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Abstract

In a previous paper, the authors introduced a flexible methodology for re-

constructing mechanical sources in the frequency domain from prior local

information on both their nature and location over a linear and time invari-

ant structure. The proposed approach was derived from Bayesian statistics,

because of its ability in mathematically accounting for experimenter’s prior

knowledge. However, since only the Maximum a Posteriori estimate was

computed, the posterior uncertainty about the regularized solution given the

measured vibration field, the mechanical model and the regularization param-

eter was not assessed. To answer this legitimate question, this paper fully

exploits the Bayesian framework to provide, from a Markov Chain Monte

Carlo algorithm, credible intervals and other statistical measures (mean, me-

dian, mode) for all the parameters of the force reconstruction problem.
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1. Introduction

In structural dynamics, most of the research papers are generally focused

on the modeling of the dynamic response of structures subjected to perfectly

determined excitation sources. However, the latter are only roughly or par-

tially known. As a result, an error in the definition of the excitation vector is

propagated to the dynamic response through the model and can have a sig-

nificant impact on the subsequent mechanical analysis. A possible solution to

this problem consists in directly measuring the excitation sources. The main

drawback of such an intrusive approach is twofold. First, it is potentially

time-consuming to implement and calibrate. Second, direct measurements

can be impossible to perform on industrial structures. To circumvent these

undesirable features, a possible alternative is to perform indirect measure-

ments using accessible quantities such as displacement or acceleration fields

and a model of the dynamic behavior of the studied structure. Unfortunately,

the reconstruction of mechanical sources from vibration measurements is an

ill-posed inverse problem. A classical approach to bypass this difficulty con-

sists in constraining the space of solutions by using prior information on the

noise and the sources to reconstruct. A convenient and efficient way to deal

with such prior information is the Bayesian framework, because it allows

combining both probabilistic and mechanical data. The most widespread

and popular approaches deriving from Bayesian statistics are certainly ad-

ditive regularizations, such as the Tikhonov regularization [1] or the Lasso

regularization [2]. Formally, they correspond to the maximum a posteriori

(MAP) solution when normal distributions [3, 4, 5, 6] or generalized Gaussian

distributions [7, 8] are used to mathematically express one’s prior knowledge
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of the reconstruction problem. However, the major drawback of additive

regularizations is that only a point estimate is generally computed, even if,

in the case of the standard Tikhonov regularization (normal distributions),

the covariance matrix associated to regularized solution can be easily ob-

tained. Consequently, the experimenter has often no information about the

uncertainty associated to the identified solution given the measured vibration

field, the chosen mechanical model and the estimated regularization param-

eter. To fully exploit the Bayesian framework and obtain the credibility

margins as well as other statistical measures on the identified solutions, the

reconstruction problem is generally solved from Markov Chain Monte Carlo

(MCMC) algorithms [9, 10, 11]. This has the great advantage of exploring

the posterior probability distribution by drawing random samples and thus

determine statistical indicators for all the parameters of the inverse prob-

lem. To the authors’ knowledge, only a few studies have fully exploited the

Bayesian framework in the field of force identification. One can nevertheless

cite the work of Zhang et al. [12], in which they apply MCMC algorithm

to solve the reconstruction problem considering an uncertain model as well

as Gaussian priors for the noise and the sources and gamma distributions

for the related hyperparameters. In the same vein, Faure et al. [13] present

a full Bayesian approach of the inverse problem based on a model deriving

from the equation of motion of the structure as in the Force Analysis Tech-

nique [14]. In that contribution, two formulations are introduced. The first

one is rather classical since Gaussian and gamma priors are employed, while

the second one makes use of a Bernoulli-Gaussian prior in order to identify

sparse source distribution.
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The present paper presents a full Bayesian treatment applied to the for-

mulation introduced in Ref. [8], in which a MAP estimate has been obtained

by considering generalized Gaussian distributions to exploit prior local infor-

mation (nature and location) on the mechanical sources acting on a linear

and time-invariant structure. More specifically, the proposed extension of our

previous work aims at not only assessing the credibility of the identified so-

lution given experimental data and a mechanical model, but also estimating

the posterior uncertainties of all the a priori unknown parameters appear-

ing in the formulation. To this end, the article is divided into four parts.

In section 2, the Bayesian formulation of the reconstruction problem is first

introduced. This section allows highlighting the original features of the pro-

posed formulation. Then, section 3 details the MCMC algorithm used to

solve the problem. Practically, it consists of a Gibbs sampler [15, 16] in-

cluding a Hamiltonian Monte Carlo [17, 18] step to draw samples for the

parameters having a non-standard full conditional probability distribution.

Finally, the ability of the proposed approach in identifying all the param-

eters of the problem in the frequency domain is illustrated using synthetic

and experimental data in sections 4 and 5, where partly sparse sources are

reconstructed. In particular, the analysis of the credible intervals calculated

for the identified excitation field reveals that the proposed formulation allows

obtaining credible solutions.
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2. Bayesian formulation of the reconstruction problem

This section aims at introducing the formulation of the Bayesian force

reconstruction problem as well as the related parameters. To render this

section more didactic, the formulation is introduced step by step in order to

better highlight the main features of the proposed approach. It should be

noticed that section 2.1 is partially extracted from Ref. [8]. It is included

here in order to make the article self-contained and to better explain the need

for defining a more complete formulation.

2.1. Standard Bayesian formulation

Let us consider the practical situation where the vibration field X, mea-

sured over the surface of a structure, is caused by an unknown excitation

field F. If the structure is linear and time invariant, its dynamic behavior

is completely determined by the transfer functions matrix H, relating the

vibration field X to the excitation field F, so that:

X = HF. (1)

Practically, this relation cannot be satisfied for two main reasons. First,

the vibration field X is necessarily corrupted by measurement errors, because

the transducers used to performed measurements are imperfect. Second, the

transfer functions matrix H can be biased either by measurement errors

if it is measured or by modeling errors if it is computed. Assuming that

modeling errors are small enough, it is reasonable to model these two biases

as an additive noise N. As a result, the reconstruction model is given by the

following direct formulation:

X = HF + N. (2)
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However, the force reconstruction problem consists in estimating the un-

known excitation field F acting on a structure from the knowledge of the

measured vibration field X on its surface and the transfer functions matrix

H. In other words, the noise vector N is another unknown of the reconstruc-

tion problem. To solve this problem efficiently, the Bayesian framework is

adopted. Formally, the Bayesian paradigm consists in considering all the pa-

rameters of the problem as random variables. Consequently, the uncertainty

about each parameter is modeled by a probability distribution, describing

the state of knowledge or the prior on this parameter. From a mathematical

standpoint, the Bayesian reconstruction problem relies on the Bayes’ rule:

p(F|X) ∝ p(X|F) p(F), (3)

where:

• p(F|X) is the posterior probability distribution, representing the proba-

bility of observing F given a vibration fieldX. In other words, it defines

what it is known about the excitation field F after making vibration

measurements;

• p(X|F) is the likelihood function, representing the probability of mea-

suring X given an excitation field F. It reflects the uncertainty related

to the measurement of the vibration field X;

• p(F) is the prior probability distribution, representing our knowledge

of the unknown excitation field F before measuring the vibration field

X.

