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Abstract

A pendulum, which can oscillate in two directions, is subjected to a generalized
external force. A non-smooth absorber is coupled to the pendulum with an arbitrary
location and orientation. The equations of the system are derived and are treated with
a multiple scale method. At fast time scale, the topology of the slow invariant manifold
is described with its stable and unstable zones. The equilibrium and singular points
of the system are detected at the first slow time scale. The responses of the main
system, given as a function of the frequency of the external force, show reductions of
the vibration levels. The analytic predictions are compared by direct numerical time
integration of the equations of the system. They illustrate the operationality of the
non-smooth absorber in several cases.

Keywords Two degrees-of-freedom Pendulum, Non-smooth absorber, Multiscale
method, fast/slow dynamics

1 Introduction

Many mechanical systems are subject to external or internal forces leading them to vibrate.
For reasons of mechanical integrity, noise or comfort, absorbers are used to reduce the vibra-
tions. Passive absorber have the advantage of not requiring any external input energy [1].
They can be linear or nonlinear. Whereas the linear absorbers are tuned on a single mode
frequency [2, 3], the nonlinear absorbers can be efficient on a large frequency range. Rober-
son [4] added a cubic nonlinearity in the restoring force function of an originally linear
absorber device, and so they widened the effective frequency range.
Since then, plenty of nonlinear absorbers have been designed. One of them called nonlinear
energy sink (NES) [5, 6], has a purely nonlinear restoring force function (cubic nonlinear-
ity in its original form) with no linear part. Its interactions with the main system lead to
strongly modulated response (SMR) oscillations [7] or periodic regime [8]. It is possible to
replace the polynomial nonlinearity by a non-smooth piecewise linear function [9–14]. Using
the non-smooth nonlinearity for the absorber is interesting when the overall system is under
pre-stressing terms, e.g. the system under a gravitational field [15]. Endowing polynomial
nonlinearities for the absorber in such cases induces a linear restoring forcing terms due
to the static equilibrium position of the system and destroys pure nonlinear nature of the
absorber.
Here, the aim is to control the oscillations of a two degrees-of-freedom (dof) pendulum ex-
cited by an external force. Matsuhisa [16, 17] has proposed the control on a single dof
pendulum by a linear absorber. Starovetsky [18] and Pham [19] have studied the control
of a two dof system with a single NES in one dimension. Hurel et al. [20] analyzed a two
dof pendulum coupled with a cubic restoring force NES. This article studies the control of
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a two dof pendulum by a single non-smooth NES located at a given position and oriented
at an arbitrary direction. The considered academic system of this the paper can be applied
to many realistic structures such as gondola lift.
The description of the main system and the non-smooth absorber is given in Sect. 2. Then,
the dynamical equations of the system are written from Lagrange equations. In Sect. 3,
the equations are studied analytically with a multiple scales method. The slow invariant
manifold, the equilibrium and singular points are calculated. Numerical results are given in
Sect. 4 in order to confirm and illustrate analytic results on three different cases. Finally,
the paper is concluded in Sect. 5.

2 Studied system

2.1 The main system

The studied system represented in Fig. 1 is a pendulum with the mass M , fixed at the
point O, able to oscillate around the axes ex and ey of the main reference frame (ex, ey, ez).
A gravitational field −gez exists. The oscillations of the pendulum around the ex axis is
subjected to a rotational constraint with rigidity as Ky. Its tensor of inertia I is diagonal in
the local reference frame of the pendulum. The distance between the center of mass G and
the point O is called L. Its coordinates in the main reference frame read:

xG = L sin(ϕ)

yG = L sin(ψ) cos(ϕ)

zG = L cos(ϕ) cos(ψ)

(1)

A generalized force of amplitude F0 and frequency Ω is applied on both dof of the pendu-
lum [ϕ, ψ]T distributed as follows:

F(ϕ,ψ) = F0 sin(Ωt)

[
cos(β)
sin(β)

]
(2)

2.2 Coupled non-smooth absorber

The pendulum is coupled to a non-smooth absorber of mass m which is assumed to be much
lower than M :

0 <
m

M
� 1 (3)

It is located on the line OG at the distance a from O as seen on Fig. 3a. The restoring
forcing function of the non-smooth absorber is given by a function s(u) (see Fig. 2), where u
corresponds to the displacement of the mass m:

s(u) =

 k(u+ d) if u < −d
0 if − d ≤ u ≤ d
k(u− d) if u > d

(4)

where k and 2d are respectively stiffness and clearance of the non-smooth oscillator. Prac-
tically, this absorber can be made with a mass m guided between two linear springs of
stiffness k spaced from a distance 2d (see Fig. 3b). The absorber is also characterized by a
viscous damping of coefficient Cu.
In the reference frame linked to the pendulum (ex

