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Abstract

Kalman-type filtering tends to become one of the favorite approaches for

solving joint input-state estimation problems in the structural dynamics com-

munity. This article focuses on the applicability of the Augmented Kalman

Filter (AKF) for reconstructing mechanical sources, addressing a set of prac-

tical issues that are frequently encountered in the engineering practice. In

particular, this paper aims to help the reader to better apprehend some of

the advantages and limitations of the application of the AKF in the context

of purely input estimation problems. The present paper is not a simple col-

lection of test cases, since it introduces a novel state-space representation of

dynamical systems, based on the generalized-α method, as well as further

insights in the tuning of Kalman filters from the Bayesian perspective. In

this work, the various practical situations considered lead us to recommend

to employ collocated acceleration measurements, when reconstructing exci-

tation sources from the AKF. It is also demonstrated that the violation of

some of the feasibility conditions proposed in the literature doesn’t necessar-
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ily imply the failure of the estimation process.

Keywords: Inverse problem, Force reconstruction, Augmented Kalman

Filter, Structural dynamics.

1. Introduction

Joint input-state estimation based on Kalman-type filtering is a trending

topic in the system identification community as evidenced by the numerous

papers published in the last two decades. Nowadays, two classes of filters are

available for dealing with such a problem. The first one considers the input-

state estimation problem in a separate manner. In this class, the input-state

estimation can be achieved either by deriving an optimal recursive filter in

an unbiased minimium-variance sense [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] or by com-

bining two separate Kalman filters as in the Dual Kalman Filter proposed by

Eftekhar Azam et al. [11, 12]. In the second class of filters, the input-state

estimation is performed simultaneously by considering an augmented state

vector composed by both the state and input vectors [7]. In doing so, the re-

sulting input-state estimation problem is solved from a conventional Kalman

filter algorithm [13, 14, 15].

In structural dynamics, Lourens et al. [16], Naets et al. [14] and, more

particularly, Maes et al. [17] have produced a set of guidelines derived from

control theory that guarantee the identifiability, stability and uniqueness of

estimated quantities. From the practitioner standpoint, however, these con-

ditions, related to model and sensor configurations, are necessary, but not

sufficient to ensure the success of the joint estimation in the presence of noise,
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because they establish the feasibility of the inversion process for a given ex-

perimental set-up from an algorithmic perspective only. Consequently, some

practical issues remain partially documented or not clearly illustrated, even

if a careful reading and analysis of the extensive literature available provides

some rather useful indications.

At this stage, it is important to mention that the Kalman-type strategies

evoked above are the most commonly used currently in the structural dy-

namics community to jointly estimate the state and the external excitation

sources applied to a structure. Of course, more sophisticated and state-of-

the-art approaches, such as cubature Kalman Filters [18] or NIRK-based

extended Kalman filters [19], could be used for that purpose. This lies, how-

ever, outside the scope of this paper, which intends to assess the applicability

of the Kalman-type filters to deal with force reconstruction problems in some

particular practical situations. This paper is more particularly focused on the

applicability of the Augmented Kalman Filter (AKF) proposed by Lourens

et al. [13]. This choice is made because it allows performing joint input state

estimation simultaneously from a standard Kalman filter scheme, which has

solid theoretical foundations. Because the present paper is focused on purely

input estimation problems, this means that state estimation is not of partic-

ular interest here. In this regard, several issues are of concern when dealing

with the practical implementation of such an identification strategy. More

specifically, it is proposed to thoroughly illustrate the behavior of the AKF

regarding the type of kinematic data used as output data, the possibility of

real-time reconstruction or the influence of sensors and reconstruction con-
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figurations. To this end, the state-space representation used to implement

the AKF is based on a state-space representation built from the generalized-

α method, which is unconditionnally stable and second order accurate. To

clearly introduce the theoretical background of the filtering strategy and il-

lustrate each of the practical issues evoked previously, the paper is divided

into three parts. In section 2, the derivation of the state-space representation

of a dynamical system based on the generalized-α method is introduced, as

well as the main equation of the AKF. Section 3 is dedicated to the tuning of

the Kalman Filter. Indeed, it has been shown in [11, 20] that the innovation

norm can be used to properly tune Kalman-type filter. More precisely, best

estimations are obtained for tuning parameters minimizing the mean square

innovation norm. However, to the best of our knowledge, the relevance of this

indicator has not been explained from theoretical arguments. Consequently,

this particular point is at core of section 3. Finally, section 4 aims at illus-

trating the suitability of Kalman-type filters in some particular situations

that frequently arise in real-world applications.

2. Kalman Filter for input estimation

Kalman-type filter relies on the discretized state-space representation of

the considered dynamical system. The most widespread approach to dis-

cretize the state-space representation of a dynamical system is the zero-order-

hold (ZOH) sampling technique, which consists in assuming that the input

of the system u(t) is constant within a time step [13]. Formally, the corre-

sponding discretized state-space representation, composed of the state and
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output equations, is written:xk+1 = Axk +Buk +wx
k

yk = Oxk +Duk + vk
, (1)

where xk, uk and yk are the state, input and output vectors at sample k,

while A, B, O and D are, respectively, the discretized state, input, output

and feedthrough matrices. Here, wx
k denotes the Gaussian process noise with

zero mean and covariance matrix Qx and vk is the Gaussian measurement

noise with zero mean and covariance matrix R.

Although widely used, this model is conditionally stable and its perfor-

mances strongly depends on the sampling rate. That is why, Liu et al. pro-

posed a state-space model established from the Newmark integration scheme

[21]. However, despite Newmark approach being unconditionally stable for a

well-chosen set of parameters (namely γ = 1/2 and β = 1/4) [22], it does not

allow introducing numerical damping on the response of the high frequency

modes present in the model. Consequently, if those modes are not properly

discretized in space and time, numerical errors can affect the computed me-

chanical fields [23]. A practical way of introducing numerical damping in the

Newmark method consists in using the HHT (Hilber-Hughes-Taylor) scheme

by choosing the parameters γ and β such that [24]:

γ =
1

2
+ α and β =

1

4

(
1 + α2

)
with 0 ≤ α < 1. (2)

As appealing it seems, the resulting Newmark scheme is first-order accu-

rate only. To preserve the second-order accuracy, some other numerical inte-

gration methods have been introduced. One of the most general approaches
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is the generalized-α method [23], which includes the Newmark method, the

HHT scheme [24] and the WBZ (Wood-Bossak-Zienkiewicz) approach [25].

For a proper choice of parameters, the generalized-α method is uncondition-

ally stable and second-order accurate and minimizes the numerical damping

at low frequencies for a given high-frequency damping level. That is why, we

propose to extend the approach introduced by Liu et al. in [21] to derive a

state-space model based on the generalized-α method.

2.1. State-space representation of the dynamical system

This section intends to provide a careful derivation of the proposed state-

space representation of a dynamical system from the generalized-α method.

Practically, it consists in defining a state equation, describing the evolution of

the system state over the time, and an output equation, relating the measured

data to the system state and input.