Generally, the quality of the force reconstruction strongly depends on the

choice of the likelihood function and the prior probability distribution. That
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is why, the choices made in this paper and in Ref. [8] have to be carefully

explained.

2.1.1. Choice of the likelihood function

As mentioned previously, the likelihood function reflects the uncertainty

related to the measurement of the vibrations field X. By definition, this un-

certainty is mainly related to the noise vectorN. Consequently, the likelihood

function p(X|F) can be rewritten under the following form:

p(X|F) = p(X−HF|N), (4)

representing the probability of obtaining X−HF = 0 given a noise vectorN.

In other words the likelihood function measures the fidelity of the dynamic

model to the measured data. Accordingly, the likelihood function can be also

written as

p(X|F) = p(N), (5)

where p(N) is the prior probability distribution of the noise vector N, i.e.

the a priori of the experimenter on the nature of the noise corrupting the data.

If the noise is supposed spatially white and due to multiple independent

causes, then the prior probability distribution of the noise vector N can be

represented by a complex multivariate normal distribution with zero mean

and precision parameter τn:

p(N|τn) =
[τn
π

]N
exp

[
−τn‖N‖22

]
, (6)

where ‖ • ‖2 is the `2–norm and N is the number of measurement points.
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From Eq. (2), it can be inferred that the likelihood function is written as:

p(X|F, τn) =
[τn
π

]N
exp

[
−τn‖X−HF‖22

]
. (7)

Finally, it is worth mentioning that in practical situations the noise may

not be strictly white or even Gaussian. However, assuming a spatially

Gaussian white noise allows limiting the number of hyperparameters of the

Bayesian model and obtaining satisfying reconstructions as shown in sec-

tions 4 and 5.

2.1.2. Choice of the prior probability distribution

The prior probability distribution reflects the uncertainty related to the

unknown excitation field F. Actually, it can be seen as a measure of the

a priori knowledge of the experimenter on the sources to identify. If one

supposes that the structure is excited in R different regions by uncorrelated

excitations of various types (localized or distributed), then local excitation

fields Fr can be considered as independent random vectors. As a result, the

prior probability distribution can be written as the product of local prior

probability distributions p(Fr), that is:

p(F) =
R∏
r=1

p(Fr), (8)

where p(Fr) reflects the prior knowledge of the nature of the sources in the

region r.

Furthermore, it is assumed, for practical reasons, that the local excitation

vectors Fr are real random vectors, whose components are supposed a priori

to be independent and identically distributed random variables following a
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generalized Gaussian distribution with zero mean [19]. As a consequence,

each local excitation field follows a multivariate generalized Gaussian distri-

bution with zero mean. From the mathematical standpoint, the local prior

probability distributions are thus written:

p(Fr|τsr, qr) =

[
qr

2 Γ(1/qr)

]Mr

τ
Mr
qr
sr exp

[
−τsr‖Fr‖qrqr

]
, (9)

where:

• qr is the shape parameter of the distribution in the region r. Its value

is defined in the interval ]0,+∞[;

• ‖ • ‖qr is the `qr
–norm or quasi-norm, if qr ≥ 1 and qr < 1 respectively;

• τsr is the scale parameter of the distribution, which can be viewed as a

generalized measure of the precision of the distribution;

• Mr is the number of reconstruction points in the region r;

• Γ(x) =
∫ +∞
0

tx−1 e−t dt is the gamma function.

It should be noted that the choice of a multivariate generalized Gaussian

distribution allows a great flexibility for describing prior knowledge of the

sources to identify. However, the hypothesis of independence used to derive

the prior probability distribution can be discussed, insofar as one can argue

that assuming a priori a small spatial correlation can sometimes improved

the results. Actually, this hypothesis has been introduced here because the

spatial correlation between each component of the force vector is difficult

to assess a priori. Nonetheless, as shown in Ref. [8] and in the next of
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the paper, the a priori hypothesis of independence allows obtaining consis-

tent reconstructions, especially when the sources are spatially independent or

functionally dependent. At the present time, the reconstruction of spatially

correlated sources has not been tested yet.

2.1.3. Summary and comments

From the explanations given above, the standard Bayesian formulation of

the reconstruction problem finally writes:

p(F|X, τn, τsr, qr) ∝ p(X|F, τn)
R∏
r=1

p(Fr|τsr, qr). (10)

This formulation is said standard, because it gives rise to additive regular-

izations (Tikhonov when qr = 2 and Lasso when qr = 1), which corresponds

to the MAP estimate of Eq. (10). Furthermore, samples can be drawn [see

section 3.3] to explore the posterior probability distribution and determine

its statistical properties such as the mean, the median, the mode and credible

intervals. In doing so, one has information on the credibility of the identified

excitation given the measured vibration field X, the precision parameters τn

and τsr and the shape parameters qr. Actually, this is the main drawback of

the standard formulation, because the quality of the inference is conditioned

to the knowledge of the shape and precision parameters. If their values are

poorly chosen, then the resulting inference won’t be representative of the

actual target distribution. As a consequence, it is compulsory to determine

near-optimal values of qr, τn and τsr if one wants to perform a relevant sta-

tistical inference.
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To properly choose reasonable values of the shape parameters qr in each

region r, it can be noticed from Fig. 1b that the smaller qr is, the larger is

the weight on small values of Fr. On the contrary, for large values of Fr,

the smaller qr is, the smaller is the weight on these values. This difference

in the weighting behavior for small and large values of Fr can be directly

observed in the solutions obtained, since for qr ≤ 1 the solution vector Fr

will tend to have only a few non-zero values, while for qr = 2 it will tend to

have only a few very small values. From this analysis, it can be inferred that

distributed sources are promoted for qr = 2 [20], while localized sources are

favored for qr ≤ 1 [21]. Consequently, the possible values of qr are bounded

and practically lies in the interval ]0, 2] for force reconstruction problems.

However, it can be argued that in real-life applications the proposed guide-

lines seems impractical, because the force distribution is unknown or there

is no idea about the force to recover. We are prone to think that in real-life

applications rough information about the force to recover is available. This

information is provided by a careful analysis of the mechanical system. As a

result, we think that a rough idea of the location and the type of the sources

acting on the structure can be obtained. This obviously supposed that the

user has some knowledge in mechanics.

The choice of τn and τsr is generally less obvious. To this end, the

more straightforward approach is first to determine the optimal values of

the regularization parameters λr = τsr/τn from automatic selection proce-

dure based, for instance, on a generalization of the L-curve framework [22]

or the marginalized MAP approach [23]. In a second step, a MAP estimate
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Figure 1: Selection of the shape parameter qr - (a) Probability distribution exp [−|x|qr ]

and (b) Corresponding penalty function |x|qr for (—) qr = 2, (−−) qr = 1 and (− · −)

qr = 0.5

of the precision parameters τsr can be obtained from the data only using the

approach proposed in Ref. [23]. Finally, from the two first steps, the value

of τn can be obtained since τn = τsr/λr.

