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Abstract

In presence of very noisy data, standard regularization methods generally

fail in reconstructing satisfying solutions. To this end, iterated regularization

techniques can be implemented. This class of regularization approaches can

be seen as an iterative refinement of an initial solution obtained from classical

regularization methods. In the present paper, an iterated multiplicative reg-

ularization for dealing with force reconstruction problems is discussed. More

specifically, the associated non-stationary formulation is compared to its sta-

tionary counterpart through numerical and experimental validations. It is

shown that the proposed stationary version outperforms the non-stationary

formulation regarding the quality of reconstructed solutions.

Keywords: Inverse problem, Force reconstruction, Multiplicative

regularization, Iterated regularization.

1. Introduction

Iterated Tikhonov regularization has been extensively studied by the in-

verse problem community. Classically, iterated Tikhonov regularization is
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defined as follows:
F̂

(0)
= 0

F̂
(k)

= argmin
F

‖X−HF‖22 + λ(k)
∥∥∥F− F̂

(k−1)∥∥∥2
2

for k ≥ 1
, (1)

where in the context of force reconstructionX is the measured vibration field,

H is the system matrix of the structure describing its dynamic behavior, F̂
(k)

is the force vector identified at iteration k and λ(k) is the regularization pa-

rameter at iteration k.

The previous formulation is referred to as non-stationary Tikhonov reg-

ularization [1, 2, 3, 4, 5, 6], because the regularization parameter changes

at each iteration. If the regularization parameter remains constant over the

iterations, it is called stationary iterated Tikhonov regularization [5, 6, 7, 8,

9, 10, 11]. Practically, iterated Tikhonov regularization can be viewed as an

iterative refinement of an initial solution obtained by applying the standard

Tikhonov regularization [12]. Surprisingly, this regularization strategy seems

to be seldom applied in mechanics despite its ability to compute improved

identified solutions [13, 14].

In the context of force identification, iterated Tikhonov regularization has

two major drawbacks. First, the regularization term promotes distributed

solutions, which is not desirable when the structure is actually excited by

localized or impulsive sources. This problem can be solved by implement-

ing the iterated Tikhonov regularization in Banach spaces instead of Hilbert

spaces [15, 16, 17]. Practically, this means that the regularization term is

express as the `q-norm of the residual solution F− F̂
(k−1)

. Such a regulariza-
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tion term is highly flexible to express one’s prior knowledge on the sources to

identify, since smooth solutions are promoted for q = 2 [18, 19], while sparse

excitation fields are obtained with q ≤ 1 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

The second limiting factor is the estimation of the regularization parameter

λ, that can be computed through automatic selection procedures such as

the L-curve principle [30] or the Generalized Cross-Validation [31]. Indeed,

when the reconstruction problem becomes large, this calculation can be very

expensive, because they are usually based on the computation the Singular

Value Decomposition (SVD) of the system matrixH. In this respect, the mul-

tiplicative regularization [32, 33, 34, 35] is an interesting alternative, since it

eliminates the need for the selection of the optimal regularization. However,

as shown in the next of the paper, when this strategy is applied to very noisy

data, as any Tikhonov-like regularization, identified solutions are generally

disappointing. In such a situation an iterated approach is particularly well

suited.

To combine the best of both worlds, an original iterated multiplicative

regularization is proposed. In this paper, the main features of the proposed

regularization strategy are set out, while its validity is assessed through a

series numerical and real-world experiments. To clearly introduce the main

features of the proposed strategy, this contribution is divided into four parts.

Before considering the core of the paper, the need for another regularization

strategy is explained in section 2. Section 3 is devoted to the introduction

of the proposed iterated multiplicative regularization. More precisely, a non-

stationary version is introduced as well as its stationary counterpart. The
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comparison of both formulations is performed numerically in section 4 on

two frequency domain applications. Obtained results demonstrate perhaps

counterintuitively that proposed stationary formulation outperforms the as-

sociated non-stationary version regarding the quality of reconstructed solu-

tions. The experimental validation presented in section 5 allows confirming

the conclusions drawn in the numerical validation.

