution, representing the probability of observing
F given a vibration field X. It defines what it is known about the excitation field F after
making vibration measurements;

• p(X|F) is the likelihood function, representing the probability of measuring X given an
excitation field F. It reflects the uncertainty related to the measurement of the vibration
field X;
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• p(F) is the prior probability distribution, representing our knowledge on the unknown
excitation field F before measuring the vibration field X.

Generally, the quality of the force reconstruction strongly depends on the choice of the like-
lihood function and the prior probability distribution. That is why, the choices made in this
contribution have to be carefully explained.

2.2.1 Choice of the likelihood function

The likelihood function reflects the uncertainty related to vibration measurements. By defini-
tion, this uncertainty is mainly related to the measurement noise N. Consequently, the likelihood
function p(X|F) can be written under the following form:

p(X|F) = p(X−HF|N), (3)

representing the probability of obtaining X−HF = 0 given the measurement noise N.

If the noise is supposed to be due to multiple independent causes, then the likelihood function
can be represented by a complex multivariate normal distribution with zero mean and precision
τn:

p(X|F, τn) =
[τn
π

]N
exp

[
−τn‖X−HF‖22

]
, (4)

where N is the number of measurement points.

2.2.2 Choice of the prior probability distribution

The prior probability distribution reflects the uncertainty related to the unknown excitation
field F. Actually, it can be seen as a measure of the a priori knowledge of the experimenter on
the sources to identify.

For practical reasons, the excitation field F is supposed to be a real random vector, whose
components are independent and identically distributed random variables following a General-
ized Gaussian distribution. As a result, the prior probability distribution is written:

p(F|τs, q) =

[
q

2 Γ(1/q)

]M
τ

M
q
s exp

[
−τs‖F‖qq

]
, (5)

where:

• q is the shape parameter of the distribution. Its value is defined in the interval ]0,+∞[;

• ‖ • ‖q is the `q–norm or quasi-norm, if q ≥ 1 and q < 1 respectively;

• τs is the scale parameter of the distribution, which can be viewed as a generalized measure
of the precision of the distribution;

• M is the number of reconstruction points;

• Γ(x) =
∫ +∞
0

tx−1 e−t dt is the gamma function.
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It should be noted that the choice of a multivariate generalized Gaussian distribution allows
a great flexibility for describing prior knowledge of the sources to identify. Formally, sparse
excitation fields are promoted for q ≤ 1, while distributed excitation fields are favored for
q = 2 [6]. In practical situations, the possible values of the shape parameter are bounded in the
interval ]0, 2].

2.3 Summary and application

From the explanations given above, the standard Bayesian formulation of the reconstruction
problem finally writes:

p(F|X, τn, τs, q) ∝ p(X|F, τn) p(F|τs, q). (6)

This formulation is said standard, because it leads to Tikhonov-like regularizations, which
correspond to the MAP estimate of Eq. (6). To explore the posterior probability distribution,
105 samples are drawn from Eq. (6). Fig. 2 and Tables 1 and 2 present the excitation fields
and the estimated values of the forces F1 and F2 obtained using either with a proper choice
of q (q = 0.5) [see Fig. 2a] or with a poor choice of q (q = 2) [see Fig. 2b]. It should be
noted that optimal values of τn and τs are strongly related to the value of q and are computed
accordingly as explained in section 3. Here, (τn, τs) = (2.77 × 1015, 1.48) for q = 0.5 and
(τn, τs) = (2.87× 1015, 12.44) for q = 2.
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Figure 2: Standard Bayesian formulation – Real part of the reconstructed force vector (a) with a proper choice of q
(q = 0.5) and (b) a poor choice of q (q = 2) – (—) Reference, (−−) Median of the samples and ( a ) 95% credible
interval

Parameter Median Mode 95% CI
F1 0.996 0.996 [0.942, 1.049]
F2 0.991 0.993 [0.934, 1.048]