When following the previous guidelines, we can reasonably expect that

the standard Bayesian formulation allows performing an acceptable inference.

However, the standard formulation is limited in some respects, essentially be-

cause the parameters qr, τn and τsr are fixed. As a result, a poor choice of

these parameters leads to a poor reconstruction. Nevertheless, this formula-

tion will be used in section 3 to initialize the chains of the proposed MCMC

algorithm in a reasonably high propability region of the target posterior dis-

tribution thanks to the prior estimation of qr, τn and τsr.
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2.2. Extended Bayesian formulation

In the previous section, it has been shown that the inference ability of

the standard formulation is clearly limited, because the parameters qr, τn

and τsr need to be determined beforehand. To alleviate this limitation, the

approach generally adopted in the literature consists in considering the preci-

sion parameters τn and τsr as random variables, while letting fixed the shape

parameters qr. If we further consider the precision parameters as independent

variables, the following extended formulation is obtained:

p(F, τn, τsr|X, qr) ∝ p(X|F, τn) p(τn)
R∏
r=1

p(Fr|τsr, qr) p(τsr), (11)

where p(τn) and p(τsr) are the prior probability distribution of the precision

parameters τn and τsr respectively.

2.2.1. Choice of the prior probability distribution of the precision parameters

τn and τsr

The choice of the priori probability distributions p(τn) and p(τsr) is first

limited to distribution having a strictly positive support, because the preci-

sion parameters τn and τsr are real positive numbers. The common choice,

made in the literature, is the Gamma distribution. The reason for this

is rather clear, since the conjugate prior for the precision of a generalized

Gaussian distribution is a Gamma distribution [24]. The main interest of

conjugate priors is to simplify the inference because it corresponds in gen-

eral to classical probability distribution for which random number generators

have already been implemented. This makes efficient the implementation of

MCMC algorithms like the Gibbs sampler.
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Practically, the Gamma distibution is defined by:

G(x|α, β) =
βα

Γ(α)
xα−1 exp(−β x) with α > 0, β > 0, (12)

where α and β are respectively the scale parameter and the rate parameter

of the distribution. The knowledge of these hyperparameters allows charac-

terizing the probability distribution, since:

E[x] =
α

β
and Var[x] =

α

β2
. (13)

2.2.2. Summary and comments

Considering the previous choice, the extended Bayesian formulation of

the reconstruction problem is given by:

p(F, τn, τsr|X, qr) ∝ p(X|F, τn) p(τn|αn, βn)
R∏
r=1

p(Fr|τsr, qr) p(τsr|αsr, βsr),

(14)

where (αn, βn) are the hyperparameters related to the precision τn, while

(αsr, βsr) are the hyperparameters related to the precision parameters τsr.

To the authors’ knowledge, this extended formulation is generally re-

stricted to only one region and to Gaussian priors (i.e. qr = 2) [25] and

has given rise to the augmented Tikhonov regularization [26]. This method

provides a point estimate corresponding to a critical point of the opposite of

the logarithm of the posterior probability distribution. The main advantage

of this approach is to determine the regularized solution and the precision

simultaneously using an iterative process.

On the other hand, the use of a Gamma distribution is questionable, since

it has been chosen for mathematical convenience and does not reflect any
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real prior information on the precision parameters, except their positiveness.

That is why, the prior distribution on τn and τsr should be as minimally

informative as possible [27]. To this end, one generally sets αn = αsr = 1

and βn = βsr → 0.

Finally, the quality of the inference is strongly dependent on a proper choice

of the shape parameters qr. Consequently, when setting qr = 2, as classically

done in the literature to perform the inference using a Gibbs sampler [12, 13],

one takes the risk to draw erroneous conclusions if the structure is actually

excited by localized sources.

2.3. Complete Bayesian formulation

The derivation of the standard and extended formulations points out the

need for properly defining the value of the shape parameters qr. However,

choosing a priori relevant value is far from an easy task for non-experienced

user. For this particular reason, it is interesting to infer the shape parame-

ters from a Bayesian analysis. Practically, this is done by considering these

parameters as independent and identically distributed variables random vari-

ables. In doing so, one obtains the complete Bayesian formulation:

p(F, τn, τsr, qr|X) ∝ p(X|F, τn) p(τn|αn, βn)
R∏
r=1

p(Fr|τsr, qr) p(τsr|αsr, βsr) p(qr),

(15)

where p(qr) is the prior probability distribution of the shape parameters qr.

2.3.1. Choice of the prior probability distribution of the shape parameters qr

The only available information is that the value of the shape parameters

is bounded and positive. In absence of more precise knowledge on the param-

eters, the probability distribution is not only chosen to reflect the available
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information but also for its mathematical tractability. A probability distri-

bution that meets these requirements is the truncated Gamma distribution

defined by:

GT (x|α, β, lb, ub) =
Γ(α)

γ(α, βub)− γ(α, βlb)
G(x|α, β) I[lb,ub](x), (16)

where:

• G(x|α, β) is the Gamma distribution defined in Eq. (12);

• I[lb,ub](x) is the truncation function defined between the lower bound lb

and the upper bound ub. More precisely, this function simply writes:

I[lb,ub](x) =

1 if x ∈ [lb, ub]

0 otherwise
; (17)

• γ(s, x) =
∫ x
0
ts−1 exp(−t) dt is the lower incomplete Gamma function.

2.3.2. Summary and comments

From the above considerations, one obtains the proposed complete Bayesian

formulation, namely:

p(F, τn, τsr, qr|X) ∝ p(X|F, τn) p(τn|αn, βn)

×
R∏
r=1

p(Fr|τsr, qr) p(τsr|αsr, βsr) p(qr|αr, βr, lb, ub),
(18)

where (αr, βr) are the hyperparameters related to the shape parameters qr.

As evoked previously, the choice of the truncated Gamma distribution

has been made for mathematical convenience, because other continuous trun-

cated distribution could have theoretically been used. To avoid biasing the
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inference, the shape of the prior distribution needs to be weakly informa-

tive. Here, this means that the hyperparameters should be defined such that

αr = 1 and βr → 0.

At last, even if the lower and upper bounds lb and ub can theoretically take

any positive value, one knows from section 2.1.3 that the value of qr prac-

tically lies in the interval ]0, 2]. For this particular reason, we set lb = 0.05

and ub = 2.05 for all the validations presented in the next of the paper.

3. Resolution of the reconstruction problem – MCMC algorithm

Classically, the Bayesian framework is adopted because it allows quan-

tifying the uncertainties about the unknown parameters. To some extent,

this problem consists in determining the shape of the posterior probability

distribution p(F, τn, τsr, qr|X) in high probability regions, since it integrates

all the available information about the parameters to identify. In the present

situation, this task is analytically intractable, because of the dimension of

the parameter space. An alternative solution is to discretize the parameter

space to explore the posterior probability distribution. An efficient way to

perform this exploration consists in sampling from the posterior distribution

using MCMC algorithms.