2. The need for another regularization strategy

As mentioned in the introduction, the iterated Tikhonov regularization

given by Eq. (1) can lead to inaccurate reconstructions when the excitation

field to identify is sparse. To illustrate this, let us consider the reconstruction

in the frequency domain of a harmonic unit point force exciting a free-free

steel beam at 350 Hz from a noisy measured vibration displacement field

having a certain signal-to-noise ratio (SNR) [see section 4.1 for a detailed

description of the test case].

Let us first consider the situation where the SNR is relatively high, e.g. 30

dB. In this case, it is clear from Fig. 1 that neither the standard Tikhonov reg-

ularization nor its stationary iterated version using the regularization param-

eter computed at the first iteration, namely λ(1), from the L-curve principle

give a satisfying identified solution. Indeed, the analysis of the result shows

that the reconstructed excitation fields are too smooth compared to the tar-

get one. It should also be noted that the non-stationary iterated Tikhonov

regularization does not provide a better identified solution. Indeed, for a
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traditional choice of λ(k), namely [36]:

λ(k) = λ(1)βk−1, with β ∈ [0, 1], (2)

λ(k) decreases as k increases. As a result, if the regularization parameter

λ(1) is optimally selected from the L-curve principle for instance, then the

non-stationary iterated Tikhonov regularization leads to the least squares

solution.
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Figure 1: Reconstruction of the excitation field at 350 Hz from a measured vibration field

with high SNR (30 dB) - (—) Reference, (−−) Standard Tikhonov regularization and

(− · −) Stationary iterated Tikhonov regularization.

As explained in the introduction, the previous formulation has two draw-

backs, since it does not exploit one’s prior knowledge of the sources to identify

and it requires the calculation of a regularization parameter, which can be

computationally intensive depending on the size of the reconstruction prob-

lem. To bypass these potential difficulties, a multiplicative regularization

has been introduced [34, 35]. Formally, it consists in solving the following
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minimization problem:

F̂ = argmin
F\{0}

‖X−HF‖22 · ‖F‖
q
q , (3)

where q is the norm parameter included in the interval ]0,+∞[, ‖ • ‖q is the

`q-norm or quasi-norm. Practically, q is set to 2 if the solution is supposed

to be distributed, while q can be chosen equal to or less than 1 if the solution

is supposed to be localized [26].

The application of the multiplicative regularization from the measured

vibration field used previously gives, when q = 0.5, the reconstruction field

presented in Figure 2. This figure shows that the reference excitation field

and the reconstructed one are very close together when the measured data

are little noisy (high SNR). Unfortunately, when the data are very noisy

(low SNR), a degradation of the regularized solution accuracy is observed

[see Figure 2].

In the light of these observations, it seems interesting to develop an iter-

ated multiplicative regularization, combining the benefits of the multiplica-

tive regularization and the iterated Tikhonov regularization. In particular,

such an approach is potentially able to provide a refined regularized solution,

while exploiting prior information on the sources to identify.

3. Iterated multiplicative regularization

This section aims at introducing the non-stationary iterated multiplica-

tive regularization as well as its stationary counterpart. To render the pre-
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Figure 2: Reconstruction of the excitation field at 350 Hz from a measured vibration field

- (—) Reference, (−−) Multiplicative regularization for q = 0.5 and SNR = 30 dB and

(− · −) Multiplicative regularization for q = 0.5 and SNR = 13 dB.

sentation more didactic, it is focused on the main concepts and features of

the method.