Table 1: Standard Bayesian formulation – Summary of the inference result on the model parameters for q = 0.5

Several interesting conclusions can be drawn at the light of the results presented in Fig. 2 and
Tables 1 and 2. First of all, the choice of the supposedly known parameters have a significant
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Parameter Median Mode 95% CI
F1 0.543 0.543 [0.255, 0.833]
F2 0.447 0.447 [0.193, 0.778]

Table 2: Standard Bayesian formulation – Summary of the inference result on the model parameters for q = 2

impact on the quality of reconstruction. Indeed, a proper choice of the shape parameter leads
to a very good agreement of the reference field with the median of the samples, associated with
sharp posterior uncertainty region characterizes by the related 95% credible interval. On the
contrary, a poor choice of the shape parameter leads to a disappointing result, since the shape
of the median of the samples does not allow to discriminate the two point forces. Furthermore,
the posterior uncertainty region is quite large, which is closely related to the value of the shape
parameter q. All things being equal, the larger the value of the shape parameter is, the larger is
the area of the posterior uncertainty region.

The standard formulation gives information on the credibility of the identified excitation
field given the measured vibration field X, the precisions τn and τs and the shape parameter
q. Actually, this is the main drawback of the standard formulation, because the quality of the
inference is conditioned to the knowledge of the precisions and the shape parameter. If their
values are poorly chosen, then the resulting inference won’t be representative of the actual
distribution. As a consequence, it is compulsory to determine near-optimal values of q, τn and
τs if one wants to perform a relevant statistical inference.

2.4 Extended Bayesian formulation

To alleviate the limitations of the standard formulation, the approach generally adopted in
the literature consists in considering the precisions τn and τs as random variables, while letting
fixed the shape parameters q. If we further consider the precisions as independent variables, the
following extended formulation is obtained:

p(F, τn, τs|X, q) ∝ p(X|F, τn) p(F|τs, q) p(τn) p(τs), (7)

where p(τn) and p(τs) are the prior probability distributions of the precisions τn and τs respec-
tively.

2.4.1 Choice of the prior probability distribution of the precisions

The choice of the priori probability distributions p(τn) and p(τs) is first limited to distribution
having a strictly positive support, because the precisions τn and τs are real positive numbers.
The common choice, made in the literature, is the Gamma distribution. The reason for this is
rather clear, since the conjugate prior for the precision of a generalized Gaussian distribution is
a Gamma distribution [7]. Practically, the Gamma distibution is defined by:

G(τ |α, β) =
βα

Γ(α)
τα−1 exp(−β τ) with α > 0, β > 0, (8)

where α and β are respectively the scale parameter and the rate parameter of the distribution.

6



Mathieu Aucejo and Olivier De Smet

However, the use of a Gamma distribution is questionable, since it has been chosen for
mathematical convenience and does not reflect any real prior information on the precisions,
except their positiveness. That is why, the prior distribution on τn and τs should be as minimally
informative as possible [8]. To this end, one sets αn = αs = 1 and βn = βs → 0.

2.4.2 Summary and application

Considering the previous choice, the extended Bayesian formulation of the reconstruction
problem is given by:

p(F, τn, τs|X, q) ∝ p(X|F, τn) p(F|τs, q) p(τn|αn, βn) p(τs|αs, βs), (9)

where (αn, βn) are the hyperparameters related to the precision τn, while (αs, βs) are the hyper-
parameters related to the precision τs.

This extended formulation has given rise, when q = 2, to the augmented Tikhonov regu-
larization [9]. This method provides a point estimate corresponding to a critical point of the
opposite of the logarithm of the posterior probability distribution. The main advantage of this
approach is to determine the regularized solution and the precision simultaneously using an it-
erative process.