2.1.1. State equation

Let us consider a regular partition of the time domain such that t0 < · · · <

tk < · · · < tf (t0 and tf : initial and final times) and let h = tk+1 − tk de-

note the time step size. To derive the state equation from the generalized-α

method for a mechanical system described by its mass, stiffness and damping

matrices (M, K, C), one has to start from the following equations [26]:

M
..

dk+1−αm +C
.

dk+1−αf
+Kdk+1−αf

= Su uk+1−αf
, (3a)

.

dk+1 =
.

dk + (1− γ)h
..

dk + γ h
..

dk+1, (3b)

dk+1 = dk + h
.

dk +
(
1

2
− β

)
h2

..

dk + β h2
..

dk+1, (3c)
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where γ and β are the parameters of the Newmark method, αm and αf

are two averaging parameters associated to the inertia and internal/external

forces, while dk = d(tk) and uk = u(tk) are, respectively, the displacement

and excitation vectors at time tk, Su being the selection matrix of the input

degrees of freedom. In the previous equation, the quantity dk+1−α must be

read as:

dk+1−α = (1− α)dk+1 + αdk. (4)

For linear systems, it is a common practice to use a modally reduced

order model to limit the computational costs. The resulting modal equations

are obtained by first expanding the displacement vector on the modal basis

of the considered structure, meaning that:

dk = Φn qk, (5)

where qk is the generalized displacement and Φn is the matrix of the mass-

normalized mode shapes. After making use of the orthogonality relations,

the previous set of equations becomes:

..
qk+1−αm

+ Zn
.
qk+1−αf

+ Ω2
n qk+1−αf

= ΦT
n Su uk+1−αf

, (6a)
.
qk+1 =

.
qk + (1− γ)h ..

qk + γ h
..
qk+1, (6b)

qk+1 = qk + h
.
qk +

(
1

2
− β

)
h2

..
qk + β h2

..
qk+1, (6c)

where Ωn = diag(ω1, . . . , ωn) and Zn = diag(2ξ1ω1, . . . , 2ξnωn), where ωn

and ξn are respectively the modal angular frequency and the modal damping

ratio of the mode n.
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The first step to derive the state equation consists in expressing acceler-

ation and velocity vectors at instant tk+1 in terms of acceleration, velocity

and displacement vectors at instant tk and the displacement vector at instant

tk+1 [21]. After some manipulations of Eqs. (6b) et (6c), one obtains:

.
qk+1 =

γ

β h

(
qk+1 − qk

)
+

(
1− γ

β

)
.
qk +

(
1− γ

2β

)
h
..
qk, (7a)

..
qk+1 =

1

β h2
(
qk+1 − qk

)
− 1

β h

.
qk −

(
1

2β
− 1

)
..
qk. (7b)

By introducing the last two relations into Eq. (6a), one gets:

qk+1 = LdΦT
nSu [(1− αf )uk+1 + αf uk] +Kd qk +Cd

.
qk +Md

..
qk, (8)

where

Ld =

[
1− αm
β h2

I+
(1− αf ) γ

β h
Zn + (1− αf )Ω2

n

]−1
,

Kd = Ld

[
1− αm
β h2

I+
(1− αf ) γ

β h
Zn − αf Ω2

n

]
,

Cd = Ld

[
1− αm
β h

I+ (1− αf )
(
γ

β
− 1

)
Zn − αf Zn

]
,

Md = Ld

[
(1− αm)

(
1

2β
− 1

)
I+ (1− αf )

(
γ

2β
− 1

)
hZn − αm I

]
.

Replacing now Eq.(8) in Eq. (7a), one finds:

.
qk+1 = LvΦT

nSu [(1− αf )uk+1 + αf uk] +Kv qk +Cv
.
qk +Mv

..
qk, (10)

where Lv = γ
β h
Ld, Kv = γ

β h
[Kd − I] , Cv = γ

β h
Cd +

(
1− γ

β

)
I and

Mv = γ
β h

Md +
(
1− γ

2β

)
h I.

Similarly, after introducing Eq.(8) in Eq. (7b), one readily obtains:

..
qk+1 = LaΦ

T
nSu [(1− αf )uk+1 + αf uk] +Ka qk +Ca

.
qk +Ma

..
qk, (11)
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where La = 1
β h2

Ld, Ka = 1
β h2

[Kd − I] , Ca = 1
β h2

[Cd − h I] andMa = 1
β h2

Md−(
1
2β
− 1
)
I.

All things considered, if the state vector xk is defined such that xk = [qTk
.
qTk

..
qTk ]T ,

then Eqs. (8), (10) and (11) can be gathered to form the desired state equa-

tion:

xk+1 = Axk +B+ uk+1 +B− uk, (12)

where

A =


Kd Cd Md

Kv Cv Mv

Ka Ca Ma

 , B+ = (1−αf )


Ld

Lv

La

ΦT
nSu, B− = αf


Ld

Lv

La

ΦT
nSu.

Finally, it should be noted that the proposed state equation based on the

generalized-α method is unconditionally stable and second-order accurate

provided that [22, 23]:

αf =
ρ∞

1 + ρ∞
, αm = 3αf − 1, γ =

1

2
+ αf − αm and β =

1

4
(1 + αf − αm)2 ,

(13)

where ρ∞ is the spectral radius belonging to the interval [0, 1]. In the present

paper, ρ∞ is set to 1.
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2.1.2. Output equation

Considering the previously defined state vector, the output equation can

be expressed as:

yk = Sd dk + Sv
.

dk + Sa
..

dk

= Sd Φn qk + Sv Φn
.
qk + Sa Φn

..
qk

= Oxk,

(14)

where Sd, Sv and Sa are, respectively, the selection matrices of the dis-

placement, velocity and acceleration data measured on the structure and

O = [Sd, Sv, Sa]Φn.

2.1.3. State-space model

From the state and output equations presented above, one can form the

state-space representation of the considered dynamical system derived from

the generalized-α method, namely:xk+1 = Axk +B+ uk+1 +B− uk +wx
k

yk = Oxk + vk
, (15)

where the process noise wx
k and the measurement noise vk has been added

to include uncertainties in the modeling and the measurement processes.

In the context of force reconstruction, this formulation of the dynamic

problem is non-standard, because the calculation of the state vector at instant

k + 1 requires the knowledge of the input vector at times k and k + 1.

It is however possible to reduce to classical state space representation by
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introducing the reduced state xk+1 defined such that [27]:

xk+1 = Axk +B− uk +wx
k . (16)

As a result, the state equation writes at time k:

xk = xk +B+ uk. (17)

Introducing now the previous relation in Eqs. (16) and (14), one finally

gets: xk+1 = Axk +Buk +wx
k

yk = Oxk +Duk + vk
, (18)

where B = AB+ +B− and D = OB+.

In the next parts of this paper, the previous state-space model will be

referred to as G-α model.

2.2. Augmented Kalman Filter

In the present paper, an Augmented Kalman Filter (AKF) [13] is imple-

mented. This approach has been chosen because it allows performing joint

input-state estimation from a standard Kalman filter scheme [28].

The AKF scheme consists in including the input in the state vector, in or-

der to build an augmented state. For that purpose, a fictitious state equation

for the input must be introduced. Generally, this equation writes [13]:

uk+1 = uk +wu
k , (19)
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where wu
k denotes the related Gaussian process noise with zero mean and

covariance matrix Qu.

Then, if one defines the augmented state as:

xa
k =

xk
uk

 , (20)

the state-space representation of the system becomes:x
a
k+1 = Aa xa

k +wa
k

yk = Oa xa
k + vk

, (21)

with

Aa =

A B

0 I

 , Oa =
[
O D

]
, wa

k =

wx
k

wu
k

 . (22)

The previous state-space representation allows performing the joint input-

state estimation from a standard Kalman filter. Practically, the filtering

algorithm is divided into two main steps:

1. Initialization at t0

• Estimation of the initial state x̂a
0 and the corresponding covariance

matrix Pa
0 ;

• Definition of the covariance matricesQa etR associated to process

and measurement noises wa
k and vk respectively;

2. Filtering at tk for k = 1, . . . , nt
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• Prediction of the current state xa−
k and the corresponding covari-

ance matrix Pa−
k

xa−
k = Aa x̂

a
k−1,

Pa−
k = AaPa

k−1A
T
a +Qa.

