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Abstract

Tikhonov and LASSO regularizations are commonly used to solve force re-

construction problems in time domain. Unfortunately, these particular forms

of additive regularization are not well adapted to tackle both localization

and time reconstruction problems simultaneously, since they are generally

restricted to the reconstruction of sources sharing the same space and time

characteristics. To alleviate this limitation, a multiplicative space-time reg-

ularization is introduced. The proposed regularization strategy takes ad-

vantage of one’s prior knowledge of the space-time characteristics of excita-

tion sources. It also introduces a novel reconstruction model based on the

generalized-α method, which is unconditionally stable and second-order ac-

curate. The validity of the proposed method is assessed numerically and ex-

perimentally. In particular, comparisons with standard regularization terms

point out the practical benefit in exploiting both spatial and temporal prior

information simultaneously in terms of quality and robustness of recon-

structed solutions.
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1. Introduction

The resolution of force reconstruction problems in time domain still re-

mains an active topic in the mechanical engineering community as sug-

gested by the intensive dedicated literature. Except particular strategies

[1, 2, 3, 4, 5, 6, 7, 8], the most widespread approaches to solve this prob-

lem nowadays are certainly Kalman filtering [9, 10, 11, 12] and regulariza-

tion techniques [13, 14, 15, 16]. However, both methods operate in different

context. Kalman filtering is an online strategy making assumptions on the

evolution of the systems [17, 18]. On the contrary, regularization is an off-

line approach that allows exploiting one’s prior knowledge on the sources to

identify through the definition of the regularization term [16, 19, 20, 21]. The

latter characteristic is at core of the present paper and explains why the next

of this introduction is only focused on the analysis of existing regularization

strategies.

In general, two categories of reconstruction problem can arise in practical

situations. The first one is related to the localization of excitation sources,

while the second one consists in reconstructing the time signal of prelocal-

ized sources. Regarding the localization problem, the regularization term

reflects the spatial prior information available on the sources to reconstruct.

It is often expressed as the `q-norm of the solution sought. Such a norm

is flexible enough to express one’s prior knowledge on the forces to identify,

since smooth solutions are obtained for q = 2 [22, 23], while localized ex-
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citation fields are promoted for q ≤ 1 [24, 25, 26]. On the other hand, for

reconstructing the excitation signal of prelocalized sources, the regulariza-

tion term has to reflect the associated prior information. It should be noted

that the choice of a particular value of q is strongly dependent on the length

on the time window on which the reconstruction is performed. Indeed, a

signal can be considered continuous over a short duration and localized on

the long term. Generally, when the force signal exhibits a certain continuity,

the regularization term is defined from the `2-norm of the solution vector to

identify and leads to the Tikhonov regularization [13, 14, 27]. On the con-

trary, when the excitation signal is rather impulsive, the regularization term

is constructed from the `1-norm and gives rise to the LASSO regularization

[16, 28]. Consequently, it appears that most of the methods proposed in

the literature are theoretically not always well adapted to tackle both the

localization and time reconstruction problems at the same time, except for

configurations where the force vector to identify has the desired structure or

the spatial distribution of the sources and the nature of the excitation signals

share the same space-time characteristics1 such as the sparsity as shown in

Refs. [16, 29, 30]. To the best of our knowledge, only a few methods have

been developed to address these issues [31, 32, 33, 34]. However, these meth-

ods generally addressed the space-time reconstruction problem in a separated

manner [35, 36, 37, 38].

1This is typically the case of a hammer impact excitation reconstructed over a long

duration, for which the corresponding spatial distribution is sparse (point force) as well

as the time excitation signal (impulsive excitation). Another example is a distributed

harmonic excitation.
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It is thus of primary interest to simultaneously exploit both the spatial

and the temporal features of excitation sources to constrain the space of

admissible solutions to aid the reconstruction process in finding an optimal

solution. These requirements are actually met by regularization terms de-

rived from mixed `p,q-norms. Indeed, mixed `2,q-norm for q ≤ 1 has revealed

all its potential in signal and image recovery applications [39, 40, 41]. In

the context of force reconstruction, Rezayat et al. first introduced an addi-

tive regularization using a regularization term based on a mixed `2,1-norm

to identify broadband point forces in the frequency domain [42]. Recently,

Aucejo and De Smet have extended this idea by developing, for frequency

domain applications, a multiplicative regularization based on the definition

of a mixed `p,q-norm to accurately reflect experimenters knowledge on the

type (localized or distributed) of the excitation forces, as well as on the na-

ture of the force spectrum [20].

In the present paper, a space-time regularization is proposed for time do-

main applications in order to solve both localization and time reconstruction

problems within a unique framework. Actually, the proposed method relies

on three pillars. The first one is related to the definition of the reconstruction

model. Here, the reconstruction model is obtained from a state-space model

of the structure built from a generalized-α integration scheme [43]. In doing

so, the reconstruction model is unconditionally stable and second-order ac-

curate. The second key feature is the space-time regularization term defined,

as in [20], from a mixed `p,q-norm to properly exploit the space-time infor-
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mation available on the sources to identify. The last pillar of the proposed

approach concerns the formulation of the inverse problem, since it is based

on the multiplicative regularization recently introduced by the authors in

the context of mechanical source identification [20, 44, 45]. This particular

strategy is generally computationally more efficient than the corresponding

additive regularization, because it is free from the preliminary definition of

any regularization parameter [44]. This explains its use in the present pa-

per. To clearly introduce the main features of the proposed regularization

strategy, this article is divided into four parts. Before considering the core of

the paper, the need for another regularization strategy for dealing with time

domain applications is explained in section 2. Section 3 is devoted to the in-

troduction of the three pillars of the space-time regularization, as well as that

of the related resolution algorithm. Numerical and experimental validations

of the space-time regularization are proposed in section 4 and 5. Obtained

results point out the practical interest in exploiting both spatial and tem-

poral prior information simultaneously in terms of quality and robustness of

reconstructed solutions.