3.1. Non-stationary version

By analogy with the standard iterated Tikhonov regularization, the non-

stationary iterated multiplicative regularization (NSIMR) is expressed as:
F̂

(0)
= 0

F̂
(k)

= argmin
F\

{
F̂

(k−1)
} ‖X−HF‖22 ·

∥∥∥F− F̂
(k−1)∥∥∥q

q
for k ≥ 1

. (4)

Practically, the resolution of the minimization problem at iteration k ≥ 1

requires the implementation of an iterative procedure. In the present con-

tribution, an Iteratively Reweighted Least Squares (IRLS) algorithm is im-

plemented. Basically, it consists in iteratively computing the solution of the
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problem by recasting the `q-norm into a weighted `2-norm. As a result, at

iteration k of the proposed iterated regularization, the estimated force vector

F̂
(k,j)

at iteration j of the IRLS algorithm is explicitly given by [34]:

F̂
(k,j)

=
[
HHH+ α(k,j)W(k,j−1)

]−1 [
HHX+ α(k,j)W(k,j−1)F̂

(k−1)]
, (5)

where:

• W(k,j−1) is a diagonal weighting matrix depending on the norm param-

eter q and the residual solution at iteration j − 1, namely R(k,j−1) =

F̂
(k,j−1)

− F̂
(k−1)

[25, 34, 26, 37]. For the sake of completeness, it should

be mentioned that the ith component of the weighting matrix at itera-

tions outer iteration k and inner iteration j − 1, w(k,j−1)
i , is expressed

as:

w
(k,j−1)
i = max

(
ε(k),

∣∣∣r(k,j−1)i

∣∣∣)q−2 , (6)

where r(k,j−1)i is the ith of the residual solution R(k,j−1) and ε(k) is a

small real positive number acting as a damping parameter. It allows

avoiding infinite weights when
∣∣∣r(k,j−1)i

∣∣∣ → 0 and q < 2. Its value is

selected at the beginning of each outer iteration so that 5% of the values

of
∣∣∣R(k,0)

∣∣∣ are less than or equal to ε(k).

• α(k,j) is the adaptive regularization parameter1, defined such that:

α(k,j) :=

∥∥∥X−HF̂
(k,j−1)∥∥∥2

2∥∥∥W(k,j−1)1/2
(
F̂

(k,j−1)
− F̂

(k−1))∥∥∥2
2

. (7)

1because its value is updated at each iteration of the IRLS algorithm.
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When the IRLS algorithm has converged after Nj iterations, the solu-

tion vector F̂
(k)

, the weighting matrix W(k) and the adaptive regularization

parameter α(k) are returned by the algorithm and are defined such that:

F̂
(k)

:= F̂
(k,Nj)

, W(k) := W(k,Nj) and α(k) := α(k,Nj). (8)

Consequently, the previous non-stationary iterated multiplicative algo-

rithm is composed of a main (outer) iteration corresponding to the refine-

ment stage and a nested (inner) iterative procedure to compute F̂
(k)

. Finally,

to completely implement the IRLS algorithm, it remains to define the initial

solution of each nested IRLS procedure as well as stopping criteria for both

nested and outer loops.

The initial solution of the IRLS algorithm at outer iteration k > 1 is

chosen as the solution of the following weighted Tikhonov regularization [25,

34]:

F̂
(k,0)

= argmin
F

‖X−HF‖22 + α(k−1)
∥∥∥W(k−1)1/2

(
F− F̂

(k−1))∥∥∥2
2

=
[
HHH+ α(k−1)W(k−1)

]−1 [
HHX+ α(k−1)W(k−1) F̂

(k−1)]
.

(9)

For the particular case k = 1, the initial solution is computed from the pre-

vious relation using W(0) = I (I: Identity matrix) and choosing α(0) from the

heuristic selection procedure described in [34].