In the present paper, the prior distributions have been chosen with con-

jugacy relations in mind. Here, this implies that most of the full conditional

probability distributions have the same form as the corresponding prior dis-

tribution and can then be easily sampled using standard statistical packages.

For the complete Bayesian formulation, the full conditional probabilities are
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for:

• the shape parameters qr:

p(qr|X,F, τn, τsr) ∝ p(Fr|τsr, qr) p(qr|αr, βr, lb, ub)

∝ τ
Mr
qr
sr

Γ(1/qr)Mr
qαr+Mr−1
r exp

[
−βr qr − τsr‖Fr‖qrqr

]
I[lb,ub](q);

(19)

• the precision parameters τsr:

p(τsr|X,F, τn, qr) ∝ p(Fr|τsr, qr) p(τsr|αsr, βsr)

∝ τ
αsr+

Mr
qr
−1

sr exp
[
−τsr

(
βsr + ‖Fr‖qrqr

)]
∝ G

(
τsr

∣∣∣αsr +
Mr

qr
, βsr + ‖Fr‖qrqr

)
;

(20)

• the precision parameters τn:

p(τn|X,F, τsr, qr) ∝ p(X|F, τn) p(τn|αn, βn)

∝ ταn+N−1
n exp

[
−τn

(
βn + ‖X−HF‖22

)]
∝ G

(
τn

∣∣∣αn +N, βn + ‖X−HF‖22
)

;

(21)

• the force vector F:

p(F|X, τn, τsr, qr) ∝ p(X|F, τn)
R∏
r=1

p(Fr|τsr, qr)

∝ exp

[
−τn‖X−HF‖22 −

R∑
r=1

τsr‖Fr‖qrqr

]
,

(22)

which corresponds to the posterior distribution of the standard Bayesian

formulation introduced in section 2.1.
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Regarding MCMC methods, the previous full conditional probability dis-

tributions can be efficiently used to sample the target posterior probability

distributions thanks to the Gibbs sampler, which is a special case of the

Metropolis-Hastings algorithm [28, 29]. The idea of the Gibbs sampler is

to draw samples form the posterior distribution by sampling each variable

from its full conditional distribution given the current values of the remaining

variables. Technically, the Gibbs sampler is divided into three main steps:

1. Set k = 0 and initialize q(0)r , τ (0)sr , τ (0)n and F(0);

2. Draw Ns samples from full conditional distributions

for k = 1 : Ns

a. for each region r, draw q
(k)
r ∼ p

(
qr|X,F(k−1), τ

(k−1)
n , τ

(k−1)
sr

)
;

b. for each region r, draw τ
(k)
sr ∼ p

(
τsr|X,F(k−1), τ

(k−1)
n , q

(k)
r

)
;

c. draw τ
(k)
n ∼ p

(
τn|X,F(k−1), τ

(k)
sr , q

(k)
r

)
;

d. draw F(k) ∼ p
(
F|X, τ (k)n , τ

(k)
sr , q

(k)
r

)
;

end for

3. Monitor the convergence of the Markov chains

The implementation of the previous Gibbs sampler requires some com-

ments. First of all, the parameters can be theoretically randomly initialized.

However, this potentially leads to a long burn-in period because the chains

are slowly mixing, meaning that the chains slowly explore the support of the

posterior distribution. To limit the burn-in period, a possible solution is to

start at a point known to have a reasonably high probability, such as the

mode [30]. This approach is adopted here and the calculation of the starting

point is detailed in section 3.1.
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Then, a particular attention has to be paid when drawing samples from full

conditional distributions. While the samples for the precision parameters

τ
(k)
n and τ (k)sr are easily obtained, drawing samples for the shape parameters

q
(k)
k and the force vector F(k) requires special treatments, that are thoroughly

explained in sections 3.2 and 3.3.

Finally, inferences performed from MCMC samples are based on the assump-

tion that the chains have properly mixed, i.e. that the chains have converged

to the stationary distribution. To this end, several methods have been pro-

posed in the literature such as the Gelman-Rubin statistic based on multiple

parallel chains [31]. Here, all the inferences are performed from one single

chain for each parameter. Hence, adapted procedures have to be used to

assess the convergence of the Markov chains. The procedure used in the pro-

posed validations to check the convergence of the Gibbs sampler is explained

in section 3.4.

3.1. Initialization of the sampler

As explained previously, it has been chosen to initialize the sampler from

a starting point having a reasonably high probability. In the present case, the

initial force vector F(0) is obtained from the MAP estimate of the standard

Bayesian formulation, which is defined by [see Ref. [8] for more details]:

F(0) = argmax
F

p
(
F|X, τ (0)n , τ (0)sr , q

(0)
r

)
= argmin

F
‖X−HF‖22 +

R∑
r=1

λ(0)r ‖Fr‖q
(0)
r

q
(0)
r

,

(23)

where λ(0)r = τ
(0)
sr /τ

(0)
n is the regularization parameter in the zone r.
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To simplify somewhat the calculation, it is supposed that the precision pa-

rameters τsr are equal to a unique constant value τ (0)s . Accordingly, Eq. (23)

becomes:

F(0) = argmin
F
‖X−HF‖22 + λ(0)

R∑
r=1

‖Fr‖q
(0)
r

q
(0)
r

, (24)

where λ(0) = τ
(0)
s /τ

(0)
n .

To obtain a relevant initial force vector, it is necessary to determine rea-

sonable values of the shape parameters q(0)r and the precision parameters τ (0)s

and τ (0)n . Practically, the values of the shape parameters q(0)r can be chosen

from subjective considerations using the guidelines given in section 2.1.3. On

the contrary, near-optimal values of the precision parameters are difficult to

assess a priori, i.e. without any calculation, because they are strongly related

to the optimization problem given in Eq. (24) through the regularization pa-

rameter λ(0), whose optimal value is partly conditioned to q(0)r . In addition,

since the shape parameter q(0)r can take any value in the range ]0,2], the so-

lution of the optimization problem has generally no closed-form expression.

Incidentally, the optimal value of the regularization parameter λ(0) can not

be directly estimated from the marginalized MAP [23], the L-curve principle

[32] or the Generalized Cross Validation [33] before solving the minimization

problem [see Ref. [34] for details]. To this end, the optimization problem

is solved iteratively using an Iteratively Reweighted Least Squares (IRLS)

algorithm [34, 35], which allows determining in an iterative manner the regu-

larized force vector as well as the optimal regularization parameter associated

to the minimization problem.

The core idea of the IRLS algorithm consists in replacing the direct resolution
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of the minimization problem [see Eq. (24)] by an equivalent iterative process

having an explicit solution at each iteration. Technically, the algorithm is

based on the fact that:

∀ q(0)r ,
R∑
r=1

‖Fr‖q
(0)
r

q
(0)
r

=
R∑
r=1

‖W1/2
r Fr‖22 = ‖W1/2F‖22, (25)

where W is a diagonal global weighting matrix depending explicitly on Fr

and q(0)r and defined from local weighting matricesWr such that [see Refs. [7,

8, 34, 35] for details]:

W = diag[W1, . . . ,Wr, . . . ,WR]. (26)

In doing so, one obtains, after convergence of the iterative process, the

optimal force vector F(0), the global weighting matrix W, as well as the op-

timal value of the regularization parameter λ(0), that has been updated at

each iteration using an automatic selection procedure such as the L-curve

principle [32] or the Bayesian estimator [36].