2. The need for another regularization method in time domain

As highlighted in the introduction, the most widespread regularization

strategies to solve the source identification problem in time domain are the

Tikhonov regularization [13, 14, 15, 46, 47] and the LASSO regularization

[16, 29, 30, 28], which belong to the class of additive regularization methods.

The related multiplicative regularizations can be formally written under the
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following generic form:

F̂ = argmin
F\{0}

‖Y−HF‖22 · ‖F‖qq, (1)

where H is the convolution matrix, Y is the measured output vector, F is

the force vector and q is the norm parameter. This formulation gives rise to

the multiplicative Tikhonov regularization (mTIK) when q = 2 and to the

multiplicative LASSO regularization (mLASSO) when q = 1.

Unfortunately, these formulations can lead to inaccurate reconstructions

when one wants to identify both the location and the time signal of the

excitation field. Indeed, the norm parameter q helps to exploit one’s prior

knowledge on the sources to identify, since choosing q = 2 promotes dis-

tributed solutions [23, 26], while setting q ≤ 1 enforces the sparsity of the

solution vector [48, 49]. In other words, mTIK and mLASSO regularizations

are generally limited to the reconstruction of sources sharing the same space

and time characteristics such as the sparsity (e.g. reconstruction of a ham-

mer impact).

To illustrate this, let us consider the reconstruction of a harmonic point

force imposed by a shaker on the simply-supported 1m-long beam described

in section 4 at x0 = 0.3 m from its left end [see section 4 for details]. To

implement the overall reconstruction process, it is first assumed that the

bending displacement field Y, measured in 9 points with a Digital Image

Correlation system for instance, is corrupted by an additive Gaussian white

noise such that the corresponding signal-to-noise ratio (SNR) is equal to

25 dB. Then, the convolution matrix H is computed using the procedure

6



described in section 3.1. Finally, the identification of the excitation field is

performed by supposing that all the reconstruction points (i.e. the points

where the excitation field is identified) are collocated with the measurement

points, including the excitation point [see Fig. 1].

0 0.2 0.4 0.6 0.8 1

x [m]

Excitation

Figure 1: Locations of the measurement and reconstruction points along the beam – (•)
Ends of the beam, (�) Measurement points and (◦) Reconstruction points

Figs. 2 and 3 respectively present the excitation fields reconstructed after

the application of mTIK and mLASSO regularizations. A thorough analysis

of these results show that none of the considered regularization strategy is

able to provide a satisfying reconstruction in the present application. Indeed,

mTIK regularization allows identifying the shape of the excitation signal, but

not its amplitude, which is underestimated. Furthermore, in absence of infor-

mation on the number of actual sources and their location, the inspection of
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the waterfall representation can lead to erroneous conclusions, since the exci-

tation field is more distributed than expected. On the other hand, mLASSO

regularization correctly retrieves the point source location, but the recon-

structed excitation signal is clearly different from the reference one.
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Figure 2: Reconstruction of the excitation field from mTIK regularization – (a) Waterfall

representation and (b) Identified time signal at excitation point – (—) Reference signal

and (−−) Reconstructed signal

A better reconstruction can be obtained by choosing the norm parameter

q ∈ [1, 2] to achieve a compromise between the spatial sparsity and the time

continuity of the excitation field [see Fig. 4]. However, this choice is very

challenging when one has only a rough idea of the actual excitation field.

Consequently, the proposed example shows the importance of exploiting

both spatial and temporal prior information on the sources to identify for

improving the quality of the reconstructed solutions.

8



-100
1

-50

0.02

0

F
o

rc
e
 [

N
]

0.015

50

x [m]

0.5

Time [s]

100

0.01
0.005

0 0

(a)

0 0.005 0.01 0.015 0.02

Time [s]

-100

-80

-60

-40

-20

0

20

40

60

80

100

F
o

rc
e
 [

N
]

(b)

Figure 3: Reconstruction of the excitation field from mLASSO regularization – (a) Wa-

terfall representation and (b) Identified time signal at excitation point – (—) Reference

signal and (−−) Reconstructed signal
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Figure 4: Reconstruction of the excitation field from the multiplicative regularization

given in Eq. (1) for q = 1.3 – (a) Waterfall representation and (b) Identified time signal

at excitation point – (—) Reference signal and (−−) Reconstructed signal
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3. Theoretical background

Regularization consists in including in the formulation of the inverse prob-

lem some prior information on the excitation field to identify in order to

constrain the space of solutions. In the present paper, the regularization

problem is expressed as:

F̂ = argmin
F

F(Y−HF) · R(F), (2)

where

• F(Y−HF) is the data-fidelity term which controls the a priori on the

noise corrupting the data [50, 51, 52]. Here, it is assumed that the

reconstruction model is linear and defined such that:

Y = HF; (3)

• R(F) is the regularization term that encodes prior information on the

excitation field F, i.e. what is known about the excitation field before

making any measurement [19, 24, 53].