′, ey
′, ez

′), the orientation of the non-
smooth absorber eu is determined by a constant angle α:

eu = cos(α)ex
′ + sin(α)ey

′ (5)

In the main reference frame, the coordinates of the mass m read:
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Figure 1: The pendulum clamped at the point O. It can oscillate around ex and ey with
generalized coordinates as ϕ and ψ respectively. L is the distance between the center of
mass G and O.
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Figure 2: Diagram of the non-smooth restoring force s(u) of the absorber


xm =a sin(ϕ) + u cos(ϕ) cos(α)

ym =a sin(ψ) cos(ϕ) + u [cos(ψ) sin(α)− sin(ϕ) sin(ψ) cos(α)]

zm =− a cos(ϕ) cos(ψ) + u [sin(ϕ) cos(ψ) cos(α) + sin(ψ) sin(α)]

(6)

2.3 Governing system equations

The kinetic (Ek) and potential (Ep) energies of the mechanical system read:
Ek =

1

2
M
(
ẋ2
G + ẏ2

G + ż2
G

)
+

1

2
Iyyϕ̇

2 +
1

2
Ixxψ̇

2 +
1

2
m
(
ẋ2
m + ẏ2

m + ż2
m

)
Ep =g(MzG +mzm) +

1

2
Kyψ

2 + S(u)

(7)
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(a) Position and orientation of
the absorber on the pendulum.
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(b) Detailed of the absorber: the mass m moves between two
springs with the stiffness k separated by the clearance 2d.

Figure 3: Location and representation of the non-smooth absorber.

where g is the local gravitational constant on earth and ∇S(u) = s(u), with ∇ stands for
the gradient operator. The external and non-conservatives forces applied on the system are:

Fϕ = −Cxϕ̇+ cos(β)f0 sin(Ωt) (8)

Fψ = −Cyψ̇ + sin(β)f0 sin(Ωt) (9)

Fu = −Cuu̇ (10)

The equations of the system are obtained with the Lagrange equations:

M(X)Ẍ + CẊ +K(Ẋ,X) + gZ(X) = F (11)

where X = [ϕ,ψ, u]T . The expressions of the matrices M, C and the vectors K, Z and F
are given in the By dividing by the mass of the main system M , the equation 11 is expressed

with new parameters: ε =
m

M
, jx =

Iyy
M

, jy =
Ixx
M

, cx =
Cx
m

, cy =
Cy
m

, λ =
Cu
m

, ky =
Ky

M

and f0 =
F0

M
. For forthcoming simulations and examples, we use system parameters which

are reported in Table 1.

Table 1: List of parameters of the model

ε jx jy ky g a L λ cx cy α

10−4 20 m 20 m 0.5 s−2 9.81 m s−2 2 m 2 m 0.3 s−1 5 s−1 5 s−1 π

6
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3 Treatment of system equations

Here we assume that the angles ϕ, ψ and the displacement u are small. A rescaling is
performed thanks to the parameter ε:

ϕ = εϕ̃

ψ = εψ̃

u = εũ

(12)

We assume also that the amplitude of excitation is small f0 = εf̃0. This rescaling gives a
new definition of the force function:

s̃(ũ) =
s(u)

m
=


εk̃(ũ+ d̃) if ũ < −d̃
0 if − d̃ ≤ ũ ≤ d̃
εk̃(ũ− d̃) if ũ > d̃

(13)

where d̃ =
d

ε
and k̃ =

k

m
.

We introduce the complex variables of Manevitch [21] as it follows:

ΦeiΩt = ˙̃ϕ+ iΩϕ̃

ΨeiΩt =
˙̃
ψ + iΩψ̃

UeiΩt = ˙̃u+ iΩũ

(14)

where i2 = −1.
A multiple scale method [22] is used to treat system equations. We consider that time t is
embedded in several scales linked to each other with the parameter ε:

τ0 = t, τ1 = ε1t, τ2 = ε2t, ... (15)

Fast time scale is represented by τ0 whereas slow time scales corresponds to τ1, τ2,... The
different time scales redefine the derivation operator:

d

dt
=

∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
+ ... (16)

A Galerkin method is used to keep only the first harmonics. This is carried out for an
arbitrary function h(τ0, τ1, τ2, ...) of the system via:

H =
Ω

2π

∫ 2π
Ω

0

h(τ0, τ1, τ2, ...)e
−iΩτ0dτ0 (17)

For evaluating the integral of Eq. 17, we assume that Φ, Ψ and U are independent of time τ0.
This assumption will be verified during the multiple scale analysis of the system or we will
search for an asymptotic state as τ0 approaches infinity.
In the sections 3.1 and 3.2, we will consider system equations at different order of ε corre-
sponding to different scales of time of system responses.
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3.1 System behavior at fast time scale: ε0 order of system equations.