As previously done, 105 samples have been drawn from the MCMC algorithm presented in
section 3 to explore the posterior probability distribution. Fig. 3 presents the excitation fields
obtained using either a proper choice of q (q = 0.5) [see Fig. 3a] or with a poor choice of q
(q = 2) [see Fig. 3b], while Tables 3 and 4 summarize the inference results on each parameter
of the model for q = 0.5 and q = 2 respectively.
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Figure 3: Extended Bayesian formulation – Real part of the reconstructed force vector (a) with a proper choice
of q (q = 0.5) and (b) a poor choice of q (q = 2) – (—) Reference, (−−) Median of the samples and ( a ) 95%
credible interval

Obtained results clearly show that the quality of the inference strongly depends on a proper
choice of the shape parameter q. Consequently, when setting q = 2, as classically done in
the literature to perform the inference, one takes the risk to draw erroneous conclusions if the
structure is actually excited by localized sources, even if the precisions are estimated from
Bayesian inference.
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Parameter Median Mode 95% CI
F1 0.998 0.998 [0.946, 1.053]
F2 0.987 0.987 [0.931, 1.041]
τn 4.87× 1015 4.67× 1015 [2.87, 7.67]× 1015

τs 10.44 10.19 [7.42, 14.21]

Table 3: Extended Bayesian formulation – Summary of the inference result on the model parameters for q = 0.5

Parameter Median Mode 95% CI
F1 0.565 0.565 [0.253, 0.889]
F2 0.497 0.497 [0.181, 0.817]
τn 4.29× 1015 4.04× 1015 [2.17, 7.80]× 1015

τs 10.37 9.81 [5.38, 17.88]

Table 4: Extended Bayesian formulation – Summary of the inference result on the model parameters for q = 2

2.5 Complete Bayesian formulation

The applications of standard and extended Bayesian formulations have pointed out the need
for properly defining the value of the shape parameter q. However, choosing a priori relevant
value is far from an easy task for non-experienced user. That is why, it is interesting to infer
the shape parameter from a Bayesian analysis. Practically, this is done by considering this
parameter as a random variable. In doing so, one obtains the complete Bayesian formulation:

p(F, τn, τs, q|X) ∝ p(X|F, τn) p(F|τs, q) p(τn|αn, βn) p(τs|αs, βs) p(q), (10)

where p(q) is the prior probability distribution of the shape parameter q.

2.5.1 Choice of the prior probability distribution of the shape parameter

The only available information is that the value of the shape parameter is bounded and pos-
itive. In absence of more precise knowledge on this parameter, the probability distribution is
not only chosen to reflect the available information but also for its mathematical tractability.
A probability distribution that meets these requirements is the truncated Gamma distribution
defined by:

GT (q|αq, βq, lb, ub) =
Γ(αq)

γ(αq, βqub)− γ(αq, βqlb)
G(q|αq, βq) I[lb,ub](q), (11)

where:

• G(q|αq, βq) is the Gamma distribution defined in Eq. (8);

• I[lb,ub](q) is the truncation function defined between the lower bound lb and the upper
bound ub. More precisely, this function simply writes:

I[lb,ub](q) =

{
1 if q ∈ [lb, ub]

0 otherwise
; (12)
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• γ(s, x) =
∫ x
0
ts−1 exp(−t) dt is the lower incomplete Gamma function.

Here, the choice of the truncated Gamma distribution has been made for mathematical con-
venience, because other continuous truncated distribution could have theoretically been used.
To avoid biasing the inference, the shape of the prior distribution needs to be weakly informa-
tive. Here, this means that the hyperparameters should be defined such that αq = 1 and βq → 0.
On the other hand, even if the lower and upper bounds lb and ub can theoretically take any posi-
tive value, one knows that the value of q practically lies in the interval ]0, 2]. For this particular
reason, we set lb = 0.05 and ub = 2.05.