At this stage, it is clear that the quality of the reconstructed excita-

tion field is not only conditioned to the adequacy of the data-fidelity and

regularization terms with the actual noise and the actual space-time source

characteristics, but also to the quality of the reconstruction model describing

the dynamic behavior of the considered structure. For all these reasons, a

particular attention is paid to the definition of each element of the regular-

ization problem. That is also why, the present paper introduces an original

reconstruction model, as well as an adapted regularization term for encoding

available space-time prior information.
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3.1. Derivation of the reconstruction model

The reconstruction model given by Eq. (3) can be classically established

either from the discretization of the Duhamel’s integral [13, 46, 28, 30, 54]

or from the discretization of the state-space representation of the mechanical

system [16, 54, 55, 56]. In the present paper, the reconstruction model is

built from a discretized state-space representation, because we are prone to

think that such an approach can deal with measurement data of various types

(displacement, velocity, acceleration, strain, etc.) in a simple, efficient and

convenient manner.

3.1.1. Discretized state-space representation of the dynamical system

The most widespread approach to discretize the state-space representa-

tion of a dynamical system is the zero-order-hold (ZOH) sampling technique,

which consists in assuming that the input of the system f(t) is constant within

a time step. Formally, the corresponding discretized state-space representa-

tion, composed of the state and output equations, is written:xk+1 = Axk + Bfk

yk = Oxk + Dfk
, (4)

where xk, fk and yk are the state, input and output vectors at sample k,

while A, B, O and D are, respectively, the discretized state, input, output

and feedthrough matrices.

Although widely used, this model is conditionally stable and its perfor-

mances strongly depends on the sampling rate. That is why, Liu et al. pro-

posed a state-space model established from the Newmark integration scheme
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[55]. However, despite Newmark approach is unconditionally stable for a

well-chosen set of parameters (namely γ = 1/2 and β = 1/4) [57], it does not

allow introducing numerical damping on the response of the high frequency

modes present in the model. Consequently, if those modes are not properly

discretized in space and time, numerical errors can affect the computed me-

chanical fields [43]. A practical way of introducing numerical damping in the

Newmark method consists in choosing the parameters γ and β such that [57]:

γ =
1

2
+ α and β =

1

4

(
1 + α2

)
with 0 ≤ α < 1. (5)

As appealing it seems, the resulting Newmark scheme is first-order ac-

curate only. To preserve the second-order accuracy, some other numeri-

cal integration methods have been introduced. One of the most general

approaches is the generalized-α method [43], which includes the Newmark

method, the HHT (Hilber-Hughes-Taylor) scheme [58] and the WBZ (Wood-

Bossak-Zienkiewicz) approach [59]. For a proper choice of parameters, the

generalized-α method is unconditionally stable and second-order accurate

and minimizes the numerical damping at low frequencies for a given high-

frequency damping level. That is why, we propose to extend the approach

introduced by Liu et al. in Ref. [55] to derive a state-space model based on

the generalized-α method.

Derivation of the state equation

Let us consider a regular partition of the time domain such that t0 < · · · <

tk < · · · < tf (t0 and tf : initial and final instants) and let h = tk+1 − tk de-

note the time step size. To derive the state equation from the generalized-α
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method for a mechanical system described by its mass, stiffness and damping

matrices (M, K, C), one has to start from the following equations [60]:

M
..

dk+1−αm + C
.

dk+1−αf
+ Kdk+1−αf

= Sf fk+1−αf
, (6a)

.

dk+1 =
.

dk + (1− γ)h
..

dk + γ h
..

dk+1, (6b)

dk+1 = dk + h
.

dk +
(
1

2
− β

)
h2

..

dk + β h2
..

dk+1, (6c)

where γ and β are the parameters of the Newmark method, αm and αf

are two averaging parameters associated to the inertia and internal/external

forces, while dk = d(tk) and fk = f(tk) are, respectively, the displacement and

excitation vectors at time tk, Sf being the selection matrix of the excitation

degrees of freedom. In the previous equation, the quantity dk+1−α must be

read as:

dk+1−α = (1− α)dk+1 + αdk. (7)

For linear systems, it is a common practice to use a modally reduced

order model to limit the computational costs. In this regard, when the dis-

placement vector is expanded on its modal basis, the previous equation of

motion becomes:

..
qk+1−αm

+ Zn
.
qk+1−αf

+Ω2
n qk+1−αf

= ΦT
n Sf fk+1−αf

, (8a)
.
qk+1 =

.
qk + (1− γ)h ..

qk + γ h
..
qk+1, (8b)

qk+1 = qk + h
.
qk +

(
1

2
− β

)
h2

..
qk + β h2

..
qk+1, (8c)

where qk is the generalized displacement, Φn is the matrix of the mass-

normalized mode shapes,Ωn = diag(ω1, . . . , ωn) and Zn = diag(2ξ1ω1, . . . , 2ξnωn),

where ωn and ξn are respectively the modal angular frequency and the modal
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damping ratio of the mode n.

The first step to derive the state equation consists in expressing the accel-

eration and velocity vectors at instant tk+1 from the generalized acceleration,

velocity and displacement vectors at instant tk and the generalized displace-

ment vector at instant tk+1 [55]. After some manipulations of Eqs. (8b)

et (8c), it comes:

.
qk+1 =

γ

β h

(
qk+1 − qk

)
+

(
1− γ

β

)
.
qk +

(
1− γ

2β

)
h
..
qk, (9a)

..
qk+1 =

1

β h2
(
qk+1 − qk

)
− 1

β h

.
qk −

(
1

2β
− 1

)
..
qk. (9b)

By introducing the last two relations into Eq. (8a), one gets:

qk+1 = LdΦ
T
nSf [(1− αf ) fk+1 + αf fk] + Kd qk + Cd

.
qk + Md

..
qk, (10)

where

Ld =

[
1− αm
β h2

I +
(1− αf ) γ

β h
Zn + (1− αf )Ω2

n

]−1
,

Kd = Ld

[
1− αm
β h2

I +
(1− αf ) γ

β h
Zn − αf Ω2

n

]
,

Cd = Ld

[
1− αm
β h

I + (1− αf )
(
γ

β
− 1

)
Zn − αf Zn

]
,

Md = Ld

[
(1− αm)

(
1

2β
− 1

)
I + (1− αf )

(
γ

2β
− 1

)
hZn − αm I

]
.