Eq. 11 at ε0 order yield to:

∂Φ

∂τ0
+ i

Ω2 − ω2
x

2Ω
Φ = 0

∂Ψ

∂τ0
+ i

Ω2 − ω2
y

2Ω
Ψ = 0

a cos(α)
∂Φ

∂τ0
+ a sin(α)

∂Ψ

∂τ0
+
∂U

∂τ0
+ i cos(α)

aΩ2 − g
2Ω

Φ

+ i sin(α)
aΩ2 − g

2Ω
Ψ +

iΩ + λ

2
U +R(U) = 0

(18)

(19)

(20)

where ωx and ωy are the natural frequencies of the pendulum in both directions:

ω2
x =

Lg

jx + L2

ω2
y =

Lg + ky
jy + L2

(21)

The expression of the function R(U) calculated with the Eq. 17 applied to the non-smooth
function s̃ reads [10]:

R(U) =
Ω

2π

∫ 2π
Ω

0

s̃

(
Ueiωτ0 − U∗e−iωτ0

2iΩ

)
e−iΩτ0dτ0 (22)

= − ik̃U
2Ω

S(|U |) (23)

with

S(|U |) =


0 if |U | < D

1

π

2 arccos

(
D

|U |

)
−

2D

√
|U |2 −D2

|U |2

 if |U | ≥ D
(24)

where D = ωd̃.

3.1.1 Description of the slow invariant manifold of the system

Both natural frequencies of the main system are assumed to be very close to each other:

ωx = ωy + ηε (25)

Let us consider a special case where the frequency of the excitation Ω is close to both natural
frequencies of the main system:

Ω = ωx + σxε (26)

Ω = ωy + σyε (27)

Considering the Eqs. 26 and 27 in the Eqs. 18 and 19, one obtains:
∂Φ

∂τ0
= 0

∂Ψ

∂τ0
= 0

(28)
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We conclude, Φ and Ψ are constant in fast time scale. In this case, the Eq. 20 becomes:

∂U

∂τ0
+ i cos(α)

aω2 − g
2ω

Φ + i sin(α)
aω2 − g

2ω
Ψ +

iω + λ

2
U − ik̃U

2ω
S(|U |) = 0 (29)

In the Eq. 29 and in the rest of the article, considering the Eq. 25, the frequency ω can
be equal to ωx or ωy. Let us seek for an asymptotic state when τ0 approaches infinity. In

other words, we are interested in tracing system behavior at its fixed points

(
∂U

∂τ0
= 0

)
.

Rewriting the complex variables in polar form as Φ = Nϕe
iδϕ , Ψ = Nψe

iδψ and U = Nue
iδu

the Eq. 29 yield to the equation of the slow invariant manifold (SIM):

H = cos2(α)N2
ϕ + sin2(α)N2

ψ + 2NϕNψ sin(α) cos(α) cos(δ)− P 2(Nu) = 0 (30)

where

P 2(Nu) =

(
k̃S(Nu)− ω2

)2

+ λ2ω2

(aω2 − g)
2 N2

u and δ = δϕ − δψ (31)

The SIM depends on the phase δ. Fig. 4 shows the representation of the SIM for several
values of δ in the space of amplitudes (Nϕ, Nψ, Nu).

3.1.2 Stability of the SIM

To determine the stability zones of the SIM, we perturb system variables. In the Eq. 29, we
introduce a small perturbation of U as:

U → U + ∆U , ∆U � U (32)

Depending on the value of Nu, two cases occur:

• Case Nu ≤ D
The linearization of Eqs. 29 considering Eq. 32 leads to: ∂(∆U)

∂τ0
∂(∆U∗)

∂τ0

 =

−λ2 − iω2 0

0 −λ
2

+ i
ω

2

[∆U
∆U∗

]
(33)

The real part of both eigenvalues is negative so the system is stable.