(23)

• Update of the current state x̂a
k and the related covariance matrix

Pa
k from measurements

Kk = Pa−
k OT

a
(
OaPa−

k OT
a +R

)−1
,

x̂a
k = xa−

k +Kk

(
yk −Oa xa−

k

)
,

Pa
k = (I−KkOa)Pa−

k .

(24)

The implementation of a Kalman filter requires some comments, essen-

tially related to the initialization step. First, the estimation of the initial

state x̂a
0 requires the knowledge of the initial reduced state and input. Prac-

tically, the initial reduced state is generally unknown. That is why, one

assumes that x̂a
0 = 0, implying that the structure is initially at rest, i.e.

x0 = 0 et u0 = 0. Second, the covariance matrix associated to the initial

state Pa
0 and reflecting our confidence in the estimation of the initial state

must be defined. In absence of any prior knowledge, this matrix is chosen

such that:

Pa
0 = σ2

0 I. (25)

The success of the filtering process also depends on the definition of the

covariance matricesQa andR related to the process and measurement noises.

These matrices reflect our confidence in the modeling and measurement pro-

cesses respectively. Generally, process and measurement noises are supposed
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uncorrelated and white. Consequently, it is supposed that the covariance

matrix R writes:

R = σ2
r I, (26)

where σ2
r can be seen as the variance of the measurement noise. The com-

ponents of Qa are more difficult to assess a priori. For this reason, the

covariance matrix Qa is expressed as:

Qa =

σ2
x I 0

0 σ2
u I

 . (27)

Here, σ2
x reflects the confidence in the evolution model associated to the

state xk [see. Eqs. (15) and (18)], while σ2
u is a tuning parameter, acting as a

regularization parameter that limits the variation in the time history of the

input. Its value significantly affects the quality of estimated solutions. In

the present paper, it is determined from a selection procedure detailed in the

next section. Regarding the choice of σ2
x et σ2

r , it will be shown in section 4

that they can be chosen in a large range of values, provided that σ2
u is chosen

accordingly.

3. Kalman filter tuning - MINOR criterion

A Kalman filter is a Bayesian filter. As a result, it is possible to interpret

it in probabilistic terms. The description of the Kalman filtering algorithm

shows that the current state update is directly related to the innovation

ik = yk −Oa xa−
k . From the Bayesian perspective, it can be proved that the

innovation have to theoretically exhibit a random sequence with zero mean

and covariance matrix Sk = OaPa−
k OT

a +R [29, 30].
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Formally, the innovation can be seen either as the prediction error of the

state given the measurements or as a measure of the information brought by

a new measurement. This explains why the innovation can serve as a tool

for tuning a Kalman filter.

The question that arises now is related to the existence of an a priori

optimal value of σ2
u. Practically, this issue is difficult to answer, since this

value, if exists, depends of the values of σ2
x and σ2

r . One can, however,

consider the implementation of an automatic selection procedure like the L-

curve principle, for which various values of the regularization parameter are

tested and only the value corresponding to the maximum curvature of the

L-curve is selected. Here, the idea is to seek the optimal value σ̂2
u such that:

σ̂2
u = argmin

σ2
u

J(σ2
u|σ2

x, σ
2
r), (28)

where J(σ2
u|σ2

x, σ
2
r) is some functional.

At this stage, the goal is to find a metric, based on the innovation, satis-

fying the previous relation. Practically, the functional J(σ2
u|σ2

x, σ
2
r) is defined

such that [11, 20]:

J(σ2
u|σ2

x, σ
2
r) =

1

nt

nt∑
k=1

∥∥yk −Oa xa
k
−∥∥2

2
. (29)

It results from what precedes, that the selection procedure consists in

finding the tuning parameter minimizing the information brought by a new

measurement over the identification duration. This selection procedure is

referred to as MINOR (for Minimum Innovation Norm) criterion in the rest

15



of the paper.

From a numerical point of view, the implementation of this selection pro-

cedure requires the calculation of the functional J(σ2
u|σ2

x, σ
2
r) for each possi-

ble σ2
u. To render this approach computationally effective, the calculations

of J(σ2
u|σ2

x, σ
2
r) are parallelized.

4. Application

From existing literature, the feasibility of the inversion is subordinate to

the following conditions [13, 14, 17, 31, 32, 33]:

• Observability. This condition is satisfied if all the modes considered in

the model are captured by at least one output sensor or contribute to

the measured output. Formally, the system is observable provided that

the matrix (Sd + Sv + Sa)Φn does not contain zero columns.

• Controllability. This condition is fulfilled if all the modes are excited

by as least one input. Practically, the system is controllable if and only

if the matrix STuΦn does not contain zero columns.

• Direct invertibility. This condition is required to estimate the system

input without time delay. Regarding the state space model given by

Eq. (18), this condition implies that the number of displacement, ve-

locity or acceleration data, nd, must be greater than or equal to the

number of unknown inputs, nu, and that the number of inputs cannot

exceed the number of modes nm in the model. Mathematically, the

direct invertibility condition is satisfied if and only if rank(D) = nu.
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• Stability. This condition is related to behavior of the Kalman filter over

the long term and the so-called drift effect. It results from the literature

that if only acceleration and/or velocity measurements are used, the

system is marginally stable leading to a drift observed on the estimated

inputs over the long term. On the contrary, this effect disappears in

case of displacement and/or strain measurement only provided that

their number is larger than the number of inputs. To verify whether

a system is stable, all the finite transmission zeros λi of the system1

must be such that |λi| < 1. If at least one finite transmission zero is

such that |λi| = 1, then the system is marginally stable. In all other

cases, the system is unstable [34]. All this is crucial when instantaneous

inversion is aimed. However, introducing a time delay as in [35] allows

solving this issue at a higher computational cost that possibly prevent

real-time applications. It should be said in passing that regularization

strategies are based on time-delayed inversion, which explains why this

problem is generally not raised in the dedicated literature.

• Uniqueness. This condition is related to the stability condition, since

a system with at least one finite transmission zero cannot be uniquely

identified. In all the subsequent applications, the uniqueness condition

is never met, meaning that in any case the solution is not unique.

1λi is a finite transmission zero if rank

A− λiI B

O D

 < ns + min(nu, nd) (ns:

number of states defined in the state vector xk) [33].
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This section aims at analyzing the applicability of the AKF in some sit-

uations arising frequently when dealing with source identification problems

only. In particular, it is proposed to answer the following questions:

1. Are all the data equivalent for reconstructing excitation sources in time

domain?

2. What is the influence of the considered state-space representation?

3. Is real-time reconstructions possible?

4. What happens over the long term?

5. Should measurements be collocated with excitations?

6. What happens in an under-determined configuration?

As it can be deduced from a careful reading of the feasibility conditions

described at the very beginning of this section, some of the answers to these

questions have been addressed by the literature or can at least be inferred.

However, this is from an algorithmic perspective only, since the immediate

effect of a violation of these necessary conditions in terms of filter tunability

or result quality is rarely illustrated. To this end, a numerical experiment is

implemented.

4.1. Description of the test case

The studied structure is an IPN simply supported steel beam of length 3

m, cross-sectional area 1060 mm2 and second moment of area 171 mm4 [36].

The beam is excited by a hammer impact at position x0 = 0.9 m, measured

from the left end of the beam.
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To synthesize this kind of excitation, it is supposed that the structure

is impacted by a hammer equipped with a soft rubber tip, so as to fix the

cutoff frequency of the excitation around 500 Hz. The analysis of real impact

signals leads us to model such an excitation as:

f(t) = A
tp−1 e−t/θ

[(p− 1)θ]p−1 e1−p
, (30)

where p and θ are, respectively, the shape and scale parameters of the ham-

mer impact excitation and A is the maximum impact amplitude.