Replacing now Eq.(10) in Eq. (9a), one finds:

.
qk+1 = LvΦ

T
nSf [(1− αf ) fk+1 + αf fk] + Kv qk + Cv

.
qk + Mv

..
qk, (12)

where Lv = γ
β h

Ld, Kv = γ
β h

[Kd − I] , Cv = γ
β h

Cd +
(
1− γ

β

)
I and

Mv = γ
β h

Md +
(
1− γ

2β

)
h I.
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Similarly, after introducing Eq.(10) in Eq. (9b), it readily comes:

..
qk+1 = LaΦ

T
nSf [(1− αf ) fk+1 + αf fk] + Ka qk + Ca

.
qk + Ma

..
qk, (13)

where La = 1
β h2

Ld, Ka = 1
β h2

[Kd − I] , Ca = 1
β h2

[Cd − h I] and Ma = 1
β h2

Md−(
1
2β
− 1
)

I.

All things considered, if the state vector xk is defined such that xk = [qTk
.
qTk

..
qTk ]T ,

then Eqs. (10), (12) and (13) can be gathered to form the desired state equa-

tion:

xk+1 = Axk + B+ fk+1 + B− fk, (14)

where

A =


Kd Cd Md

Kv Cv Mv

Ka Ca Ma

 , B+ = (1− αf )


Ld

Lv

La

Sf, B− = αf


Ld

Lv

La

Sf.

Finally, it should be noted that the proposed state equation based on the

generalized-α method is unconditionally stable and second-order accurate

provided that [43, 57]:

αf =
ρ∞

1 + ρ∞
, αm = 3αf − 1, γ =

1

2
+ αf − αm and β =

1

4
(1 + αf − αm)2 ,

(15)

where ρ∞ is the spectral radius belonging to the interval [0, 1]. In the present

paper, ρ∞ is set to 1.
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Derivation of the output equation

Considering the previously defined state vector, the output equation can

be expressed as:

yk = Sd dk + Sv
.

dk + Sa
..

dk

= Sd Φn qk + Sv Φn
.
qk + Sa Φn

..
qk

= Oxk,

(16)

where Sd, Sv and Sa are, respectively, the selection matrices of the dis-

placement, velocity and acceleration data measured on the structure and

O = [Sd, Sv, Sa]Φn.

State-space model

From the state and output equations presented above, one can form the

state-space representation of the considered dynamical system derived from

the generalized-α method, namely:xk+1 = Axk + B+ fk+1 + B− fk

yk = Oxk
. (17)

3.1.2. Reconstruction model

The implementation of a regularization strategy requires the definition

of an ad-hoc reconstruction model expressed as a linear system of equations

relating the excitation field F to identify to the measured data Y through

the convolution matrix H [see Eq. (3)]. To derive such a relation from the

state-space model given by Eq. (17), it is first necessary to express the state
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vector at instant tk from the state and input vectors at instants tj ≤ tk. In

doing so, it can be shown that the state vector xk writes:

xk = Ak x0 + Ak−1 B− f0 +
k−1∑
j=1

Ak−j−1 Bfj + B+ fk, for tk > t0, (18)

where B = AB+ + B− and x0 et f0 are the known initial state and input

vectors.

As a result, the output vector yk is given, for t0 < tk ≤ tn (n: number of

time samples), by the relation:

yk = OAk x0 + OAk−1 B− f0 +
k−1∑
j=1

OAk−j−1 Bfj + OB+ fk. (19)

In the end, the reconstruction model used in this paper simply writes:

Y = HF, (20)

where

Y =



y1

y2

y3

...

yn


−



OA

OA2

OA3

...

OAn


x0 −



OB−

OAB−

OA2B−

...

OAn−1B−


f0, H =


OB+ 0 · · · 0

OB OB+ . . . ...
...

... . . . 0

OAn−2B OAn−3B · · · OB+

 ,

F =



f1

f2

f3
...

fn


.
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Here, the initial state and input vectors are chosen so that x0 = 0 and

f0 = 0. Consequently, when measuring output data, it is compulsory to start

the recordings before exciting the structure. A final word must be added

about the dimensions of the proposed reconstruction model, because it can

be thought that the size of the reconstruction problem should be necessarily

large. Actually, in practical applications, the number of measured responses

is always limited as well as the number of reconstruction points. In other

words, this means that the output vector Y and the excitation vector F are

not evaluated on all the degrees of freedom of the structure, but only on a

(possibly small) subset2. To fix ideas, if the number of measurement points is

Nm and the number of reconstruction points is Nr (Nm not necessarily equal

to Nr), then the dimensions of Y and F are respectively equal to (Nm ·n)×1

and (Nr · n)× 1.

3.2. Space-time regularization

The core idea behind the space-time regularization is to exploit available

prior information on the type of the sources (localized or distributed) and

the nature of the excitation signal simultaneously, while properly exploiting

prior information on the noise corrupting the data. As already evoked in the

preamble of this section, all this information is encoded in the data-fidelity

and regularization terms. That is why, a particular attention is paid to their

definition, which is detailed in the following subsections.