Regarding now, the definition of the stopping criteria, it should be noted

that the proposed non-stationary regularization offers a natural definition of

the stopping criteria based on the relative variation of the adaptive regular-

ization parameter between two successive outer or inner iterations. Formally,
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the relative variations δ and γ of the adaptive regularization parameter for

the inner and outer loops are respectively defined such that:

δ =

∣∣α(k,j) − α(k,j−1)
∣∣

α(k,j−1) and γ =

∣∣α(k) − α(k−1)
∣∣

α(k−1) . (10)

As classically done in the literature, the iterative processes are stopped

when the relative variations δ and γ are less than or equal to some toler-

ance. Experimentally, it has been found that setting the tolerances to 10−8

and 10−2 for the inner and outer loops respectively allows obtaining consis-

tent reconstructions, while preserving the computational performances of the

overall resolution process.

3.2. Stationary version

The stationary iterated multiplicative regularization is directly derived

from the non-stationary version by fixing once for all the values of the weight-

ing matrix W(k) and the adaptive regularization parameter α(k) to their val-

ues obtained after the first main iteration (i.e. k = 1) of the non-stationary

algorithm, that is:

W(k) = W := W(1,Nj) and α(k) = α := α(1,Nj). (11)

In other words, the stationary multiplicative regularization (SIMR) can

be expressed as:

F̂
(0)

= 0(
F̂

(1)
,W, α

)
= argmin

F\{0}
‖X−HF‖22 · ‖F‖

q
q for k = 1

F̂
(k)

= argmin
F

‖X−HF‖22 + α
∥∥∥W1/2

(
F− F̂

(k−1))∥∥∥2
2

for k ≥ 2

. (12)
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At this stage, it is important to note that from k = 2, the explicit expres-

sion of the force vector F̂
(k)

is:

F̂
(k)

=
[
HHH+ αW

]−1 [
HHX+ αWF̂

(k−1)]
, for k ≥ 2. (13)

Consequently, only the matrix A = HHH+ αW has to be inverted to com-

pute F̂
(k)

for any k ≥ 2. This allows deriving a computationally efficient

algorithm, since if A is factorized using a LU decomposition for instance,

the overall computation of F̂
(k)

for k ≥ 2 is almost as expensive as than the

computation of F̂
(1)
.

The main differences with the non-stationary version concerns the defi-

nition of the stopping criteria. As shown in Eq. 12, the proposed stationary

iterated multiplicative regularization first requires the resolution of a multi-

plicative regularization at iteration k = 1 from the IRLS procedure described

in Ref. [34], defining thoroughly the initial solution and the stopping criterion

as in section 3.1. Here, the question is when to stop the main iteration loop.

In the present case, because the adaptive regularization parameter remains

constant after the first outer iteration, the stopping criterion is consequently

related to the relative variation of the functional:

J(F̂
(k)
) = ‖X−HF̂

(k)
‖22 + α

∥∥∥W1/2
(
F̂

(k)
− F̂

(k−1))∥∥∥2
2

(14)

between two successive iterations. Practically, the algorithm is automatically

stopped when a prescribed tolerance defined by the user is reached. Here,

the tolerance is set to 10−2 as for the non-stationary version.
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4. Numerical validation

This numerical validation intends to investigate the differences between

the two proposed iterated multiplicative regularizations through two frequency-

domain applications. In the present numerical validations, only the recon-

struction of the spatial distributions of sources associated to a harmonic point

force exciting the studied structures at a particular frequency is considered.

This is not a limitation of the method, since the force spectrum or history

can be reconstructed from the proposed approach provided that the system

matrix H is established accordingly. Finally, it is also worth noting that all

the reconstructions are performed outside resonance frequencies. Indeed, at

resonance frequencies, the inverse problem is known to be difficult. Because

the system matrix is singular, the uniqueness of the solution is not ensured

and the identified solution is generally not satisfying whatever the regular-

ization approach used. It follows that the corresponding refined solution is

generally not satisfying at resonance frequencies as well.

4.1. 1D structure

In the present application, the studied structure is a free-free steel beam

with dimensions 1×0.03×0.01 m3 excited by a unit point force at 350 Hz.

The coordinate of the point force, measured from the left end of the beam,

is x0 = 0.6 m.