• Case Nu > D
The linearization of Eqs. 29 considering Eq. 32 leads to: ∂(∆U)

∂τ0
∂(∆U∗)

∂τ0

 =

[
D1 D2

D∗2 D∗1

]
︸ ︷︷ ︸

D

[
∆U
∆U∗

]
(34)

with

D1 = −λ
2
− iω

2
+ i

k̃ arccos

(
D

Nu

)
πω

and D2 = i
Dk̃
√
N2
u −D2

ωπU∗2
(35)

and the symbol ·∗ represents the complex conjugate of the concerned function. The
characteristic polynomial of the matrix D reads:

Pcar(X) = X2 − (D1 +D∗1)X + |D1|2 − |D2|2 (36)
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Figure 4: The SIM of the system for several values of δ in the amplitude space (Nϕ, Nψ, Nu).
The zones in blue are stable whereas the zones in red are unstable.

The sum SD and the product PD of the eigenvalues of the matrix D read:

SD = D1 +D∗1 = −λ < 0 (37)

PD = |D1|2 − |D2|2 (38)

We can deduct that the SIM is unstable if |D1|2 − |D2|2 < 0, i.e.:

c2

4
+
ω2

4
−
kl arccos

(
D
Nu

)
π

+
k2
l arccos

(
D
Nu

)2

ω2π2
− D2k2

l

N2
uω

2π2
+

D4k2
l

N4
uω

2π2
< 0 (39)

The equation 39 leads to:

sin2(Y ) >

(
Y − ω2π

k̃

)2

+

(
πλω

k̃

)2

(40)
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with Y = 2 arccos

(
D

Nu

)
. The unstable zone, represented in red on Fig. 4, does not

depend on the amplitudes Nϕ and Nψ.

3.2 System behavior at slow time scale: ε1 order of system equation.

The first two equations of the system 11 at ε1 order read:

Lg
∂Φ

∂τ1
+

(
ω2cx

2
+ i

2σxLg + aω(aω2 − g)

2

)
Φ

+ i cos(α)
ω(aω2 − g)

2
U +

if̃0 cos(β)ω2

2
= 0

(Lg + ky)
∂Ψ

∂τ1
+

(
ω2cy

2
+ i

2σyLg + aω(aω2 − g)

2

)
Ψ

+ i sin(α)
ω(aω2 − g)

2
U +

if̃0 sin(β)ω2

2
= 0

(41)

(42)

or in a compact form, Eqs. 41 and 42 can be written as:

∂Φ

∂τ1
= fϕ(Φ,Ψ, U);

∂Ψ

∂τ1
= fψ(Φ,Ψ, U) (43)

To seek system responses around the SIM, we need to trace equilibrium and singular points.
To find the equilibrium points of the system we have to solve the system of equations formed
by the Eqs. 41 and 42 and the evolution of the SIM at τ1 time scale [8]:

fϕ(Φ,Ψ, U) = 0

fψ(Φ,Ψ, U) = 0

(ω2 − iωλ)U − ik̃US(|U |) + cos(α)(aω2 − g)Φ + sin(α)(aω2 − g)Ψ = 0

det
(
∇(U,U∗)H

)
6= 0

(44)

(45)

(46)

(47)

where ∇(U,U∗)H represents the Jacobian matrix of H versus variables U and U∗.
The expression of Φ and Ψ can be found as a function of U from the Eqs. 44 and 45:

Φ = −cos(α)(aω2 − g)U + ωf̃0 cos(β)

2Lgσx/ω + a2ω2 − ag − icxω

Ψ = − sin(α)(aω2 − g)U + ωf̃0 sin(β)

2Lgσy/ω + a2ω2 − ag − icyω

(48)

(49)

We assume a priori that Nu ≤ d, by replacing the Eqs. 48 and 49 in the Eq. 46, one obtains:

U =
Cf̃0

(ω2 − iωλ+A+ iB)
(50)

where:

A = Re

(
− cos2(α)(aω2 − g)2

2Lgσx/ω + a2ω2 − ag − icxω
− sin2(α)(aω2 − g)2

2Lgσy/ω + a2ω2 − ag − icyω

)
(51)

B = Im

(
− cos2(α)(aω2 − g)2

2Lgσx/ω + a2ω2 − ag − icxω
− sin2(α)(aω2 − g)2

2Lgσy/ω + a2ω2 − ag − icyω

)
(52)

C = − cos(α)(aω2 − g)ω cos(β)

2Lgσx/ω + a2ω2 − ag − icxω
− sin(α)(aω2 − g)ω sin(β)

2Lgσy/ω + a2ω2 − ag − icyω
(53)
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We can now verify the assumption Nu ≤ d. If it is false, we have to consider that Nu > d.
The amplitude U can be expressed with its modulus and argument as U = Nue

iδu . Eq. 50
reads: [

−k̃NuS(Nu) +
(
ω2 +A+ i(B − ωλ)

)
Nu

]
eiδu = −Cf̃0 (54)

Considering the module of both parts of Eq. 54, we obtain:(
−k̃NuS(Nu) + (ω2 +A)Nu

)2

+ (B − ωλ)
2
N2
u − |C|

2
f̃2

0 = 0 (55)

The Eq. 55 is solved numerically.