In the present example, A = 15 N, while the parameters p and θ are

adjusted with respect to the desired cutoff excitation frequency. This re-

quirement leads us to set p to 9.7 and θ to 0.6 ms. Finally, it is supposed

that a pre-trigger of 8 ms is applied to the excitation signal to simulate real-

world experimental conditions [see Fig. 1].

On the other hand, it is supposed that displacement, velocity or accelera-

tion data are available. To synthesize these experimental data, the equation

of motion of the beam is first expanded on the corresponding modal basis,

which is computed analytically. Then, the resulting modally reduced sys-

tem, containing the first 53 analytical bending modes (resonance frequencies

up to 1 kHz), is solved using the Newmark method for (γ, β) = (1/2, 1/4)

and h = 0.1 ms (sampling frequency: 10 kHz). Here, the choice of the time

step h has been made following the criterion defined in Appendix A. To be

exhaustive, a modal damping ratio equal to 1% for all the modes has been

imposed. In a last step, the obtained output fields are corrupted by an ad-

ditive Gaussian white noise with a SNR equal to 25 dB. It should also be
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Figure 1: Synthesized hammer impact excitation signal - (a) Time domain representation

and (b) Frequency domain representation

mentioned that the first 53 analytical bending modes of the beam have also

been used to establish the state-space model in order to limit the influence

of modeling errors.

Regarding the reconstruction configuration, it should be noted that the

inputs are estimated, unless otherwise stated, by supposing that all the mea-

surement points are collocated with the identification points, including the

excitation points, as presented in Fig. 2. In this figure, it can be shown that

measurement and reconstruction points are equally spaced along the struc-

ture from 0.35 m to 2.75 m.

Finally, in absence of contradictory information, it is supposed that x̂a
0 =

0, while the variances σ2
0, σ2

x et σ2
r associated to the covariance matrices Pa

0 ,

Qx and R are set to 10−20, 10−6 and 10−2 respectively.
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Figure 2: Locations of the measurement and reconstruction points all along the beam –

(�) Ends of the beam, (�) Measurement points and (◦) Reconstruction points

4.2. Are all the data equivalent for reconstructing excitation sources in time

domain?

In the frequency domain, kinematic data like displacement, velocity or ac-

celeration can be used indistinctly to solve source reconstruction problems.

But, is it the case for time domain applications? Actually, the dedicated

literature indicates that it is not the case. However, what is exactly the in-

fluence of the data type on the reconstructed inputs?

In the next of this section, the reconstructions are performed on the first

0.1 s which is sufficient to avoid stability problems on estimated inputs.

4.2.1. Acceleration data

In the present reconstruction configuration, the system is observable, con-

trollable, directly invertible and marginally stable. Consequently, all the
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necessary feasibility requirements of the system inversion are not fulfilled,

which is consistent with existing literature. However, as shown in Fig. 3, the

excitation field reconstructed, using the optimal value of σ̂2
u obtained from

the MINOR criterion and estimated to 1.08 × 1027 [see Fig. 4], is in a very

good agreement with the target excitation field. Furthermore, it should be

noted that when using acceleration data the plot MINOR criterion exhibits

a Z-shape. This actually indicates that any value of σ̂2
u comprised between

1011 and 1040 can lead to a consistent reconstruction.
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Figure 3: Reconstruction of the excitation field from acceleration data for σ̂2
u = 1.08×1027

– (a) Waterfall representation and (b) Identified time signal at excitation point – (—)

Reference signal and (−−) Reconstructed signal

4.2.2. Velocity data

For velocity-based reconstruction, the system is observable, controllable,

directly invertible and marginally stable. Unfortunately, contrary to the pre-

vious case, the identified excitation field is far from the target excitation field

22



10
-20

10
0

10
20

10
40

u
2

10
-1

10
0

10
1

10
2

10
3

10
4

J
(

u2
|

x2
,

r2
)

Figure 4: Plot of the functional J(σ2
u|σ2

x, σ
2
r) for acceleration data – (—) J(σ2

u|σ2
x, σ

2
r) and

(◦) Location of the minimum of the functional

[See Fig. 5]. Furthermore, it should be noted that in this case, the plot of

MINOR criterion has a clear global minimum, meaning that choosing, a pri-

ori, a relevant value for σ2
u is far from an easy task [See Fig. 6].

This result is quite surprising when looking at the conclusions of the

feasibility conditions. Indeed, the analysis of the reconstructed excitation

clearly leads to think that the direct invertibility condition is not satisfied.

Actually, the reduced state-space model given by Eq. (18) respects the direct

invertibility condition, which is not the case for the original state-space model

given by Eq. (15). Furthermore, this is in fact exactly the same for the

acceleration-based identification. In the latter case, however, no particular

problems had been encountered and the conclusions of the feasibility study

are in line with existing literature [14, 17]. Consequently, as clearly written

by Maes in [17], the feasibility condition are not sufficient to guarantee that

the quantities of interest can be identified correctly in the presence of noise.
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Figure 5: Reconstruction of the excitation field from velocity data for σ̂2
u = 5.29×104 – (a)

Waterfall representation and (b) Identified time signal at excitation point – (—) Reference

signal and (−−) Reconstructed signal
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Finally, all the previous remarks lead us to wonder about the influence of

the state-space model used to perform the reconstruction. This problem

is discussed in section 4.3. In particular, it will be shown that the results

obtained with the G-α model are actually better than those obtained with a

more classical state-space representation based on the ZOH assumption.

4.2.3. Displacement data

For displacement-based reconstruction, the system is observable, control-

lable, directly invertible and marginally stable. As for velocity-based recon-

struction, the results are disappointing [see Figs. 7 and 8] and exactly the

same observation can be made regarding the conclusions of the feasibility

conditions.

-5

3

0

0.1

5

F
o

rc
e
 [

N
]

2

10

x [m] Time [s]

15

0.051

0 0

(a)

0 0.02 0.04 0.06 0.08 0.1

Time [s]

-2

0

2

4

6

8

10

12

14

16

F
o

rc
e
 [

N
]

(b)

Figure 7: Reconstruction of the excitation field from displacement data for σ̂2
u = 1.70×106

– (a) Waterfall representation and (b) Identified time signal at excitation point – (—)

Reference signal and (−−) Reconstructed signal
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4.2.4. Summary

The reconstructions presented previously clearly show that the nature of

the data used for estimating the excitation sources has a strong influence

on the obtained results. This leads us to conclude that if one has to use

only one type of data, then acceleration measurements are certainly the best

choice. This result is reassuring, since accelerometers are commonly used in

structural dynamics for their ability to accurately measure vibrations at rel-

atively low cost. This question deserved, however, to be illustrated in view of

emerging or less standard measurement techniques, such that Digital Image

Correlation for measuring displacement [37] or multipoint laser vibrometry

[38, 39] for measuring velocities synchronously.

As a side note, it should be mentioned here that the previous study has

also been conducted for the joint input-state estimator [16] and the Dual

Kalman Filter (DKF) [11]. Unfortunately, some problems have been encoun-
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tered during their application. For the joint input-state estimator, singularity

of the filtering matrices arose when applying it to displacement and velocity

data. As for DKF, an extreme sensivity to the value of the variances σ2
0

and σ2
x has been observed, making the tuning of the Kalman Filter highly

difficult. Consequently, further studies need to be carried out to precisely

determine to what extent the conclusions drawn in the present paper are

applicable to a larger class Kalman-type filters.