2If the actual excitation source lies outside the chosen subset, the proposed approach,

like any other regularization methods, provides a set of pseudo-forces (minimizing the

considered objective functional) and not the actual excitation field.
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3.2.1. Definition of the regularization term

An appropriate definition of the regularization term is all the more crucial

since it conditions the quality of the reconstructed solution [16, 23, 26, 61].

In this paper, the regularization term is defined, as for the space-frequency

regularization developed by the authors, from the general mixed `p,q-norm in

order to exploit one’s prior knowledge on the spatial and temporal charac-

teristics of the forces to reconstruct [20].

Formally, the proposed space-time regularization term is expressed as:

R(F) = ‖F‖qp,q . (22)

To better understand the influence of the space-time regularization term

during the resolution process, it is interesting to represent the unknown force

vector F as a matrix, where the rows correspond to the time signal at a par-

ticular location and the columns to the excitation field at a specific instant.

In doing so, it comes:

F = [f1 . . . fj . . . fn] =



f11 · · · f1j · · · f1n
...

...
...

fi1 · · · fij · · · fin
...

...
...

fm1 · · · fmj · · · fmn


, (23)

where m is the number of reconstruction points of the excitation field.

Consequently, by recalling that the mixed `p,q-norm is defined by the
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relation:

‖F‖p,q =

 m∑
i=1

(
n∑
j=1

|fij|p
) q

p

 1
q

, ∀ (p, q) ∈ R∗+, (24)

it is clear that the proposed regularization term introduces an explicit cou-

pling between the coefficients of F and allows promoting some structures

observed in real signals [62]. To illustrate this particular property of the

mixed norms, let us consider the case for which (p, q) = (2, 1). In this sit-

uation, the matrix F is supposed to be sparse along the lines (space) and

full along the rows (time). In other words, one promotes the spatial sparsity

of the excitation field and the continuity of the time signals. Consequently,

the proposed space-time regularization term is highly flexible, since it allows

dealing with various force distributions and various excitation signals within

a unique framework. However, it can be argued that in real-life applications

finding proper values for p and q is far from an easy task, because the force

distribution is unknown or there is no idea about the force to recover. We

are prone to think that even in these situations rough information about the

force to recover is available. This information is provided by a careful analysis

of the mechanical system and recorded time signals. Once useful informa-

tion is obtained, one has to translate it into mathematical terms through the

choice of the norm parameters p and q. To this end, some guidelines, based

on our own experience [20, 26, 61, 63] and the existing literature on convex

and non-convex optimization [23, 48, 64], can be used. Regarding the spatial

distribution, if the excitation field is supposed to be distributed, then it is

reasonable to set q = 2. On the contrary, if the excitation field is rather

localized, then choosing q ≤ 1 allows promoting the sparsity of the solution.
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Regarding now the mathematical transcription of one’s prior knowledge of

excitation signal, it is reasonable to set p = 2 if the time signal is supposed

to be continuous over the considered duration, while p ≤ 1 if the signal is

rather impulsive.

3.2.2. Definition of the data-fidelity term

The data-fidelity term is a measure of the difference between the measured

output data Y and the reconstructed output data HF. Accordingly, it reflects

prior information on the bias between measured and reconstructed output

data. In other words, it defines one’s prior knowledge on the noise corrupting

the data. A common assumption consists in considering that the measured

data are corrupted by an additive Gaussian white noise, leading to a data-

fidelity term of the form:

F(Y−HF) = ‖Y−HF‖22 . (25)

3.2.3. Generic form of the space-time regularization

The generic form of the proposed space-time (ST) regularization is simply

obtained by introducing Eqs. (22) and (25) into Eq. (2). In doing so, one

obtains:

F̂ = argmin
F\{0}

‖Y−HF‖22 · ‖F‖
q
p,q . (26)

3.3. Resolution algorithm

The solution of the proposed space-time regularization can only be found

in an iterative manner, insofar as the minimization problem has no explicit

solutions. That is why, the regularized solution is computed here from an

21



adapted version of the Iteratively Reweighted Least Squares (IRLS) algo-

rithm [65].

The basic idea behind the IRLS algorithm is to replace the direct resolu-

tion of the minimization problem by an equivalent iterative process having a

unique solution at each iteration. To this end, the mixed `p,q-norm is replaced

by a weighted `2-norm, that is:

∀(p, q), ‖F‖qp,q =
∥∥W(F)1/2 F

∥∥2
2
, (27)

where W(F) is a weighting matrix depending explicitly on the solution vec-

tor F.

As part of an iterative scheme, the aim is to find the solution F̂
(r+1)

at

iteration r+1 from the solution F̂
(r)

at iteration r by setting W(r) = W(F̂
(r)
),

in order to satisfy Eq. (27) when the iterative process has converged. Thereby,

F̂
(r+1)

at iteration r + 1 is solution of the following minimization problem:

F̂
(r+1)

= argmin
F\{0}

‖Y−HF‖22 ·
∥∥∥W(r)1/2 F

∥∥∥2
2

=
(
HT H + α(r+1)W(r)

)−1
HT Y,

(28)

where α(r+1) is the adaptive regularization parameter, defined such that [20,

44]:

α(r+1) =

∥∥∥Y−HF̂
(r)
∥∥∥2
2∥∥∥W(r)1/2 F̂

(r)
∥∥∥2
2

. (29)

Practically, the coefficients of the weighting matrix W(r) are defined such

that [20]:

W(r)
I = W

s(r)
i ·W t(r)

i,j , (30)
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where I = j + n(i− 1) is a global index and W s(r)
i and W t(r)

i,j are the weight-

ing coefficients associated to the space (s) and the time (t) domains. By

construction, the weighting coefficients are written:

W
t(r)
i,j = max

(
εp−2,

∣∣∣f̂ij∣∣∣p−2) (31)

and

W
s(r)
i = max

([
ε2
] q

p
−1
,

[∥∥∥Wt(r)
i

1/2
F̂[i](r)

∥∥∥2
2

] q
p
−1
)
, (32)

where F̂[i] = [f̂i1 . . . f̂ij . . . f̂in] and Wt(r)
i = diag

(
W

t(r)
i,1 , . . . ,W

t(r)
i,n

)
.