2.5.2 Summary and application

From the above considerations, the complete Bayesian formulation is given by:

p(F, τn, τs, q|X) ∝ p(X|F, τn) p(F|τs, q) p(τn|αn, βn) p(τs|αs, βs) p(q|αq, βq, lb, ub). (13)

To explore the posterior probability distribution, 105 samples have been drawn from the
MCMC algorithm presented in section 3. Fig. 4 presents the excitation field obtained after per-
forming the inference, while Table 5 summarizes the inference results on the model parameters.
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Figure 4: Complete Bayesian formulation – Real part of the reconstructed force vector – (—) Reference, (−−)
Median of the samples and ( a ) 95% credible interval

Parameter Median Mode 95% CI
F1 0.995 0.995 [0.959, 1.033]
F2 0.992 0.992 [0.952, 1.030]
τn 5.02× 1015 4.69× 1015 [3.02, 7.84]× 1015

τs 11.51 11.28 [8.62, 14.80]
q 0.26 0.24 [0.14, 0.44]

Table 5: Complete Bayesian formulation – Summary of the inference result on the model parameters

As expected, obtained results clearly show that the inference performed from the complete
Bayesian formulation is able to provide parameters estimates as well as a quantification of
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the posterior uncertainty on those parameters. In particular, it can be stressed that the median
of the reconstructed excitation field agrees very well with the reference one. Furthermore, it
could be added that the size of the associated 95% credible interval is small, meaning that the
reconstructed excitation field is highly probable given the mechanical model and the measured
vibration field.

3 BAYESIAN INFERENCE - MCMC ALGORITHM

In the previous section, the main features of each Bayesian formulation have been studied
without describing the algorithm behind the results presented. Actually, a Gibbs sampler have
been implemented to explore the posterior probability distribution of each Bayesian formula-
tions. To render the presentation of the proposed sampler more concise, the proposed Gibbs
sampler is derived for the complete Bayesian formulation, since the samplers associated to the
standard and the extended Bayesian formulations are, in fact, only particular cases of this more
general sampler.

The implementation of a Gibbs sampler requires the knowledge of the full conditional prob-
ability distributions. For the complete Bayesian formulation, one has for:

• the shape parameter q:

p(q|X,F, τn, τs) ∝
τ

M
q
s

Γ(1/q)M
qαq+M−1 exp

[
−βq q − τs‖F‖qq

]
I[lb,ub](q); (14)

• the precision τs:

p(τs|X,F, τn, q) ∝ G
(
τs

∣∣∣αs +
M

q
, βs + ‖F‖qq

)
; (15)

• the precision τn:

p(τn|X,F, τs, q) ∝ G
(
τn

∣∣∣αn +N, βn + ‖X−HF‖22
)

; (16)

• the force vector F:

p(F|X, τn, τs, q) ∝ exp
[
−τn‖X−HF‖22 − τs‖F‖qq

]
, (17)

which corresponds to the standard Bayesian formulation.

From the previous full conditional probability distributions, we can derive the following
Gibbs sampler:

1. Set k = 0 and initialize q(0), τ (0)s , τ (0)n and F(0);

2. Draw Ns samples from full conditional distributions

for k = 1 : Ns

a. draw q(k) ∼ p
(
q|X,F(k−1), τ

(k−1)
n , τ

(k−1)
s

)
10
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b. draw τ
(k)
s ∼ p

(
τs|X,F(k−1), τ

(k−1)
n , q(k)

)
c. draw τ

(k)
n ∼ p

(
τn|X,F(k−1), τ

(k)
s , q(k)

)
d. draw F(k) ∼ p

(
F|X, τ (k)n , τ

(k)
s , q(k)

)
end for

3. Monitor the convergence of the Markov chains

In the next of this section, each step of the Gibbs sampler is detailed.

3.1 Initialization of the sampler

In the present contribution, the sampler is initialized from a starting point having a reasonably
high probability. Here, the initial force vector F(0) is obtained from the MAP estimate of the
standard Bayesian formulation, which is defined by [see Ref. [3] for more details]:

F(0) = argmin
F
‖X−HF‖22 + λ(0)‖F‖q

(0)

q(0)
, (18)

where λ(0) = τ
(0)
s /τ

(0)
n is the regularization parameter.