4.1.1. Synthesis of the vibration field

In this example, the reconstruction is performed from the displacement

field X measured at 350 Hz over the structure. To synthesize the measured

vibration field, two numerical steps have been implemented. First, a finite
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element model of the beam made up with 20 plane beam elements has been

used to compute the exact displacement field. Then, a Gaussian white noise

with a prescribed SNR has been added to the exact data to simulate mea-

surement errors, related to the transducers quality.

4.1.2. Reconstruction model

Let consider the practical situation where the vibration field X, measured

over the surface of a structure, is caused by an unknown excitation field F. If

the structure is linear, its dynamic behavior is completely determined by the

transfer functions matrix H, relating the vibration field X to the unknown

field F by the relation:

X = HF. (15)

In the present application, the FE model of the structure, used to compute

the vibration field, has also been employed to compute the transfer functions

matrix H by assuming that only bending motions are measurable. In other

words, the transfer functions matrix have been dynamically condensed over

the measurable dofs.

4.1.3. Application

To assess the validity of the proposed iterated multiplicative regulariza-

tion strategy, it is compared to the ordinary multiplicative regularization

(OMR). For this purpose, the choice of the tuning parameter q is crucial.

The analysis of the numerical test case shows that the beam is only excited

by a point force. In this context, it is reasonable to set q = 0.5.

13



In section 2, it has been shown that, for this application example, the

excitation field identified from OMR was in line with the target one, when

the reconstruction is based on measured data with a high SNR value (30 dB

in the present case). Consequently, both versions of the iterated multiplica-

tive regularization are expected to provide reconstructions similar to that

obtained with OMR. To confirm this intuition quantitatively, the relative er-

ror of the reconstructed solution is evaluated for each regularization strategy

and given in Table 1. Formally, the relative error is given by:

E =
‖Fref − Fid‖22
‖Fref‖22

, (16)

where Fref is the reference excitation field and Fid is the force identified by

OMR, NSMIR or SMIR. Furthermore, the computation time of each regular-

ization strategy is also given in Table 1 to fairly compare their computational

efficiency.

The results presented in Fig. 3 and Table 1 confirm our intuition, since

the three approaches give similar reconstructions. It should however be noted

that SMIR leads to a slightly better reconstruction for a computation time

comparable to OMR, while NSMIR provides the same result as OMR for a

computation time almost 30 times larger.

Perhaps more interestingly, for measured data with a low SNR level, the

differences between each approach appear more clearly [see Fig. 4 and Ta-

ble 2]. Indeed, when the reconstruction is performed from measured data

having a SNR equal to 13 dB, only SMIR allows obtaining a far more bet-

ter estimation of the point force amplitude than OMR, while preserving the

overall quality of the reconstructed excitation field and the expected com-
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Figure 3: Spatial reconstruction of the excitation field at 350 Hz from a vibration field

corrupted by an additive Gaussian white noise with a SNR of 30 dB - (—) Reference,

(−−) OMR for q = 0.5, (− · −) NSIMR for q = 0.5 and (· · · ) SMIR for q = 0.5

Table 1: Relative error and computation times for OMR, NSMIR and SMIR obtained

from a reconstruction performed at 350 Hz from a vibration field corrupted by an additive

Gaussian white noise with a SNR of 30 dB for a 1D structure

Strategy Relative error (%) Computation time (ms)

OMR 0.013 8

NSMIR 0.013 218.5

SMIR 0.010 11.2
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putational efficiency of the approach. In this case too, NSMIR gives the

same reconstructed excitation field as OMR for a computation time much

greater than OMR or SMIR. Actually, this potentially surprising result is

related to the evolution of the value of the adaptive regularization parame-

ter α of NSIMR over the main iterations. Indeed, it is of the order of 1013

from k = 2 until convergence of the resolution algorithm. In other words,

this means that one necessarily has F̂
(k)
≈ F̂

(k−1)
at each outer iteration.