In the previous relations, ε is a damping parameter that allows avoiding

infinite weights. The damping parameter is automatically selected once for

all at the beginning of the iterative process from the cumulative histogram

of the initial solution |F̂
(0)
|. Actually, its value is calculated so that 5% of

the values of |F̂
(0)
| are less than or equal to ε.

Finally, to completely implement the IRLS algorithm, it remains to define

an initial solution and a reliable stopping criterion. In the present paper, the

initial solution is chosen as the solution of the standard Tikhonov regular-

ization, namely:

F̂
(0)

= argmin
F

‖Y−HF‖22 + α(0) ‖F‖22

=
(
HT H + α(0)I

)−1
HT Y,

(33)

where I is the identity matrix of dimension m ·n and α(0) is the initial adap-

tive regularization parameter chosen as in Ref [44].
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Regarding the choice of stopping criterion, the iterative process is stopped

when the relative variation δ of the adaptive regularization between two

successive iterations is less than or equal to some tolerance. Formally, the

relative variation δ is defined by:

δ =

∣∣α(k) − α(k−1)
∣∣

α(k−1) . (34)

Experimentally, it has been found that setting the tolerance to 10−8 allows

obtaining consistent reconstructions.

4. Numerical validation

This numerical validation intends to investigate the practical interest of

applying the proposed approach for solving force reconstruction problems.

4.1. Description of the numerical test case

In this section, we consider the space-time reconstruction of a harmonic

point force of amplitude 15 N oscillating at 100 Hz imposed by a shaker from

the measurement of the displacement field only. The harmonic excitation

signal f(t) imposed on the structure is defined such that:

f(t) = A sin(2π f0 t), (35)

with A = 15 N and f0 = 100 Hz.

The studied structure is a simply-supported IPN steel beam of length 1

m, cross-sectional area 1060 mm2 and second moment of area 171 mm4. The

coordinate of the point force, measured from the left end of the beam, is
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x0 = 0.3 m.

In the present numerical validation, it is supposed that only displacement

data are available. To synthesize these experimental data, the equation of

motion of the beam is first expanded on the corresponding modal basis, which

is computed analytically. Then, the resulting modally reduced system, con-

taining the first 18 bending modes (resonance frequencies less than 1 kHz),

is solved using the Newmark method for (γ, β) = (1/2, 1/4) and h = 0.1 ms

(sampling frequency: 10 kHz). Here, a modal damping ratio equal to 1% for

all the modes has been imposed. In a last step, the obtained output fields is

corrupted by an additive Gaussian white noise with a SNR equal to 25 dB.

Regarding the reconstruction model, the output matrix O should be de-

fined so that the output vector yk corresponds to the measured displacement

field. As a result, the output matrix is expressed as:

O =
[
Sd Φn 0 0

]
, (36)

where Sd is the selection matrix of the displacement data measured on the

structure.

Finally, it should be noted that the displacement field is computed on

nine measurement positions equally distributed along the beam between 0.1

m and 0.9 m. Then, the reconstruction of the excitation fields is performed

by supposing that all the measurement points are collocated with the iden-

tification points, including the excitation points, as presented in Fig. 1.
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4.2. Application

In section 2, it has been shown that standard regularization terms don’t

provide satisfying results, because they don’t fully exploit space-time prior

information on the excitation field to reconstruct. This is the reason why the

space-time regularization is developed in this paper.

To apply the space-time regularization, the mixed norm parameters must

be properly chosen. For this purpose, the test case must be carefully ana-

lyzed. Here, the excitation field is necessarily spatially sparse, insofar as a

point force is to the structure by a shaker. On the other hand, mechanical

signals are continuous by nature. It is thus reasonable to promote this feature

in the formulation of the reconstruction problem. This information can also

be inferred after the analysis of the output signals. From the previous con-

siderations, the norm parameters defining the regularization term are chosen

such that (p, q) = (2, 0.5).

As shown in Figure 5, the proposed ST regularization allows reconstruct-

ing more consistently the target excitation field than mTIK and mLASSO

regularization approaches. By extension, it indicates that the standard regu-

larizations classically used in the literature dedicated to time domain source

identification are not always the best ones. Actually, the choice of a particu-

lar approach must be done after a thorough study of the experimental set-up.

Nevertheless, ST regularization is a safe choice when one wants to localize

and quantify the excitation sources during a certain period of time. As a

side note, it should be noted that displacement data has been used in the
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proposed numerical validation to reconstruct the unknown excitation field.

For the sake of completness, reconstruction results obtain from acceleration

data are presented in Appendix A.
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Figure 5: Reconstruction of the excitation field from the space-time regularization for

(p, q) = (2, 0.5) – (a) Waterfall representation and (b) Identified time signal at excitation

point – (—) Reference signal and (−−) Reconstructed signal

5. Experimental validation

To confirm the conclusions drawn in the previous numerical experiment,

the space-time is applied to a real structure. The main objective of this exper-

imental validation is to demonstrate the advantages of the proposed strategy

in terms of identification quality and robustness in operating conditions. In

this section, the reconstruction of a hammer impact is considered.