The role of Eq. 47 is to determine if the solution of the system is an equilibrium point or
a singular point. Let us first evaluate ∇(U,U∗)H. Considering the complex conjugate of the
equation of the SIM (see Eq. 30), we will have:

∇(U,U∗)H =

 ∂H
∂U

∂H
∂U∗

∂H∗

∂U

∂H∗

∂U∗



=


λ+ iω

2
− i

k̃ arccos

(
D

Nu

)
ωπ

−i
k̃D
√
N2
u −D2

U∗2ωπ

i
k̃D
√
N2
u −D2

U2ωπ

λ− iω
2

+ i

k̃ arccos

(
D

Nu

)
ωπ


= −D

(56)

The matrix D is the same as the matrix of Eq. 34 used to determine stability zones of the
SIM. Thus, all the points located on the border of the unstable zone of the SIM are singular.
They are solutions of the following equation [23]:

sin2(Y ) =

(
Y − ω2π

k̃

)2

+

(
πλω

k̃

)2

(57)

Fig. 5 shows the values of Nϕ, Nψ and Nu of the equilibrium points of the system as a

function of ω for f̃0 = 20. The oscillation amplitudes around ey (angle ϕ) are more reduced

than the ones around ey (ψ). This can be explained by the direction of the absorber α =
π

6
.

Its efficiency is more important on the ex direction. An isolated branch exists with high
levels of Nϕ. This isolated branch is dangerous because it can attract the system to a state
with significant level of ϕ.

4 Numerical study

Here, the asymptotic results are confronted with numerical ones obtained by direct numerical
integration of the Eq. 11. The aim is to validate the assumptions made in the analytic study
and to determine the level of efficiency of the absorber in different configurations. Three
time integrations of the system are made with different frequency of excitation Ω to compare
with the analytic results. The amplitude of the force is the same as the one of the Fig. 5
i.e. f̃0 = 20.
As the first example we consider the system with Ω = 0.903 rad s−1 corresponding to the
frequency which can bring the system to possess an isolated branch (see Fig 5). At this
frequency, three stable equilibrium points exist. The results depicted in Fig. 6 show that
the system is going to the equilibrium point with the highest amplitude of Nϕ. The isolated
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Figure 5: Amplitude of the equilibrium points as a function of ω for f̃0 = 20. Blue line (—)
is stable whereas red line (−−) is unstable. Crosses (×) represent the natural frequencies of
the main system i.e. ωx and ωy. The dashed lines (- - -) correspond to the response of the
system without NES.

branches with high energy level can be problematic as they can bring the main system to
oscillate with high amplitude.

Let us consider the system with Ω = 0.905 rad s−1: the only equilibrium point is unstable
because it is located in the unstable zone of the SIM. As shown on Fig 7, the system is
oscillating between the stables zones due to the singular points. When the system reaches a
singular point, the amplitude of the displacement of the absorber Nu jump to another point
of the SIM which can be relatively far.
These oscillations are called SMR [7]. They are used for keeping the amplitude of the
oscillations of the main system, here Nϕ and Nψ, below a threshold. The value of this
threshold is given by the coordinates of the first singular point that is a solution of the
equation 57. For Nϕ, it is equal to 0.125 [24]

As the third example, let us set Ω = 0.917 rad s−1 which is close to the natural fre-
quency ωy. Figure 8 shows that the amplitude Nψ reaches high values. This is coherent
with the analytic calculation of equilibrium points represented on Fig. 5. The only equilib-
rium point is in the second stable zone of the SIM because the value of f̃0 is too high. The
highest value of f̃0 to keep the amplitude Nψ below the threshold of 0.216 can be determined
numerically with the equation 55. It is equal to 10.58.
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Figure 6: (a) Time histories of the system amplitudes, i.e., Nϕ and Nψ. (b) The SIM versus
numerically obtained amplitudes. Numerical results are obtained via direct integration of
Eq. 11 for the system with f̃0 = 20 and Ω = 0.903 rad s−1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s) 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
m

pl
itu

de

(a) Nϕ and Nψ (b) SIM versus numerical results

Figure 7: (a) Time histories of the system amplitudes, i.e., Nϕ and Nψ. (b) The SIM versus
numerically obtained amplitudes. Numerical results are obtained via direct integration of
Eq. 11 for the system with f̃0 = 20 and Ω = 0.905 rad s−1.