This result can be explained by the fact that, in NSIMR, the regularization

parameter is optimally adapted in order to find a solution minimizing the

residual solution F − F̂
(k−1)

, which is not the case for SMIR. In addition,

to have a global overview of the influence of the noise level on the solutions

reconstructed from OMR and SMIR, a discussion is proposed in Appendix A.

As a side note, it should however be noted that, below 10 dB, OMR (and so

NSMIR and SMIR) fails in providing consistent solutions as highlighted by

the various simulations we have run2.

2This is not the case of the related additive regularization described in Ref. [25, 34]

which is based on automatic a posteriori selection procedures like the L-curve to determine

the associated regularization parameter λ. Consequently, if needed, one can implement a

stationary iterated additive regularization by simply computing at k = 1 the solution of

the related additive regularization and replacing from k = 2 the adapted regularization

parameter ᾱ by the regularization parameter λ̄ obtained after the first outer iteration.

The latter iterated regularization is however computationally more expensive than that

proposed in this paper [34].
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Figure 4: Spatial reconstruction of the excitation field at 350 Hz from a vibration field

corrupted by an additive Gaussian white noise with a SNR of 13 dB - (—) Reference,

(−−) OMR for q = 0.5, (− · −) NSIMR for q = 0.5 and (· · · ) SMIR for q = 0.5

Table 2: Relative error and computation times for OMR, NSMIR and SMIR obtained

from a reconstruction performed at 350 Hz from a vibration field corrupted by an additive

Gaussian white noise with a SNR of 13 dB for a 1D structure

Strategy Relative error (%) Computation time (ms)

OMR 7.28 42.6

NSMIR 7.28 167.7

SMIR 0.47 44.5
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4.2. 2D structure

In this second application, the studied structure is a free-free steel plate

with dimensions 0.6 × 0.4 × 0.005 m3. The coordinates of the point force,

measured from the lower left corner of the plate, are (x0, y0) = (0.247 m,

0.218 m).

4.2.1. Synthesis of the vibration field

In this example, the reconstruction is performed from the velocity field X

measured at 350 Hz over the structure. To properly simulate experimental

measurements, the exact vibration displacement fieldXexact is first computed

from a FE mesh of the plate made up with 187 shell elements, assuming that

only bending motions are measurable. Then, a Gaussian white noise with a

prescribed SNR is added to the exact data to simulate measurement errors.

In the next of this application, the generated exact data are corrupted so

that the corresponding SNR is either equal to 30 dB or 13 dB.

4.2.2. Reconstruction model

As in section 4.1, the structure being linear, its dynamic behavior is

governed by the transfer functions matrix H, relating the vibration field X

to the unknown field F through Eq. 15. The FE model of the structure,

used to compute the vibration field, has also been employed to compute

the transfer functions matrix H by assuming that only normal velocities

are measurable. In other words, the transfer functions matrix have been

dynamically condensed over the measurable dofs.
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4.2.3. Application

The analysis of the test case suggests that the target excitation field is

very sparse. Consequently, it is reasonable to set q = 0.5. In doing so, all

the necessary ingredients are available for reconstructing the excitation field

at 350 Hz from OMR, NSIMR and SMIR.

As shown in Figs. 5 and 6, all the regularization strategies gives excellent

reconstructed excitation fields when the SNR is relatively high. Here again

and for the same reasons as those pointed out in section 4.1, it is observed

that OMR and NSMIR lead to the same reconstructed excitation field. Ac-

tually, the main differences are related to the computation time associated

to each regularization strategy. Indeed, Table 3 shows that the computation

time for OMR and SMIR are comparable, while that obtained for NSMIR is

about 30 times larger.