5.1. Description of the experimental set-up

The structure under test is a thin aluminum plate of 60 cm in length, 40

cm in width and 6 mm in thickness, clamped along its length in a wooden
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support. The effective width of the plate resulting from the mounting con-

ditions is 39.1 cm. To perform all the subsequent measurements the system

is suspended to a rigid structure through a set of elastic bungee cords [see

Fig. 6] and all the measurements (FRF and time signals) are recorded and

processed using an M+P data acquisition system.

Figure 6: Experimental set-up

5.1.1. Reconstruction model

As in the numerical validation, the reconstruction model has been built

from a modal reduction [see Eq. (8)]. Regarding the output equation, the

output matrix O should be defined so that the output vector yk corresponds

to the measured data. In the present experimental validation, acceleration

data has been measured by a set of accelerometers. Consequently, the output
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matrix is expressed as:

O =
[
0 0 Sa Φn

]
, (37)

where Sa is the selection matrix of the acceleration data measured on the

structure.

To establish the reconstruction model from a modal reduction, the modes

of the system must be known beforehand. For this purpose, an experimental

modal analysis (EMA) has been conducted from a roving hammer test per-

formed on a grid of 17× 17 points using three reference accelerometers and

a impact hammer equipped with a steel tip to properly excite all the modes

below 6500 Hz. The goal of the EMA is to extract the modes from the real

structure in order to limit the influence of modeling errors when establishing

the reconstruction model. The locations and the associated identification

numbers of the references accelerometers with respect to the measurement

grid are presented in Fig. 7.

Once all the measurements collected, the modal parameters have been

extracted from a MDOF curve fitting algorithm. In total, the first 83 flexible

modes and 2 suspension modes (at 1 Hz and 2.5 Hz) have been extracted.

As an illustration, the modal parameters (resonance frequency and modal

damping) of the first 10 flexible modes extracted by EMA are given in Ta-

ble 1. Furthermore, a global overview of these modal parameters is presented

in Figure 8.

Finally, the mode shapes of flexible modes 5 (295.13 Hz), 30 (1824.20 Hz)
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Figure 8: Modal parameters of the flexible modes extracted from EMA - (a) Resonance

frequency and (b) Modal damping
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Table 1: Resonance frequency and modal damping of the first 10 flexible modes

ID Frequency (Hz) Modal damping (%)

1 65.26 0.74

2 122.61 0.55

3 141.86 0.43

4 221.02 0.36

5 295.13 0.31

6 315.81 0.30

7 489.74 0.37

8 501.56 0.18

9 537.30 0.20

10 540.96 0.19
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and 60 (3986.80 Hz) extracted by EMA are presented in Fig. 9 for the sake

of completeness.

(a) (b) (c)

Figure 9: Mode shapes of three identified flexible modes – Mode 5: 295.13 Hz, (b) Mode

30: 1824.20 Hz and (c) Mode 60: 3986.80 Hz

5.1.2. Measurement of acceleration data and excitation signal

The output data resulting from a hammer impact have been collected

using four accelerometers mounted on the structure. The input and output

measurement devices has been located at nodes of the grid defined for EMA

to ensure the consistency of the reconstruction process. The locations and

the identification numbers (ID) of the measured input and output data are

defined in Fig. 10. In particular, it can be seen that no accelerometer is

located at the excitation point (ID: 236). This means that the reconstruction

have been performed in non-collocated configuration.

From a practical point of view, the hammer is equipped with a soft rubber

tip, so as to fix the cut-off frequency of the excitation around 500 Hz. In this

way, the convergence of the reconstruction model in terms of modal series is

ensured. Regarding the signal processing parameters, the sampling frequency

has been set to 16384 Hz for 32768 lines. In other words, the data acquisition

time is fixed to 2 s, while the length of the time step is equal to 61 µs. To
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Figure 10: Location of the accelerometers and the hammer impact with respect to grid

used for EMA – (◦) Nodes of the grid used for EMA, (�) Accelerometers et (♦) Hammer

impact

illustrate the data acquisition process, the excitation and acceleration signals

measured respectively at points 236 and 153 [see Fig. 10] are presented in

Figs. 11 and 12. In particular, Fig. 11 clearly shows that the hammer impact

properly excites the structure for frequencies below 500 Hz. This is confirmed

by the analysis of the acceleration spectrum which is extremely noisy above

500 Hz. Finally, it could be noted that the estimated noise level is 24 dB. To

estimate this noise level, an estimate of the variance of the measured time

signals, σ̂2, has first been computed. Then, the average signal energy, Es, is

estimated. From these quantities, SNR of the measured signal is computed

from the relation SNR = 10 log10(Es/σ̂
2). This procedure assumes that the

noise is Gaussian and white.
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Figure 11: Measured excitation signal at point 236 - (a) Time signal et (b) Frequency

spectrum
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Figure 12: Measured acceleration signal at point 153 - (a) Time signal et (b) Frequency

spectrum
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5.1.3. Definition of the reconstruction configuration

As indicated previously, because no accelerometer is mounted at the ex-

citation point, the reconstruction of the excitation signal is necessarily per-

formed in non-collocated configuration. For the sake of clarity, the identifi-

cation numbers of the measurement and reconstruction points are given in

Table 2.