From a Bayesian standpoint, the IRLS procedure can be viewed as a way

of calculating iteratively the MAP estimate by approximating Generalized

Gaussian priors by a series of multivariate Gaussian-like priors. As a result,

at the final iteration of the IRLS algorithm, Eq. (25) should hold, meaning

that:

p(F|τ (0)s , q(0)r ) =
R∏
r=1

p(Fr|τ (0)s , q(0)r )

∝ p(F|W, τ (0)s )

∝ exp
[
−τ (0)s ‖W1/2F‖22

]
.

(27)
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At this stage of the initialization procedure, it remains to determine the

values of τ (0)n and τ
(0)
s . For this purpose, we follow the approach proposed

by Pereira et al. [23] consisting in finding the optimal values of τ (0)n and τ (0)s

given the measured vibration field X by calculating the MAP estimate of

p
(
τ
(0)
n , τ

(0)
s

)
. Formally, this condition writes:(

τ̂s
(0), τ̂n

(0)
)

= argmax(
τ
(0)
s ,τ

(0)
n

) p(τ (0)n , τ (0)s |X). (28)

It follows that the optimal values of τ (0)n and τ (0)s are obtained after some

simple calculations detailed in Appendix A and are expressed as:

τ (0)s =
N

XH
(
λ(0)I + HW−1HH

)−1X and τ (0)n =
τ
(0)
s

λ(0)
. (29)

3.2. Drawing samples from p
(
qr|X,F(k−1)

r , τ
(k−1)
n τ

(k−1)
sr

)
The Gibbs sampler is generally the first choice for conditionally conjugate

models, where samples can be drawn directly from each conditional probabil-

ity distribution. Unfortunately, this is not the case for the shape parameters

qr, for which the conditional distribution is not standard. In this situation,

a usual practice is to sample this variable using a Metropolis-Hastings up-

date. Such a combination of Gibbs sampler and Metropolis-Hastings update

is generally called Metropolis-within-Gibbs algorithm [37].

The main drawback of the Metropolis-Hastings algorithm is its random

walk behavior when using a normal proposal distribution (or any random

walk proposal). Although its popularity, such proposal distributions can

lead to a somewhat inefficient exploration of the probability space implying
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slow mixing of the chains. To avoid such a behavior, a Hamiltonian Monte

Carlo update is used instead.

Hamiltonian Monte Carlo (HMC), a.k.a. Hybrid Monte Carlo, is a MCMC

algorithm based on Hamiltonian dynamics [17]. In HMC, the Hamiltonian

function can be written as follows:

H(qr, s) = U(qr) +K(s), (30)

where U(qr) is called the potential energy and is defined as:

U(qr) = − log
[
p
(
qr|X,F(k−1)

r , τ (k−1)n , τ (k−1)sr

)]
, (31)

while K(s) is called the kinetic energy and is chosen for mathematical con-

venience. Usually, it is defined such that:

K(s) = − log [N (s|0, 1)] =
1

2
sT s+ const, (32)

where N (s|0, 1) is the standard univariate normal distribution.

In this framework, qr and s define the state space of the dynamical systems

and can be viewed as the position and the momentum respectively. The

evolution of the state (qr, s) over the time t is governed by the following

system of equations: 
dqr
dt

=
∂H(qr, s)

∂s
ds

dt
= −∂H(qr, s)

∂qr

. (33)

In practice, Eq. (33) is difficult to solve analytically. That is why, Hamil-

ton’s equations are approximated by discretizing time and solved using the
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leapfrog method, that requires the computation of the gradient of the poten-

tial energy U(qr) [see Appendix B]. The latter aspect is, actually what partly

avoids the random-walk behavior of the sampler, because the gradient infor-

mation provides a direction of exploration. Practically, a constrained version

of the HMC sampler has been implemented to take the bounded character

of the shape parameters qr into account [see Ref.[18] for details].

3.3. Drawing samples from p
(
F|X, τ (k)s , τ

(k)
sr , q

(k)
r

)
The full conditional distribution p

(
F|X, τ (k)s , τ

(k)
sr , q

(k)
r

)
is not standard.

Consequently, a natural approach for drawing samples from this probabil-

ity distribution consists in performing a Metropolis-Hastings or a HMC up-

date. This updating stage can be implemented component-wise or block-wise.

However, this can lead to convergence and computational efficiency issues,

because of a low acceptance rate, which is likely to happen when the number

of identification points is large. Another possibility, adopted in this work, is

to approximate the full conditional probability distribution by noting that,

for an appropriate choice or estimation of the local weighting matrices Wr,

one can write:

p
(
F|X, τ (k)n , τ (k)sr , q

(k)
r

)
∝ exp

[
−τ (k)n ‖X−HF‖22 −

R∑
r=1

τ (k)sr ‖Fr‖q
(k)
r

q
(k)
r

]

∝ exp

[
−τ (k)n ‖X−HF‖22 −

R∑
r=1

τ (k)sr ‖W1/2
r Fr‖22

]
∝ Nc(F|µF, ΣF),

(34)

whereNc(F|µF,ΣF) is the (circurlarly-symmetric) complex multivariate Gaus-

sian distribution with complex mean vector µF and complex covariance ma-
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trix ΣF. Formally, the multivariate Gaussian distribution is expressed as:

Nc(F|µF,ΣF) =
1

|πΣF|
exp

[
−(F− µF)H Σ−1F (F− µF)

]
, (35)

where |ΣF| is the determinant of ΣF.

Here, the complex mean vector µF and the complex covariance matrix

ΣF are expressed as:

µF = τ (k)n ΣFHHX and ΣF =
(
τ (k)n HHH + T(k)

s W
)−1

. (36)

In the previous equation, W is the global weighting matrix defined form the

local weighting matrices Wr after Eq. (26), while T(k)
s is the global precision

matrix related to the local precision parameters τ (k)sr . By construction, T(k)
s

is defined such that:

T(k)
s = diag

[
τ
(k)
s1 IM1 , . . . , τ

(k)
sr IMr , . . . , τ

(k)
sR IMR

]
, (37)

where IMr is the identity matrix of dimension Mr.

Practically, µF is computed from the IRLS algorithm described in Refs. [7,

8], since the IRLS solution converges to the conditional mean (i.e. µF). As

explained earlier, at the last iteration of the IRLS algorithm, one obtains the

complex mean vector µF, as well as the related local weighting matrices Wr

enabling the calculation of the complex covariance matrix ΣF.