4.3. What is the influence of the considered state-space representation?

The previous application has clearly illustrated the influence of the data

type on the reconstructed solutions. However, it has also highlighted some

potential contradictions between the conclusions of the feasibility conditions

and the effective results. As underlined above, this leads us to wonder about

the influence of the state-space model used to perform the reconstruction,

since the feasibility conditions are based on it.

To properly study this problem, all the reconstructions presented in the

previous section are performed using an Augmented Kalman Filter built from

a state-space model based on the ZOH assumption [see Eq. (1)]. Formally,

this model, classically used in structural dynamics and referred to as ZOH

model in the rest of this paper, is given by:xk+1 = Axk +Buk

yk = Oxk +Duk
, (31)
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where

A = eAch, B = [A− I]A−1c Bc, D = Sa ΦnΦT
n Su,

O = [Sd Φn − Sa Φn Ωn, Sv Φn − Sa Φn Zn] ,

Ac =

 0 I

−Ω2
n −Zn

 , Bc =

 0

M−1
n ΦT

n Su

 .
(32)

For this state-space model, the system is:

• observable, controllable, directly invertible and marginally stable for

acceleration-based reconstruction;

• observable, controllable, marginally stable, but not directly invertible

for velocity-based reconstruction;

• observable, controllable, stable, but not directly invertible for displacement-

based reconstruction.

As it can be seen, the feasibility conditions applied to the ZOH model

give rather different conclusions. However, the quality of the estimated in-

puts resulting from the ZOH model from acceleration or displacement data

is globally similar to that obtained with the G-α model [see Figs. 9, 10, 14

and 15]. It should even be noted that for acceleration-based reconstruction,

the G-α model provides a better estimation. On the contrary, for velocity-

based estimation, the results are significantly different. Indeed, the input

estimated from the ZOH model is extremely noisy, which is not the case

with the G-α model that leads to a very smooth solution [see Fig. 11]. This

result seems inconsistent given the acceleration and displacement counter-

parts. The explanation of this surprising result can be found in the shape of
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the plot of the MINOR criterion [see Fig. 12]. Indeed, the analysis of this

figure shows that the functional J(σ2
u|σ2

x, σ
2
r) presents a clear local minimum.

When choosing the value of σ2
u corresponding to this local minimum, here

σ̂2
u = 1.06× 105, the reconstruction obtained from ZOH model becomes con-

sistent with that obtains with the G-α model [see Fig. 13]. Consequently, this

demonstrates that the G-α model allows an easier and more robust tuning

of the AKF than the ZOH model.
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Figure 9: Reconstruction of the excitation field from acceleration data for σ̂2
u = 1.70×1033

with the ZOH model – (a) Waterfall representation and (b) Identified time signal at

excitation point – (—) Reference signal, (−−) Reconstructed signal from the G-α model

and (− · −) Reconstructed signal from the ZOH model

In conclusion, the feasibility conditions must only be consider as an in-

dicator, because, as it has been made clear here, the violation of the direct

invertibility, stability and uniqueness conditions in presence of noisy mea-

sured data does not necessarily jeopardize the chances of success of the input
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Figure 11: Reconstruction of the excitation field from velocity data for σ̂2
u = 1040 with

the ZOH model – (a) Waterfall representation and (b) Identified time signal at excitation

point – (—) Reference signal, (−−) Reconstructed signal from the G-α model and (− ·−)

Reconstructed signal from the ZOH model
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Figure 13: Reconstruction of the excitation field from velocity data for σ̂2
u = 1.06×105 with

the ZOH model – (a) Waterfall representation and (b) Identified time signal at excitation

point – (—) Reference signal, (−−) Reconstructed signal from the G-α model and (− ·−)

Reconstructed signal from the ZOH model
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Figure 14: Reconstruction of the excitation field from displacement data for σ̂2
u = 1040 with

the ZOH model – (a) Waterfall representation and (b) Identified time signal at excitation

point – (—) Reference signal, (−−) Reconstructed signal from the G-α model and (− ·−)

Reconstructed signal from the ZOH model
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estimation. It seems also obvious that displacement and velocity data cannot

be used alone. More precisely, velocity data should be preferably avoided,

because a proper tuning of the Kalman filter is extremely difficult to obtain

depending on the considered state-space representation as indicated by the

analysis of the plot of MINOR criterion [see Fig. 12 to be compared with

Fig. 6 for the G-α model]. In fact, only acceleration data provide satisfy-

ing reconstructions. In this case, however, the system is marginally stable,

meaning that on the long term the estimated quantities will diverge [14].

This question is addressed in section 4.5.

Finally, another interesting consideration is the influence of the state-

space representation with respect to the the time step size. To this end,

data generation and input reconstruction have been performed for several

time step sizes (i.e. for different sampling frequencies), corresponding to one

twentieth (h = 0.1 ms), one tenth (h = 0.2 ms), one fifth (h = 0.4 ms) and

one half (h = 10 ms) of the oscillation period of the last mode excited by the

hammer impact (around 500 Hz in the present application). To quantify the

accuracy of the reconstructed solution from acceleration data with respect

to the state-space representation and the time step size, the relative error is

evaluated. Formally, the relative error is defined such that:

E =
‖uref − uid‖22
‖uref‖22

, (33)

where uref is the reference excitation field, while uid is the identified excita-

tion field.

The results presented in Table 1 strengthen the motivation behind the
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development of the G-α model, since, in any case, reconstructions based on

the G-α model are far more accurate than those based on the ZOH model.

Table 1: Relative error (%) obtained from acceleration data for different time step sizes

with respect to the state-space representation

h (ms) G-α model ZOH model

0.1 1.78 3.77

0.2 4.05 7.90

0.4 6.56 17.69

10 9.72 53.67

In the light of these results, input reconstruction presented in the next

sections will be based on the state-space model introduced in section 2 and

acceleration measurements as output data.

4.4. Is real-time reconstructions possible?

Possible real-time estimation is one of the most appealing features of the

AKF (and Kalman-type filtering in general). However, the previous sections

demonstrate that the quality of the reconstructed excitation field is strongly

dependent on the value of the variance σ2
u and cannot consequently be cho-

sen arbitrarily. This is particularly true for displacement and velocity-based

reconstructions from the G-α model, for which the plot of MINOR criterion

exhibits a clear global minimum. Unfortunately, the value σ2
u is itself related

to the values of σ2
x and σ2

r . In this situation, it is extremely difficult or even

impossible to infer a priori a value of σ2
u. As a result, when displacement
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or velocity data are used, consistent real-time reconstructions seem hard to

achieve. For acceleration-based reconstructions, the situation is rather differ-

ent. Indeed, as shown in Fig. 4, the plot of MINOR criterion has a Z-shape,

meaning that for a given couple (σ2
x, σ

2
r), σ2

u can be chosen in a wide range of

values to provide similar results. This observation has been stated in passing

by Lourens et al. in [13], but no further indications or illustrations have

been given to support this statement. In the present case, the problem is

to determine the relation that must satisfy the variances σ2
x, σ2

r and σ2
u to

expect almost insensitive reconstructions.

To determine this relation, the optimal triplets (σ̂2
x, σ̂

2
r , σ̂

2
u) have been

sought using the MINOR criterion. More precisely, they have been sought

such that:

(σ̂2
x, σ̂

2
r , σ̂

2
u) = argmin

(σ2
x,σ

2
r ,σ

2
u)

J(σ2
x, σ

2
r , σ

2
u), (34)

where the functional J(σ2
x, σ

2
r , σ

2
u) is given by:

J(σ2
x, σ

2
r , σ

2
u) =

1

nt

nt∑
k=1

∥∥yk −Oa xa
k
−∥∥2

2
. (35)

For the acceleration data used previously, one gets σ̂2
x = 1.83× 105, σ̂2

r =

6.95 × 1036 and σ̂2
u = 6.95 × 1036. With this optimal set, the reconstructed

excitation field agrees very well with the target one [see Fig. 16].