Table 2: Identification numbers of measurement and reconstruction points with respect to

grid used for EMA

Measurement Reconstruction

19 19

66 66

228 228

153 236

5.2. Application

To compare ST regularization with mTIK and mLASSO regularizations,

the reconstruction is first performed on a sequence of 24 ms defined between

96 ms and 120 ms from the acceleration data measured on this interval. As

shown in the zoomed portion of the excitation signal presented in Fig. 11, it

is reasonable to promote the continuity of the reconstructed excitation sig-

nals. On the other hand, the excitation field is necessarily sparse, since the

structure is excited by a hammer impact. Consequently, the norm parame-

ters defining the space-time regularization term are set to (p, q) = (2, 0.5).
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When applying mTIK (q = 2), mLASSO (q = 1) and ST regularizations

on the selected sequence, we observe that all the three regularization ap-

proaches give very similar reconstructed excitation fields, which are in very

good agreement with the target excitation field [see Fig. 13]. To quantify

the accuracy of the reconstructed solution with respect to the regularization

strategy, the correlation and the relative error (RE) are evaluated and given

in Table 3. Formally, the correlation is given by:

C =
FT

meas · Fid

‖Fmeas‖2 · ‖Fid‖2
, (38)

where Fmeas is the force measured by the force sensor and Fid is the force

identified by mTIK, mLASSO or ST regularizations. Regarding now, the

relative error, it is defined such that:

E =
‖Fmeas − Fid‖22
‖Fmeas‖22

. (39)

Table 3: Correlation and RE for mTIK, mLASSO and ST regularizations

Reg.strategy Correlation RE (%)

mTIK 0.9963 0.74

mLASSO 0.9997 0.06

ST 0.9993 0.15

This surprising result could potentially be explained by the fact that the

forces are directly related to the accelerations through the second Newton’s

law, making the reconstruction easier.
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Figure 13: Reconstruction of the excitation field corresponding to a hammer impact over

24 ms – (a) Waterfall representation - mTIK regularization, (b) Waterfall representation

- mLASSO regularization, (c) Waterfall representation - ST regularization for (p, q) =

(2, 0.5) and (d) Identified time signal at excitation point – (—) Reference signal and (−−)

Tikhonov regularization, (− · −) LASSO regularization and (· · · ) ST regularization
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However, the results significantly differ when considering a shorter recon-

struction sequence. Indeed, when the reconstructions are performed on a

sequence of 5.4 ms defined between 96 ms and 101.4 ms, mTIK, mLASSO

and ST regularizations behave rather differently, as shown in Fig. 14 and

Table 4. Obtained results show that, in this particular situation, only ST

regularization allows obtaining a consistent space-time reconstruction of the

target excitation field. Consequently, this experimental validation indicates

that properly exploiting simultaneously the space-time characteristics of exci-

tation sources is beneficial in terms of quality and robustness of reconstructed

solutions.

Table 4: Correlation and RE for mTIK, mLASSO and ST regularizations

Reg. strategy Correlation RE (%)

mTIK 0.6267 67.4

mLASSO 0.7703 52.5

ST 0.9999 0.01

6. Conclusion

The present paper has introduced a space-time multiplicative regular-

ization to reconstruct mechanical sources in time domain. The proposed

regularization method relies on three particular features. First, a novel recon-

struction model based on a discretized state-space representation of the me-

chanical system, derived from a generalized-α integration scheme, has been

developed. This allows obtaining an unconditionally stable and second-order
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Figure 14: Reconstruction of the excitation field corresponding to a hammer impact

over 5.4 ms – (a) Waterfall representation - Tikhonov regularization, (b) Waterfall rep-

resentation - LASSO regularization, (c) Waterfall representation - ST regularization for

(p, q) = (2, 0.5) and (d) Identified time signal at excitation point – (—) Reference signal

and (−−) Tikhonov regularization, (− · −) LASSO regularization and (· · · ) ST regular-

ization
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accurate reconstruction model. Second, a space-time regularization term has

been employed to take advantage of one’s prior knowledge on the space-time

characteristics of the sources to identify. Finally, all these ingredients have

been introduced in a multiplicative formulation of the regularization problem

for computational efficiency purposes. The potential of the proposed strat-

egy has been assessed numerically and experimentally. The main conclusion

of the present study is that the space-time regularization outperforms ap-

proaches based on standard regularization terms regarding the quality and

the robustness of regularized solutions in configurations quite favorable for

the resolution inverse problem. The application of the proposed approach

to (weakly and possibly highly) under-determined configurations will be one

the topic of our future works.
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Appendix A. Numerical validation based on acceleration data

In section 4, displacement data has been used to reconstruct the unknown

excitation field. In the engineering practice, acceleration data are preferred

because they can be measured accurately at relatively low cost. For this rea-

son, acceleration-based reconstructions are presented in this appendix. This
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allows having another point of comparison between mTIK, mLASSO and

ST regularizations. In the present application, the synthesized acceleration

data has been computed by solving the dynamic problem using the Newmark

method and applying to the resulting noiseless acceleration field an additive

Gaussian white noise with a SNR equal to 25 dB.

The comparison of mTIK, mLASSO and ST regularizations for (p, q) =

(2, 0.5) presented in Fig. A.15 shows that all the regularization strategies

provide very similar reconstructed excitation field when acceleration data

are employed. Actually, this result is in line with the experimental re-

sults presented in section 5. The difference between displacement-based

and acceleration-based reconstructions can be related to the condition num-

ber of the corresponding convolution matrix H. Indeed, it is of the order

of 109 for displacement-based reconstructions, while it is of the order of

103 for acceleration-based reconstructions. In the end, the comparison of

displacement-based and acceleration-based reconstructions not only shows

that acceleration data should be preferred for force reconstruction in time

domain, but also confirms that ST regularization is still a safe choice be-

cause of its robustness with respect to the type of the data used to solve the

inverse problem in the configurations covered in the present study.
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