Once the complex mean vector µF and covariance matrix ΣF of the com-

plex multivariate Gaussian distribution are obtained, samples of the force

vector F(k) can be easily drawn [38]. At this stage, it must be mentioned
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that, from a technical standpoint, the proposed sampling procedure of the

force vector can be seen as a normal approximation around the mode of

the full conditional probability distribution. Regarding the overall sampling

procedure, this results in an approximate Bayesian inference when the shape

parameters are different from 2. However, in the light of the results presented

in the next of the paper on plate-like structures and in Ref. [39] on a beam,

the proposed approximation seems to lead to relevant Bayesian inferences.

3.4. Convergence diagnostics

From Markov chain theory, one can expect the Markov chains to converge

to their equilibrium distribution, corresponding to the target posterior prob-

ability distribution. However, there is no guarantee that the convergence can

be achieved. Worse, one can never be sure that the chains have properly

mixed. Nevertheless, several tests can be performed to determine whether

the chains appear to converge.

Convergence diagnostics remains an open topic, but there is essentially

two paradigms for establishing convergence tests. The first one consists in

considering one long chain, while the second one is based on the exploita-

tion of multiple chains running in parallel. Each standpoint has its pros

and cons. In the present paper, all the inferences have been performed from

one single chain for each parameter. More precisely, we have monitored the

convergence of the precision parameters (τn, τsr) and the shape parameters qr.

The procedure used for convergence monitoring is based on the combi-

nation of two complementary diagnostics. The proposed procedure is conse-
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quently divided into three steps:

1. Apply the Raftery-Lewis diagnostic [40] to each individual chain to

monitor for estimating the total run length and the burn-in period.

2. Apply the Geweke diagnostic [41] to the chains resulting from step 1

to test the convergence of the Markov chains.

3. If the convergence is not achieved after step 2, repeat steps 1 and 2 on

the remaining parts of the chains.

3.5. General comment

The proposed MCMC algorithm is relatively general and can be used

to derive the MCMC algorithms corresponding to the standard and the ex-

tended Bayesian formulations. The MCMC algorithm related to the extended

Bayesian formulation presented in section 2.2 is obtained by not considering

the step 2a of the Gibbs sampler (i.e. by fixing the values of qr). On the other

hand, the MCMC algorithm associated to the standard Bayesian formulation

is derived from the general Gibbs sampler by computing steps 1 and 2c only

(i.e. by considering fixed values for τn, τsr and qr).

4. Numerical validation

The present numerical study intends to demonstrate how the proposed full

Bayesian approach operates to obtain consistent reconstructions as well as

relevant and useful information on the posterior uncertainties on the model

parameters. This last aspect is certainly the most important from an in-

dustrial point of view, because having credible intervals allows assessing not

only the quality of identified solutions but also the pertinence of the proposed

Bayesian model.
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4.1. Description of the test case

In the present numerical validation, one seeks to identify a point force

of unit amplitude (i.e. F0 = 1 N) acting on a thin simply supported steel

plate with dimensions 0.6 m×0.4 m×0.005 m. The coordinates of the point

force, measured from the lower left corner of the plate, are (x0, y0) = (0.42 m,

0.25 m). Practically, this configuration allows studying the influence of the

definition of local regularization terms, since the present excitation field ex-

hibits two types of spatial distribution over the structure, namely a smooth

distribution of the reaction forces at boundaries and a singular distribution

around the location of the point force.

To properly simulate experimental measurements, the exact vibration dis-

placement field Xexact is first computed from a FE mesh of the plate made

up with 187 shell elements, assuming that only bending motions are measur-

able. Then, the exact displacement field is corrupted by an additive Gaussian

white noise with a signal-to-noise ratio equal to 34 dB. It should be added

that a structural damping has been introduced in the calculation to avoid

infinite displacement amplitudes at resonance frequencies. Here, the struc-

tural damping ratio is equal to 0.01.

Regarding, finally, the transfer functions matrix H, a FE model of the

plate with free boundary conditions is used, assuming that only bending mo-

tions are measured. In other words, the computed transfer functions matrix

H is dynamically condensed over the measurable degrees of freedom only

[7, 42]. The main interest in using free boundary conditions to model the
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dynamic behavior of the plate is to allow the identification of external exci-

tations acting on the structure as well as reaction forces at boundaries [6].

4.2. Application

To numerically validate any force reconstruction strategy, it is first nec-

essary to define the reference force vector Fref that could serve as a proper

benchmark. This reference force vector is computed from the transfer func-

tions matrix H and the exact displacement field Xexact thanks to the follow-

ing relation:

Fref = H−1Xexact. (38)

This numerical study is focused on the identification of the excitation

field at 350 Hz, i.e. outside the resonance frequencies of the plate. As shown

in Fig. 2, the reference force vector corresponds to the description of the test

case given in the previous section, since it exhibits smooth reaction forces at

boundaries of the plate as well as a unit point force F0 at (x0, y0) = (0.42 m,

0.25 m).

Before applying the complete Bayesian formulation to the proposed nu-

merical test case, it is important to stress the interest of defining several

identification region and inferring the shape parameters through a Bayesian

analysis. To this end, the extended Bayesian formulation presented, in sec-

tion 2.2, is first applied by considering only one identification region. In this

situation, a single shape parameter q needs to be defined. In this situation,

when setting q to typical values, namely q = 2 and q = 1, one clearly ob-

serves from the analysis of Fig. 3 and Tables 1 and 2, obtained after initially

drawing 7000 samples, that defining only one identification region does not
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Figure 2: Reference force vector Fref at 350 Hz

allow properly inferring the excitation field.

Table 1: Summary of inference results at 350 Hz obtained after applying the extended

Bayesian formulation for q = 2

Parameter Median Mode 95% CI

F0 [N] 0.349 0.349 [0.136, 0.561]

τn 1.62×1016 1.61×1016 [1.34, 1.96]×1016

τs 27.47 26.94 [21.84, 33.54]

On the contrary, when defining several identification region, the quality

of the inference can be significantly improved. For the present test case,

two reconstruction regions plotted in Fig. 4 are defined: (i) a central region
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(a) (b)

Figure 3: Surface plot of the real part of the reconstructed force vector (2.5th, 50th and

97.5th percentiles) at 350 Hz obtained after applying the extended Bayesian formulation

for (a) q = 2 and (b) q = 1

Table 2: Summary of inference results obtained at 350 Hz after applying the extended

Bayesian formulation for q = 1

Parameter Median Mode 95% CI

F0 [N] 0.799 0.799 [0.711, 0.886]

τn 1.37×1016 1.35×1016 [1.17, 1.59]×1016

τs 15.74 15.53 [13.66, 18.03]
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associated to the shape parameter q1 and containing the point force only and

(ii) a region associated to the shape parameter q2 and corresponding to the

boundaries of the plate.
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Figure 4: Definition of the reconstruction regions - (◦) region 1 (Point force), (×) region

2 (Reaction forces) and (♦) location of the point force

In this situation, when applying the extended Bayesian formulation for

q1 = 0.5 and q2 = 2 [see guidelines proposed in section 2.1.3], one obtains,

after drawing initially 7000 samples, the results presented in Figure 5 and

Table 3. Here, it is clear that the definition of different identification regions

associated to a relevant choice of the corresponding shape parameters allows

greatly improving the quality of the resulting inference. This is actually the

major shortcoming of the extended Bayesian formulation, since only partial

information on the excitation field are practically available. More specifically,

this means that the value of the precise value of the shape parameters are
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not known precisely, even if the guidelines given previously allow determin-

ing reasonable values. Actually, this is this conclusion that motivated the

development of the complete Bayesian formulation.