Combining this result with that obtained in section 4.2.1, one can con-

clude that the estimation of the excitation field is almost insensitive to the

choice of the variance parameters provided that:

σ2
x � σ2

r ≤ σ2
u. (36)
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Figure 16: Reconstruction of the excitation field from acceleration data for σ̂2
x = 1.83×105,

σ̂2
r = 6.95 × 1036 and σ̂2

u = 6.95 × 1036 – (a) Waterfall representation and (b) Identified

time signal at excitation point – (—) Reference signal, (−−) Reconstructed signal

In other words, if the previous condition is fulfilled, real-time reconstruc-

tions can be achieved. To examplify this condition, let us take, for instance,

σ2
x = 10−20, σ2

r = 1015 and σ2
u = 1020. As expected, Fig. 17 shows that when

the relation (36) is fulfilled, then the estimation of the excitation field is very

satisfying.

Actually, the condition given by Eq. (36) is quite logical, since σ2
r must

be less than or equal to σ2
u to avoid a too strong filtering of the estimated

excitation field. Indeed, having σ2
u < σ2

r implies that one has a greater con-

fidence in Eq. (19) than in the output equation. In other words, the filter

will try to respect the relation uk+1 ≈ uk as best as possible. On the other

hand, σ2
x must necessarily be less than σ2

r , because it is well-known that in-

verse problems are very sensitive to noise. Consequently, having a greater
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Figure 17: Reconstruction of the excitation field from acceleration data for σ2
x = 10−20,

σ2
r = 1015 and σ2

u = 1020 – (a) Waterfall representation and (b) Identified time signal at

excitation point – (—) Reference signal, (−−) Reconstructed signal

confidence in the state equation than in the output equation helps the filter

in estimating properly the quantities of interest, since the dynamic behavior

of the structure is encoded in the state equation. Of course, this assumes

that a reliable model of the structure can be obtained, which is the case in

the present application. In other words, if the level of modeling error is high,

which arises in many situations, Eq. (36) may not hold. It should however

be noticed that in such a case, the probability of good reconstruction is weak.

Finally, for the sake of completeness, displacement and velocity-based re-

constructions obtained from the optimal triplet (σ̂2
x, σ̂

2
r , σ̂

2
u) determined from

the MINOR criterion are presented in Appendix B for the G-α and ZOH

models. In addition, this appendix provides further insights into the influ-

ence of the optimal variance parameters selected from the MINOR criterion
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and the difficulty of properly tuning a Kalman filter when velocity-based

reconstruction are to be carried out.

4.5. What happens over the long term?

In the literature, it is well-known that the inputs estimated from accelera-

tion data suffer from the so-called drift effect related to the marginal stability

of the system [14]. This divergence issue, that occurs in such a situation, is il-

lustrated in Fig. 18 presenting the excitation field reconstructed over 0.5 s. It

should be mentioned that σ2
u has been arbitrarily set to 1020, which respects

the condition given by Eq. (36).
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Figure 18: Reconstruction of the excitation field from acceleration data over 0.5 s for

σ̂2
u = 1020 – (a) Waterfall representation and (b) Identified time signal at excitation point

– (—) Reference signal and (−−) Reconstructed signal

This undesirable effect can be avoided by complementing acceleration

data with collocated displacement data. To prevent collocated displacement

measurements, Naets et al. [14] proposed to use fictitious displacement mea-

surements collated with the real measurement positions. This is done by
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introducing a fictitious output equation to the original state-space model

[see Eq. (14)], defined such that:

0 = Of xa
k + vf

k, (37)

where Of = [SaΦn, 0, 0] and vf
k is the Gaussian fictitious measurement

noise with zero mean and covariance matrix Rf.

The addition of the previous relation to the G-α model allows obtaining

the following state-space model:x
a
k+1 = Aa xa

k +wa
k

ya
k = Of

a xa
k + va

k

, (38)

with

ya
k =

yk
0

 , Of
a =

Oa

Of

 , va
k =

vk
vf
k

 , (39)

where va
k is a Gaussian white noise with zero mean and covariance matrix:

R̃ =

R 0

0 Rf

 avec Rf = σ2
f I, (40)

where σ2
f is the variance parameter associated to fictitious measurements.

One of the key point of this strategy lies in the choice of σ2
f . In the

literature, it is suggested to base our choice on the order of magnitude of

the deformation of the structure [14], but this possibly requires numerical

calculations. To prevent this, the MINOR criterion is used once again. Con-

sequently, the optimal value of σ2
f is sought such that:

σ̂2
f = argmin

σ2
f

J(σ2
f |σ2

x, σ
2
r , σ

2
u), (41)
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where the functional J(σ2
f |σ2

x, σ
2
r , σ

2
u) is defined as in Eq. (28).

At this stage, it is important to note that to limit the influence of the

drift effect using dummy measurements, the condition provided by Eq. (36)

must be restricted. Indeed, it has been found that it is necessary to impose

σ2
r of the order of magnitude of σ2

u to obtain consistent estimations.

Consequently, by setting σ2
x = 10−6 and σ2

r = σ2
u = 1020, the application

of the MINOR criterion allows finding σ̂2
f = 3.78×1015. In this situation, the

system is observable, controllable, directly invertible and marginally stable.

The resulting estimated excitation field is presented in Fig. 19. The analysis

of this figure shows, as indicated by Naets et al. [14], that complementing

acceleration data by a set of collocated dummy measurements allows limiting

the drift effect over the long term.

One can, however, wonder if this procedure (addition of dummy measure-

ments + selection of σ2
f from MINOR criterion) doesn ot definitively prevent

any chance of real-time reconstruction. Actually, everything depends on the

shape of the plot of the MINOR criterion. If its shape is similar to that

presented in Fig. 4, then a real-time reconstruction over the long term is

possible. The answer to this question is provided in Fig. 20. This figure

shows that the plot of the MINOR criterion has the desired shape, which

make possible the application of this strategy for real-time estimations.

However, as for the other variance parameters, the value of σ2
f cannot
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Figure 19: Reconstruction of the excitation field from acceleration data and dummy mea-

surements over 0.5 s forσ2
x = 10−6, σ2

r = σ2
u = 1020 and σ̂2

f = 3.78 × 1015 – (a) Waterfall

representation and (b) Identified time signal at excitation point – (—) Reference signal

and (−−) Reconstructed signal
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Figure 20: Plot of the functional J(σ2
f |σ2
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u) for σ2

x = 10−6 and σ2
r = σ2

u = 1020 –

(—) J(σ2
f |σ2
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2
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2
u) and (◦) Location of the minimum of the functional

41



be chosen completely arbitrarily, since it has to respect a relation similar

to Eq. (36). More specifically, if has been found from a set of numerical

experiments that:

σ2
x � σ2

f < σ2
r ≤ σ2

u, (42)

provided that a reliable model of the structure (i.e. with a low modeling

error level) could be obtained.

The fact that σ2
f must be less than σ2

r is quite logical, because if its not

the case, this means that we trust in the measurements more than in the

dummy output equation which aims at stabilizing the inversion. As a result,

if this condition is not satisfied, there is no reason for the problem to be

stabilized. As an example of Eq. (42), let us consider σ2
x = 10−6, σ2

r = 1019,

σ2
u = 1020 and σ2

f = 1014. For this set of parameters, the corresponding

estimated excitation field is presented in Fig. 21.