Table 3: Relative error and computation times for OMR, NSMIR and SMIR obtained

from a reconstruction performed at 350 Hz from a vibration field corrupted by an additive

Gaussian white noise with a SNR of 30 dB for a 2D structure

Strategy Relative error (%) Computation time (ms)

OMR 0.028 45.6

NSMIR 0.028 1629.3

SMIR 0.016 50.9

Here again, the situation is rather different in case of low SNR, since

SMIR exhibits higher performances than OMR/NSMIR, regarding the re-
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Figure 5: Reconstructed excitation field at 350 Hz for SNR = 30 dB - (a) Reference, (b)

OMR, (c) NSMIR and (d) SMIR
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Figure 6: Section view of the reconstructed excitation field at ŷ0 = 0.218 m for SNR = 30

dB - (—) Reference, (−−) OMR for q = 0.5, (− · −) NSIMR for q = 0.5 and (· · · ) SMIR

for q = 0.5

construction of the point force amplitude, since an improvement of 9% is

obtained [see Figs.7 and 8 and Table 4]. Consequently, the application to a

higher dimensional case confirms the observations made for the 1D case.

5. Experimental validation

The numerical validation has allowed drawing several interesting conclu-

sions regarding the behavior of NSMIR and SMIR. First, NSMIR provides

reconstructions similar to OMR. Second, SMIR significantly improves the

quality of identified solutions in case of low SNR. To confirm all these con-

clusions, the analysis is extended to a real-world application, already used in

Ref. [34] for validating OMR.
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Figure 7: Reconstructed excitation field at 350 Hz for SNR = 13 dB - (a) Reference, (b)

OMR, (c) NSMIR and (d) SMIR
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Figure 8: Section view of the reconstructed excitation field at ŷ0 = 0.218 m for SNR = 13

dB - (—) Reference, (−−) OMR for q = 0.5, (− · −) NSIMR for q = 0.5 and (· · · ) SMIR

for q = 0.5

Table 4: Relative error and computation times for OMR, NSMIR and SMIR obtained

from a reconstruction performed at 350 Hz from a vibration field corrupted by an additive

Gaussian white noise with a SNR of 13 dB for a 2D structure

Strategy Relative error (%) Computation time (ms)

OMR 1.559 78.4

NSMIR 1.559 3125.9

SMIR 0.168 85.1
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5.1. Description of the experimental set-up

The considered structure is a suspended (free) aluminum plate of 0.6 m

in length, 0.4 m in width and 5 mm in thickness [see Fig. 9a]. The plate

is excited at (x0, y0) = (0.405 m, 0.255 m) by a shaker fed by a white noise

signal and equipped with a force sensor [see Fig. 9b].

(a) (b)

Figure 9: Experimental set-up - (a) Suspended plate and (b) Excitation device

Measurements of the vibration field were carried out with a scanning laser

vibrometer on a grid of 35× 29 points along x and y directions respectively

using the force signal as phase reference. Regarding the reconstruction model,

the structure under test being linear, it can be expressed as in Eq. (15). In the

present application, the transfer function matrix H has been computed from

a FE mesh designed to perfectly match the measurement mesh. As a result,

it is composed of 952 shell elements, making the model theoretically valid up

to 4500 Hz. Moreover, the calculation has been performed, considering that
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the bending motions as the only available data. In other words, the transfer

functions matrix has been dynamically condensed over the measurable dofs.

Finally, it is worth noting that a global structural damping is used in the

present experimental validation. Its value has been estimated from the modal

damping ratios obtained from the measured FRFs.

5.1.1. Application

Before applying the different regularization strategies, the norm param-

eter q must be determined beforehand. The analysis of the experimental

set-up suggests that the target excitation field is very sparse. Consequently,

it is reasonable to set q = 0.5.

In the present experimental validation, the reconstruction is performed

at 300 Hz, i.e. outside resonance frequencies. As shown in Fig. 10, the re-

constructed excitation fields from OMR, NSMIR and SMIR are consistent

with the target one, since the point force location is estimated at (x̂0, ŷ0) =

(0.404 m, 0.256 m). However, as observed in the numerical validation, SMIR

allows obtaining a slightly better estimation of the point force amplitude for

a computation time comparable to OMR, while NSMIR leads, here again, to

a reconstruction similar to OMR, but for a larger computation time. In the

present example, the improvement brought by SMIR is not spectacular, since

the improvement is about 6% compared to OMR/NSMIR. However, this re-

sult is in line with our experience of laser vibrometry that allows obtaining

rather clean measurements.