Figure 5: Surface plot of the real part of the reconstructed force vector (2.5th, 50th and

97.5th percentiles) at 350 Hz obtained after applying the extended Bayesian formulation

for (q1, q2) = (0.5, 2)

To perform the inference from the complete Bayesian formulation, the

initial values of the shape parameters have been set to q(0)1 = 0.5 and q(0)2 = 2

in order to start the sampler in a reasonably high posterior probability region.

After initially drawing 7000 samples for each chain, the results of the Bayesian

inference are summarized in Table 4 and Figs. 6 and 7.

Obtained results clearly show that the proposed inference provides con-

sistent parameters estimates as well as a quantification of the posterior un-
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Table 3: Summary of inference results obtained at 350 Hz after applying the extended

Bayesian formulation for (q1, q2) = (0.5, 2)

Parameter Median Mode 95% CI

F0 [N] 0.976 0.976 [0.957, 0.994]

τn 1.35×1016 1.34×1016 [1.15, 1.57]×1016

τs1 38.27 38.05 [33.45, 43.17]

τs2 15.57 14.99 [11.51, 20.81]
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Figure 6: Real part of the reconstructed force vector at 350 Hz. (a) Surface plot - 2.5th,

50th (median) and 97.5th percentiles and (b) Section view at y0 = 0.25 m – (—) Reference,

(−−) Reconstruction and ( a ) 95% credible interval

35



0.97 0.98 0.99 1 1.01 1.02 1.03

F
0

0

5

10

15

20

25

30

35

40

45

N
o

rm
a
li
z
e
d

 d
e
n

s
it

y

(a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7

n 10 16

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
a
li
z
e
d

 d
e
n

s
it

y

10 -16

(b)

25 30 35 40 45 50 55

s1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

F
re

q
u

e
n

c
y

(c)

4 6 8 10 12

s2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
F

re
q

u
e
n

c
y

(d)

0.35 0.4 0.45 0.5 0.55 0.6

q
1

0

2

4

6

8

10

12

F
re

q
u

e
n

c
y

(e)

1.4 1.5 1.6 1.7 1.8 1.9 2

q
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

q
u

e
n

c
y

(f)

Figure 7: Normalized histograms of (a) F0, (b) τn, (c) τs1, (d) τs2 , (e) q1 and (f) q2 – ( a )

95% credible interval, ( a ) Samples outside the 95% credible interval and (− · −) Kernel

density estimate
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Table 4: Summary of inference results at 350 Hz

Parameter Median Mode 95% CI

F0 [N] 0.998 0.998 [0.98, 1.016]

τn 1.34×1016 1.33×1016 [1.15, 1.57]×1016

τs1 35.03 34.61 [27.97, 44.87]

τs2 6.28 6.18 [4.10, 9.24]

q1 0.460 0.459 [0.405, 0.538]

q2 1.919 2.012 [1.564, 2.044]

certainty about those parameters after the numerical experiment was carried

out. In particular, it can be stressed that the median of the reconstructed

force vector agrees well with the reference one. On the other hand, the analy-

sis of the inference results indicates that the width of the related 95% credible

intervals on the estimated excitation field are larger at boundaries than in

the central region, indicating that our knowledge of the reaction forces is

more uncertain than that of the point force. This observation is confirmed

by the comparison of the precision τs1 and τs2, insofar as the median and

the mode of τs1 are greater than those of τs2. Furthermore, as a verification

of the proposed statistical model, it is noticed that the true noise precision

τn = 1.433 × 1016 lies in the 95% credible interval [see Table 4]. Finally, it

is also worth noting that the estimations of the shape parameters q1 and q2

are in a very good agreement with the general guidelines proposed in sec-

tion 2.1.3. Consequently, the proposed Bayesian model seems suitable for

force reconstruction problems.
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The previous application of the complete Bayesian formulation has been

carried out from a particular set of initial shape parameters (q
(0)
1 , q

(0)
2 ) =

(0.5, 2) because it allows starting the sampler at a point having a reason-

ably high probability, i.e. at a point close to the mode of the distribution.

However, as explained earlier, it could be difficult to assess in a real-life ap-

plication the precise values of these parameters. In practical situation and

after a thorough analysis of the mechanical problem, the guidelines provided

previously allow having only a rough idea of the values of the shape param-

eters. As a consequence, if the proposed sampler is sensitive to a correct

initialization of the shape parameters, the proposed approach would be se-

riously invalidated. To have better insights into the sampler behavior, the

trace plots of the Markov chains of each parameters of the complete Bayesian

formulation are presented in Fig. 8 for different initial values of the shape

parameters q(0)1 and q(0)2 . The analysis of the trace plots shows that, regard-

less of the initial values of the shape parameters, the Markov chains converge

to the same stationary state. Consequently, a poor prior estimation of the

shape parameters seems not detrimental to the sampler convergence, but it

generally prolongs the burn-in period. That is why, it is beneficial to start

in a high probability region of the posterior distribution.

Finally, the analysis presented above has been performed outside the res-

onance frequencies of the plate. Indeed, force reconstruction at natural fre-

quencies of a lightly damped structure is a far more challenging task (espe-

cially at low frequencies), because, H is close to be singular and the vibration

response is mainly driven by one structural mode (reaction forces) and not
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Figure 8: Trace plots of (a) F0, (b) τn, (c) τs1, (d) τs2 , (e) q1 and (f) q2 for different initial

values of shape parameters (q
(0)
1 , q

(0)
2 ) – (—) (q

(0)
1 , q

(0)
2 ) = (0.5, 2) , (−−) (q

(0)
1 , q

(0)
2 ) =

(2, 0.5) and (− · −) (q(0)1 , q
(0)
2 ) = (1, 1). The burn-in period is included in the trace plots
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by the point force itself. At these particular frequencies, a special treatment

or formulation should be implemented, but, to the author’s knowledge, this

problem still remains an open question.

5. Experimental validation

This section aims at confirming the main conclusions drawn in the previ-

ous section by extending the analysis to a real-world application. Since the

proposed method is a natural extension of the work presented in Ref. [8], we

have decided to perform this validation using the same experimental set-up.

5.1. Description of the experimental set-up

The structure under test is a steel parallelepiped box, excited on one of

its faces by a shaker fed by a white noise signal and equipped with a force

sensor [see Fig. 9]. The parameters of this experimental validation are given

in Table 5.