To obtain a relevant initial force vector, it is necessary to determine reasonable values of the
shape parameters q(0) and the precisions τ (0)s and τ (0)n . Practically, the values of the shape pa-
rameter q(0) can be chosen without any calculation using the indications given in section 2.2.2.
However, because q(0) can take any value in the range ]0,2], the solution of the previous opti-
mization problem has generally no closed-form expression and hence the optimal value of the
regularization parameter λ(0) can not be directly computed from automatic selection procedures
such as the L-curve principle [10].

Practically, the optimization problem is solved using an Iteratively Reweighted Least Squares
(IRLS) algorithm [11]. From a Bayesian standpoint, the IRLS procedure can be viewed as a
transformation of the Generalized Gaussian prior into a multivariate Gaussian-like prior. More
precisely, one has:

p(F|X, τ (0)s , q(0)) = p(F|τ (0)s , q(0))

∝ p(F|W, τ (0)s )

∝ exp
[
−τ (0)s ‖W1/2 F‖22

]
,

(19)

where W is a diagonal global weighting matrix depending explicitly on F and q(0). This ex-
plains why Eq. (18) can only be solved using an iterative procedure.

At each iteration j of the IRLS algorithm, one has to solve:

F(0,j) = argmin
F
‖X−HF‖22 + λ(0,j)‖W(j)1/2 F‖22, (20)

until the convergence is reached.
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After convergence of the iterative process, the optimal force vector F(0), the global weight-
ing matrix W, as well as the optimal value of the regularization parameter λ(0), that has been
updated at each iteration using automatic selection procedure such as the L-curve principle, are
obtained. Consequently, to complete the initialization step it remains to determine the values of
τ
(0)
n and τ (0)s . Here, we follow the approach proposed by Pereira et al. [12] consisting in finding

the optimal values of τ (0)n and τ (0)s given the measured vibration field X only using a Bayesian
approach. With the proposed parametrization, one has:

τ (0)s =
N

XH
(
λ(0)I + HW−1HH

)−1 X
and τ (0)n =

τ
(0)
s

λ(0)
. (21)

3.2 Drawing samples for the shape parameter

The Gibbs sampler is generally the first choice for conditionally conjugate models, where
samples can be drawn directly from each conditional probability distribution. Unfortunately,
this is not the case for the shape parameters q, for which the conditional distribution is not stan-
dard. To bypass this difficulty, we propose to update the value of the shape parameter using a
Hamiltonian Monte Carlo (HMC) step, because it limit the random walk behavior of the sam-
pler.

In HMC, the Hamiltonian function can be written as follows:

H(q, s) = U(q) +K(s), (22)

where U(q) is called the potential energy and is defined as:

U(q) = − log
[
p
(
q|X,F(k−1), τ (k−1)n , τ (k−1)s

)]
, (23)

while K(s) is called the kinetic energy and is chosen for mathematical convenience. Usually, it
is defined such that:

K(s) = − log [N (s|0, 1)] =
1

2
sT s+ const. (24)

In this framework, q and s define the state space of the dynamical system and can be viewed
as the position and the momentum respectively. The evolution of the state (q, s) over the time t
is governed by the following system of equations:

dq

dt
=
∂H(q, s)

∂s
ds

dt
= −∂H(q, s)

∂q

. (25)

Practically, Eq. (25) is solved using the leapfrog method. Starting from an initial state
(q0, s0), it allows determining a proposal state (q?, s?), while taking into account the constraints
on the parameter q. Once a proposal state is obtained, one has to decide to accept it as a new
state with probability:

P = min (1, exp [H(q0, s0)−H(q?, s?)]) , (26)

or to reject it with probability 1− P .
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3.3 Drawing samples for the precisions

The conditional probability distribution for the precisions τn and τs are actually gamma dis-
tributions. Consequently, samples can be easily drawn from standard statistical packages.