In the present experiment, SMIR provides only a slight improvement of
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Figure 10: Amplitude of the reconstructed excitation field at 300 Hz - (a) Excitation

field obtained from OMR, (b) Excitation field obtained from NSMIR, (c) Excitation field

obtained from SMIR and (d) Section view at ŷ0 = 0.256 m - (—) OMR, (−−) NSMIR,

(− · −) SMIR and (◦) Location and amplitude of the measured force amplitude
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Table 5: Computation times for OMR, NSMIR and SMIR obtained from a reconstruction

performed at 300 Hz

Strategy Computation time (s)

OMR 8.89

NSMIR 58.74

SMIR 14.16

the quality of the identified point force spectrum, since the results obtained

from OMR are already in good agreement with the measured point force

spectrum as demonstrated in Fig. 11 of Ref. [34].

6. Conclusion

In the present contribution, an original iterated multiplicative regular-

ization has been presented for identifying mechanical sources acting on a

structure. The underlying idea behind this regularization strategy was to

combine the advantages of the iterated Tikhonov regularization, which can

be thought as an iterative refinement of an initial solution obtained using

the standard Tikhonov regularization, and the multiplicative regularization

that eliminates the need for the selection of the regularization parameter

while taking into account one’s prior knowledge on the sources to identify.

The resulting regularization strategy is aimed to be consequently flexible

and computationally efficient. Practically, the iterated multiplicative regu-

larization can be implemented in two different ways to give rise either to

the non-stationary iterated multiplicative regularization (NSIMR) or to the

stationary iterated multiplicative regularization (SIMR). Through numerical
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and experimental validations, it has been shown that SIMR allows improv-

ing the quality of the reconstructed solutions, while NSMIR gives regularized

solutions similar to that obtained from the ordinary multiplicative regulariza-

tion. This surprising result has been documented and explained in the paper.

However, the main conclusion of this paper is that SMIR can be used only

when the measured data are very noisy (typically for SNR between 20 dB

and 10 dB. In all other cases, the application of the ordinary multiplicative

regularization is generally sufficient to obtain consistent reconstructions.

Appendix A. Influence of the noise level on the solutions identified

from OMR and SMIR

This appendix aims at giving to the reader a better insight into the per-

formances of the proposed iterated regularization strategy with respect to

the noise level of the vibration data. To this end, reconstructions are per-

formed on the application test case presented in section 4.1 from OMR and

SMIR only for six different SNR (30 dB, 25 dB, 20 dB, 15 dB and 13 dB).

As shown in Fig. A.11 and Table A.6, the quality of the solutions identified

from OMR significantly deteriorates as the SNR decreases. This is surpris-

ingly not the case when the reconstructions are performed from SMIR, for

which the relative error increases much more slowly than for OMR. In the

light of these results, it is reasonable to say that OMR can be used when the

noise level is greater than 20 dB. Below 20 dB, it seems necessary to employ

SMIR to expect obtaining a better solution accuracy.
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Figure A.11: Spatial reconstruction of the excitation field at 350 Hz from a vibration

field corrupted by an additive Gaussian white noise from (a) OMR and (b) SMIR – (—)

Reference, (−−) SNR = 30 dB, (− ·−) SNR = 25 dB, (· · · ) SNR = 20 dB, (· ·F · ·) SNR

= 15 dB and (· · � · ·) SNR = 13 dB

Table A.6: Relative error (%) for OMR and SMIR for various noise levels

Strategy 30 dB 25 dB 20 dB 15 dB 13 dB

OMR 0.013 0.058 0.23 1.73 7.28

SMIR 0.010 0.035 0.08 0.23 0.47
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