5 Conclusion

A nonlinear non-smooth absorber is coupled to a two degree-of-freedom pendulum at an
arbitrary location and orientation. The non-smooth absorber possesses a piece-wise linear
restoring forcing function, representing two elastic barriers separated with the given clear-
ance. A generalized force is applied to the system in a certain direction. The multiple scales
method allows the system to be analyzed at different orders of time. At fast time scale, the
behavior of the system is described by a slow invariant manifold in the space of amplitude
of the three degrees of freedom. The slow invariant manifold depends on the phase between
both angles of the main system. The stable and unstable zones are also highlighted. At
slow time scale, the equilibrium points of the system are calculated by solving numerically
an analytic equation.
The numerical study bring out the important parameters of the conception of the absorber
to be efficient to reduce vibration of the main system.
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Figure 8: (a) Time histories of the system amplitudes, i.e., Nϕ and Nψ. (b) The SIM versus
numerically obtained amplitudes. Numerical results are obtained via direct integration of
Eq. 11 for the system with f̃0 = 20 and Ω = 0.917 rad s−1.
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Appendix

The expression of the matrices and vectors of the dynamic equation 11 read:

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (58)

with

m11 = L2 + jx + ε(a2 + u2 cos2(α)) (59)

m12 = m21 = ε
[
sin(ϕ)au+ cos(α) cos(ϕ)u2

]
sin(α) (60)

m13 = m31 = aε cos(α) (61)

m22 = jy + L2 cos2(ϕ) + ε
[
u2 − u2 cos2(α) cos2(ϕ)

−2au cos(α) cos(ϕ) sin(ϕ) + a2 cos2(ϕ)
] (62)

m23 = m32 = εa sin(α) cos(ϕ) (63)

m33 = ε (64)

C = ε

cx 0 0
0 cy 0
0 0 λ

 (65)

K =

k1

k2

k3

 (66)
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with

k1 =
[
sin(ϕ)L2 cos(ϕ) + ε sin(ϕ)a2 cos(ϕ)− εau cos(α)

+2εa cos(α) cos2(ϕ)u− ε sin(ϕ)u2 cos2(α) cos(ϕ)
]
ψ̇2

+ 2ε [a sin(α) sin(ϕ) + sin(α) cos(α) cos(ϕ)u] ψ̇u̇+ 2ε cos2(α)uϕ̇u̇

(67)

k2 =
[
aεu cos(ϕ) sin(α)− εu2 cos(α) sin(α) sin(ϕ)

]
ϕ̇2

+
[
−2L2 cos(ϕ) sin(ϕ)− 2ε(a2 cos(ϕ) sin(ϕ) + au cos(α)

+u2 cos2(α) cos(ϕ) sin(ϕ)− 2au cos(α) cos2(ϕ))
]
ϕ̇ψ̇

+ 2εu cos(α) cos(ϕ) sin(α)ϕ̇u̇

+ 2ε
[
u− a cos(α) cos(ϕ) sin(ϕ)− u cos2(α) cos2(ϕ)

]
ψ̇u̇+ kyψ

(68)

k3 = ε
[(
a cos(α) cos(ϕ) sin(ϕ)− u+ u cos2(α) cos2(ϕ)

)
ψ̇2

− 2 (a sin(α) sin(ϕ) + u cos(α) cos(ϕ) sin(α)) ϕ̇ψ̇

− cos2(α)ϕ̇2u+
s(u)

m

] (69)

Z =

z1

z2

z3

 (70)

with

z1 = L sin(ϕ) cos(ψ) + ε [a sin(ϕ) cos(ψ) + cos(α) cos(ϕ) cos(ψ)u] (71)

z2 = L cos(ϕ) sin(ψ)

+ ε [a cos(ϕ) sin(ψ) + u cos(ψ) sin(α)− u cos(α) sin(ϕ) sin(ψ)]
(72)

z3 = ε [sin(α) sin(ψ) + cos(α) cos(ψ) sin(ϕ)] (73)

F = εf0 sin(Ωt)

cos(β)
sin(β)

0

 (74)
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