Finally, for the sake of completeness, reconstructions obtained using real

displacement data are presented in Appendix C. This appendix shows sur-

prisingly that a better stabilization of the reconstructed excitation field is

obtained using dummy measurements.

4.6. Should measurements be collocated with excitations?

This question is very important, since it is not always possible to measure

output data at excitation points. Actually, in the vast majority of the arti-

cles published in the literature, at least one output data is collocated with

or is in the close vicinity of the actual excitations. However, as observed by

Lourens et al. in [13], it seems that the violation of this implicit require-

ment leads to unsatisfying reconstructions. To illustrate this, let us consider
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Figure 21: Reconstruction of the excitation field from acceleration data and dummy mea-

surements over 0.5 s for σ2
x = 10−6, σ2

r = 1019, σ2
u = 1020 and σ2

f = 1014 – (a) Waterfall

representation and (b) Identified time signal at excitation point – (—) Reference signal

and (−−) Reconstructed signal

the reconstruction configuration presented in Fig. 22, for which none of the

measurement points are collocated with actual excitation source.

In this configuration, the system is observable, controllable, directly in-

vertible and marginally stable when using acceleration data only. When

performing the reconstruction on the first 0.1 s, a time delay is observed on

the reconstructed excitation field [see Fig. 23]. Furthermore, this non collo-

cated configurations does not allow real-time reconstructions, since the plot

of the MINOR criterion has not a characteristic Z-shape [see Fig. 24].

Even with an optimal triplet (σ2
x, σ

2
r , σ

2
u) selected from the MINOR crite-

rion, the situation remains the same, although the estimated excitation field

is less noisy as illustrated in Fig. 25.
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Figure 22: Locations of the measurement and reconstruction points all along the beam in

not fully collocated configuration – (�) Ends of the beam, (�) Measurement points and

(◦) Reconstruction points
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Figure 23: Reconstruction of the excitation field from acceleration data in non-collocated

configuration over 0.1 s for σ2
x = 10−6, σ2

r = 10−2 and σ̂2
u = 2.83 × 1010 – (a) Waterfall

representation and (b) Identified time signal at excitation point – (—) Reference signal

and (−−) Reconstructed signal

44



10
-20

10
-10

10
0

10
10

10
20

u

2

10
-2

10
0

10
2

10
4

10
6

10
8

J
(

u2
|

x2
,

r2
)

Figure 24: Plot of the functional J(σ2
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Figure 25: Reconstruction of the excitation field from acceleration data in non-collocated

configuration over 0.1 s for σ̂2
x = 1.83× 105, σ̂2

r = 2.33× 1027 and σ̂2
u = 2.33× 1027 – (a)

Waterfall representation and (b) Identified time signal at excitation point – (—) Reference

signal and (−−) Reconstructed signal
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Lourens et al. have associated this problem to an increase in the condi-

tion number of the observability matrix [13]. Actually, in the present case,

this explanation does not hold since the condition number of the observabil-

ity matrix in the collocated and non-collocated configurations presented in

Figs. 2 and 22 are almost the same (i.e. of the order of 1023). However, it is

clear that the absolute value of the condition number of the observation ma-

trix indicates that the system is extremely ill-conditioned, which is sufficient

to infer that a perturbation in the reconstruction parameters can strongly

affect the quality of the estimated quantities, which is the case here, since the

sensor configuration is not optimal for an inverse problem. As a consequence,

it is strongly recommended to work with a fully collated reconstruction con-

figuration for maximizing the chance of success. This conclusion is applicable

to other Kalman-type filters such as the joint-input estimator. If it is not

possible, it is recommended to adopt a Kalman smoothing approach as the

one proposed recently by Maes et al. [40].

4.7. What happens in an under-determined configuration?

This problem arises when one suspects that excitation sources can act in

unmeasured regions of the structure. Such a situation is known to be difficult

to deal with, because the problem cannot have a unique solution or even no

solution, if it is inconsistent. To analyze the behavior of the Kalman filter

in such a situation, the reconstruction is performed in an a priori favorable

configuration, since one of the accelerometers is collocated with the actual

excitation [see Fig. 26]. In this situation, the system is observable, control-

lable, marginally stable, but not directly invertible. Consequently, a poor

reconstruction is expected.
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Figure 26: Locations of the measurement and reconstruction points all along the beam

in under-determined collocated configuration – (�) Ends of the beam, (�) Measurement

points and (◦) Reconstruction points

Actually, this is exactly what is obtained since the estimated excitation

field is globally far from the target one [see Fig. 27]. For the sake of com-

pleteness is the MINOR criterion is presented in Fig. 28.

A practical way to deal with under-determined problems is to add con-

straints to the problem. Unfortunately, Kalman-type filters don’t assume

any spatial distribution on the sources a priori or any a particular form of

the excitation signals. Consequently, in under-determined configuration, it

is hard to expect reliable reconstructions.
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Figure 27: Reconstruction of the excitation field from acceleration data in under-

determined configuration over 0.1 s for σ2
x = 10−6, σ2

r = 10−2 and σ̂2
u = 1.55 × 1038

– (a) Waterfall representation and (b) Identified time signal at excitation point – (—)

Reference signal and (−−) Reconstructed signal

10
-20

10
0

10
20

10
40

u

2

10
-1

10
0

10
1

10
2

10
3

10
4

J
(

u2
|

x2
, 

r2
)

Figure 28: Plot of the functional J(σ2
u|σ2

x, σ
2
r) for displacement data in under-determined

configuration – (—) J(σ2
u|σ2
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5. Conclusion

In the present paper, the applicability of the Augmented Kalman Fil-

ter (AKF) for purely input estimation has been studied through a set of

practical issues that are frequently encountered in the engineering practice,

but not well documented or illustrated in the dedicated literature. To ad-

dress the different issues, an original state-space representation, based on the

generalized-α method and called the G-α model, has been introduced. This

model has been built at the top of an Augmented Kalman Filter implemented

to perform the estimation. Furthermore, particular attention has been paid

to the tuning of the Kalman filter. The present paper has made intensive use

of the MINOR criterion, which has been recently introduced in the litera-

ture, without explaining why it works. With this paper, we have tried to fill

the gap by exploiting the Bayesian framework. From that, through a care-

ful study, it has first been shown that acceleration, velocity or displacement

data cannot be used indistinctly. In particular, it has been highlighted that

acceleration data are certainly the best choice, while velocity data should be

preferably avoided because of difficulties in properly tuning the filter. It has

also been demonstrated that the choice of a state-space representation behind

the Kalman filter has a great importance in the quality of estimated results.

In particular, it has been shown that the G-α model provides reconstructions

more robust than those obtained from the ZOH model, classically used for

solving estimation problems. Then, specific conditions have been derived

to make real-time reconstructions from acceleration data only possible, even

over the long term thanks to the use of dummy displacement measurements.