3.4 Drawing samples for the force vector

At first sight, drawing samples from p
(

F|X, τ (k)s , τ
(k)
s , q(k)

)
seems a difficult task. However,

the IRLS algorithm allows writing when the iterative process has converged:

p
(
F|X, τ (k)n , τ (k)s , q(k)

)
∝ exp

[
−τ (k)n ‖X−HF‖22 − τ (k)s ‖W1/2 F‖22

]
∝ Nc(F|µF, ΣF),

(27)

where Nc(z|µ,Σ) is the (circurlarly-symmetric) complex multivariate Gaussian distribution
with mean µ and covariance matrix Σ. Here, the mean µF and the covariance matrix ΣF are
expressed as:

µF = τ (k)n ΣF HHX and ΣF =
(
τ (k)n HHH + τ (k)s W

)−1
. (28)

Once µF and the covariance matrix ΣF are obtained, samples of the force vector F(k) can be
easily drawn. A widely used method for drawing samples from a complex multivariate Gaussian
distribution consists in:

1. generating a complex random vector v ∼ Nc(v|0, I) from two real normal random vectors
v1 ∼ N (v1|0, I) and v2 ∼ N (v2|0, I):

v =
v1 + j v2√

2
, (29)

where j =
√
−1 is the imaginary unit;

2. determining any matrix L satisfying the relation LLH = ΣF. This can be typically done
using either a Cholesky decomposition or a spectral decomposition;

3. computing the new sample F(k) = µF + L v.

3.5 Convergence diagnostics

In the present contribution, all the inferences have been performed from one single chain for
each monitored parameter. More precisely, we have monitored the convergence of the precisions
(τn, τs) and the shape parameter q. The procedure used for convergence monitoring is based on
the combination of two complementary diagnostics:

1. the Raftery-Lewis diagnostic [13] that estimates the total run length and the burn-in pe-
riod;

2. the Geweke diagnostic [14] that tests the null hypothesis that the Markov chain is in the
equilibrium distribution and produces z-statistics for each estimated parameter.

Practically, the Raftery-Lewis is first applied to the chains to monitor. Then, the Geweke
diagnostic is applied to the resulting chains.
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3.6 Samplers for the standard and the extended Bayesian formulations

The MCMC algorithm for the complete Bayesian formulation can be used to derive the
MCMC algorithms corresponding to the standard and the extended Bayesian formulations. In-
deed, the MCMC algorithm related to the extended Bayesian formulation is obtained by not
considering the step 2a of the Gibbs sampler (i.e. by fixing the values of q), while the sampler
associated to the standard Bayesian formulation is derived from the general Gibbs sampler by
computing steps 1 and 2c only (i.e. by considering fixed values for τn, τs and q).

4 CONCLUSIONS

In structural dynamics, regularization approaches can be used to deal with source identifica-
tion problems. Although widely used and deeply studied, these methods generally provide only
point estimates. In other words, there is no information on the uncertainty about the regularized
solution given the measured data and the mechanical model. However, such information is of
primary interest for industrial applications, in which it is essential to guarantee the quality of
obtained results. In this contribution, three Bayesian formulations of the force reconstruction
problem have been proposed to tackle this issue and an original hybrid Gibbs sampler has been
implemented to perform the inferences. One of the merits of proposed sampler is to be flexi-
ble enough to deal with each formulation and provide estimates and uncertainty quantification
of all the parameters of the formulation considered. The proposed numerical example clearly
highlight the benefits and the limitations of the proposed formulations. In particular, it has been
shown that the standard and extended formulations should be used when precise information
about the problem is available. On the contrary, the complete formulation should be used in
case of too vague information about the problem. In this case, however, the solution is obtained
at a higher computational cost.
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