It has finally been shown that, for improving the chance of good estimation,
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it is necessary to solve the problem from collocated configurations. Finally,

this study has highlighted the fact that the feasibility conditions proposed in

the literature have to be used as an indicator, since the violations of some of

these conditions doesn’t necessarily imply the failure of the estimation pro-

cess in operating conditions (presence of noisy data for instance). Of course,

many issues remain to be studied, such as the influence of modeling errors or

the reconstruction of random excitation or moving loads, but these questions

deserve specific studies. Finally, it should be noted that, at this stage, the

conclusions drawn in this paper are mainly applicable to the AKF. The gen-

eralization of conclusions obtained on the basis of the AKF to other Kalman

filter based input reconstruction techniques must be studied in details.
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Appendix A. Estimation of the time step

This appendix aims at providing a simple criterion for properly choosing

the time step for G-α and ZOH models and more generally for discretiz-

ing mechanical problems in time domain. To this end, let us consider an

undamped mechanical system described by its mass and stiffness matrices

(M,K). When the structure is linear and time-invariant, the equation of
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motion at any time tk is classically written:

M
..

dk +Kdk = Su uk. (A.1)

This equation can be discretized using a finite difference scheme. In doing

so, the previous relation becomes:

M
[
dk+1 − 2dk + dk−1

h2

]
+Kdk = Su uk. (A.2)

To assess the discretization error, the Fourier transform of Eqs. (A.1)

and (A.2) is computed. In doing so, one obtains:[
K− ω2M

]
d(ω) = Su u(ω), (A.3a)[

K− ω2βmM
]
d(ω) = Su u(ω), (A.3b)

with:

βm =
2

ω2h2
[1− cosωh] . (A.4)

Consequently, to impose the equality of relations (A.3a) and (A.3b), one

necessarily has:

βm = 1 ⇔ cosωh = 1− ω2h2

2
. (A.5)

The only possible solution is ωh = 0. Nevertheless, to determine a rea-

sonable value of the step size, one can weaken condition (A.5) by satisfying

this condition within some tolerance ε. Mathematically, the weak condition

is expressed as:

|1− βm| ≤ ε. (A.6)

By computing the Taylor expansion of the cosine function up to the fifth

order, one infers:

ω2h2 ≤ 12 ε. (A.7)
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Practically, one can set ω = ωmax, where ωmax is the cut-off frequency

of the excitation. For the application presented in this paper, the cut-off

frequency is equal to 500 Hz. It results that if the approximation error is set

to ε = 1%, then h ≤ 0.11 ms. Here, the time step has been set to h = 0.1 ms,

which approximately corresponds to one twentieth of the oscillation period

of the last mode excited by the hammer impact.

Appendix B. Displacement and velocity based reconstructions from

optimal variances (σ̂2
x, σ̂

2
r , σ̂

2
u)

This appendix presents the excitation fields reconstructed from the opti-

mal variances (σ̂2
x, σ̂

2
r , σ̂

2
u) selected by the MINOR criterion, when only dis-

placement and velocity data are available. It should be noted that the data

used in the next of this appendix are exactly the same data as those used

in section 4. Furthermore, to allow the reader to better analyze the results,

reconstruction performed from the G-α model and the ZOH model are given

below.

Appendix B.1. G-α model

For velocity-based reconstruction, the optimal variances selected from the

MINOR criterion are σ̂2
x = 10−20, σ̂2

r = 1.83× 105 and σ̂2
u = 3.79× 1011. The

corresponding estimated excitation field is presented in Fig. B.29.

For displacement-based reconstruction, the optimal variances selected

from the MINOR criterion are σ̂2
x = 10−20, σ̂2

r = 1.83 × 105 and σ̂2
u =

5.45 × 1014. The corresponding estimated excitation field is presented in
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Figure B.29: Reconstruction of the excitation field from velocity data from the G-α model

and σ̂2
x = 10−20, σ̂2

r = 1.83× 105 and σ̂2
u = 3.79× 1011 – (a) Waterfall representation and

(b) Identified time signal at excitation point – (—) Reference signal, (−−) Reconstructed

signal

Fig. B.30.

At first sight, obtained results are worse than those presented in sec-

tion 4.2. Indeed, the estimated excitation field are noisier, but the time

delay is reduced. Consequently, this means the parameters selected by the

MINOR criterion define a compromise between the smoothness and time

delay of the estimated excitation field.

Appendix B.2. ZOH model

For velocity-based reconstruction, the optimal variances selected from the

MINOR criterion are σ̂2
x = 10−20, σ̂2

r = 1.13×1021 and σ̂2
u = 2.33×1027. The

corresponding estimated excitation field is presented in Fig. B.31.

For displacement-based reconstruction, the optimal variances selected
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Figure B.30: Reconstruction of the excitation field from displacement data from the G-α

model and σ̂2
x = 10−20, σ̂2

r = 1.83 × 105 and σ̂2
u = 5.45 × 1014 – (a) Waterfall represen-

tation and (b) Identified time signal at excitation point – (—) Reference signal, (−−)

Reconstructed signal
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(b)

Figure B.31: Reconstruction of the excitation field from velocity data from the ZOH model

and σ̂2
x = 10−20, σ̂2

r = 1.13× 1021 and σ̂2
u = 2.33× 1027 – (a) Waterfall representation and

(b) Identified time signal at excitation point – (—) Reference signal, (−−) Reconstructed

signal
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from the MINOR criterion are σ̂2
x = 10−20, σ̂2

r = 8.86 × 10−2 and σ̂2
u =

2.64 × 108. The corresponding estimated excitation field is presented in

Fig. B.32.
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Figure B.32: Reconstruction of the excitation field from displacement data for the G-α

model and σ̂2
x = 10−20, σ̂2

r = 8.86 × 10−2 and σ̂2
u = 2.64 × 108 – (a) Waterfall repre-

sentation and (b) Identified time signal at excitation point – (—) Reference signal, (−−)

Reconstructed signal

As in section 4.3, the results obtained from the G-α model and the ZOH

model are very similar when displacement data are used. But probably more

interesting, the same observation can be made for velocity data, which was

not the case in section 4.3. Consequently, when combining this result whith

those obtained in sections 4.2 and 4.3, it is clear that the tuning of the AKF

is quite challenging when only velocity data are available. In addition, the

latter result clearly shown that the G-α model is more robust than the ZOH

model for solving purely input estimation problems.
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Appendix C. Real vs. dummy displacement measurements

In this appendix the reconstruction is performed from real displacement

data instead of dummy measurements. Consequently, the output matrix O

is expressed as:

O = [SaΦn, 0, SaΦn]. (C.1)

For the G-α model, the system is observable, controllable, directly invert-

ible and marginally stable. When optimally choosing the triplet (σ2
x, σ

2
r , σ

2
u)

from the MINOR criterion, one gets σ̂2
x = 10−20, σ̂2

r = 127.42 and σ̂2
u =

127.42. The resulting reconstruction is presented in Fig. C.33.
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Figure C.33: Reconstruction of the excitation field from acceleration + real displacement

data for the G-α model and dummy measurements over 0.5 s for σ̂2
x = 10−20, σ̂2

r = 127.42

and σ̂2
u = 127.42 – (a) Waterfall representation and (b) Identified time signal at excitation

point – (—) Reference signal and (−−) Reconstructed signal

For the ZOH model, the system is observable, controllable, directly in-

vertible and stable. When optimally choosing the triplet (σ2
x, σ

2
r , σ

2
u) from
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the MINOR criterion, one gets σ̂2
x = 2.07 × 10−14, σ̂2

r = 7.88 × 1017 and

σ̂2
u = 7.88× 1017. The resulting reconstruction is presented in Fig. C.34.
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Figure C.34: Reconstruction of the excitation field from acceleration + real displacement

data for the ZOH model and dummy measurements over 0.5 s for σ̂2
x = 2.07 × 10−14,

σ̂2
r = 7.88 × 1017 and σ̂2

u = 7.88 × 1017 – (a) Waterfall representation and (b) Identified

time signal at excitation point – (—) Reference signal and (−−) Reconstructed signal

In both cases, it can be seen that even if a significant stabilization of the

results is observed, the drift effect is still present. The comparison with the

reconstruction from dummy measurements clearly emphasizes the superiority

of the latter approach over a stabilization strategy based on real displacement

measurements. It should however be noted that when the actual input has a

trend/static component, then only the use of real displacement data allows

retrieving it [14, 17].
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