Figure 9: Experimental set-up
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Table 5: Experiment parameters

Parameters Values

Length of the parallelepiped Lx = 0.45 m

Width of the parallelepiped Ly = 0.3 m

Height of the parallelepiped Lz = 0.35 m

Wall thickness h = 0.005 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Location of the force (y0, z0) = (0.10 m, 0.09 m)

Measurements of the vibration field were carried out with a scanning laser

vibrometer on a grid of 19×22 points along y and z directions respectively

using the force signal as phase reference. In all the subsequent identifica-

tions, the measured vibration velocity field is normalized to the force signal

delivered by the force sensor [see Fig. 10]. In doing so, the identified point

force F0 should be equal to 1.

Regarding the FE mesh used to model the dynamic behavior of the plate,

it has been designed to perfectly match the measurement mesh. Hence, it

consists of 378 shell elements, making the model theoretically valid up to

5000 Hz. Then, the corresponding FE model with free boundary conditions

has been used to compute the transfer functions matrix H, considering the

bending motions as the only available data. Finally, it is worth noting that

a global structural damping is used in the present experimental validation.

Its value has been estimated from the modal damping ratios obtained from
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Figure 10: Mean square velocity measured on the studied face of the parallelepiped box

the measured FRFs.

5.2. Application

A careful analysis of the experimental set-up suggests the definition of

two identification regions. The first region associated to the shape parameter

q1 contains the point force only, while the second region, associated to the

shape parameter q2, corresponds to the boundaries of the plate [see Fig. 11].

According to section 2.1.3, the Gibbs sampler is thus initialized using q(0)1 =

0.2 and q
(0)
2 = 2. As in the numerical validation, the Bayesian inference is

first applied at 525 Hz, which lies outside the resonance frequencies of the

plate. After initially drawing 7000 samples for each chains, obtained results

are presented in Figs. 12, 13 and 14 and are summarized in Table 6.

As observed in the numerical validation, the proposed Bayesian formula-
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Figure 12: Real part of the reconstructed force vector at 525 Hz. (a) Surface plot -

2.5th, 50th (median) and 97.5th percentiles and (b) Section view at z0 = 0.09 m – (—)

Reconstruction and ( a ) 95% credible interval
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Figure 13: Normalized histograms at 525 Hz of (a) F0, (b) τn, (c) τs1, (d) τs2, (e) q1 and

(f) q2 – ( a ) 95% credible interval, ( a ) Samples outside the 95% credible interval and

(− · −) Kernel density estimate
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Figure 14: Trace plots of (a) F0, (b) τn, (c) τs1, (d) τs2 , (e) q1 and (f) q2. The burn-in

period is included in the trace plots
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Table 6: Summary of inference results at 525 Hz

Parameter Median Mode 95% CI

F0 [N] 0.999 0.999 [0.981, 1.016]

τn 9.04×108 9.01×108 [7.97, 10.19]×108

τs1 56.94 55.78 [49.14, 66.96]

τs2 10.61 6.11 [3.22, 42.72]

q1 0.403 0.401 [0.381, 0.429]

q2 1.935 2.007 [1.578, 2.046]

tion allows relevant parameters estimations as well as a quantification of the

posterior uncertainty about those parameters. More precisely, the results

obtained at 525 Hz allows drawing conclusions similar to those derived in

the numerical validation. First, the location and the value of the point force

are recovered. Second, the estimates of the shape parameters are consistent

with our expectations. Finally, the credibility intervals on the reconstructed

excitation field are larger at boundaries than in the central region, which is

in fact closely related to the estimated parameters τsr and qr.

However, to give a comprehensive overview of the proposed Bayesian

formulation, the spectra of all the parameters of the model are given in

Fig. 15. The results presented in this figure have been computed between

300 Hz and 1200 Hz (frequency resolution: 5 Hz) after initially drawing 7000

samples for each parameters at each frequency.

In an ideal situation, the median force spectrum should be close to 1
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Figure 15: Frequency spectra of (a) F0, (b) τn, (c) τs1, (d) τs2, (e) q1 and (f) q2 – (—)

median, ( a ) 95% credible interval
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at each studied frequency and the 95% credible interval should include 1.

This is obviously not the case in the present validation. Nevertheless, one

can notice that the median force spectrum is reasonably close to the target

value, even if significant discrepancies, associated to large posterior uncer-

tainties, are noticeable around the resonance frequencies of the structure [see

Fig. 10]. Furthermore, Fig. 15 perfectly illustrates the kind of results that

can be expected from a Bayesian inference. Yet, they incite us to add a word

on the interpretation of Bayesian credible intervals. The 95% credibility in-

terval indicates that given the data and the model, there is 95% chance (or

probability) that the value of interest lie in that interval. The width of the

CI is a way of measuring the posterior uncertainty about the parameters es-

timates, or, equivalently, our current knowledge of the parameters after the

experience was performed. Accordingly, for the identified point force, it does

not mean that the reconstructed value is necessarily close to 1, but, that it

is credible to think that it lies in the calculated interval given all the infor-

mation available a priori (dynamic model + specific contextual information

from prior distribution) and/or measured (data). Fortunately, the estimate

obtained in Fig. 15a shows that the proposed Bayesian model is relevant

for coping with force reconstruction problems outside resonance frequencies.

Around resonance frequencies, the inference leads to the solution given the

larger posterior uncertainty, as suggested by the median value of the shape

parameter q1 which tends to 2. Even if this result is not the best one, it

is, after all, reassuring, because at resonance frequencies the response of the

structure is governed by the vibration modes, implying that the identified

excitation field is necessarily not unique.
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6. Conclusion

In structural dynamics, regularization approaches, such as additive regu-

larizations, can be used to deal with source identification problems. Although

widely used and deeply studied, only point estimates are generally computed,

even if the variance information can be easily obtained in some particular

cases. In other words, there is often no quantification of the uncertainty

about the regularized solution given the measured data and the mechani-

cal model. However, such information is of primary interest for industrial

applications, in which it is essential to guarantee the quality of obtained re-

sults. In the present paper, a full Bayesian formulation has been proposed to

tackle this issue and an original hybrid Gibbs sampler has been implemented

to perform the inference. One of its merits is to provide estimates of all the

parameters of the model, including the shape parameters of the generalized

Gaussian used to express our prior knowledge on the sources to identify. The

proposed numerical and experimental validations clearly highlight the prac-

tical interest of the proposed approach in terms of parameters estimations

and posterior uncertainty quantification.

Appendix A. Calculation of the optimal value of τ (0)
s and τ (0)

n

The optimal values of τ (0)s and τ (0)n are obtained by calculating the MAP

of p(τ (0)n , τ
(0)
s |X). Formally, this condition writes:(

τ̂s
(0), τ̂n

(0)
)

= argmax(
τ
(0)
s ,τ

(0)
n

) p(τ (0)n , τ (0)s |X) (A.1)

By using the Bayes’ rule, the conditional probability distribution p(τ (0)n , τ
(0)
s |X)
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is written as:

p(τ (0)n , τ (0)s |X) ∝ p(X|τ (0)n , τ (0)s ) p(τ (0)n ) p(τ (0)s ). (A.2)

Assuming that p(τ (0)n ) = p(τ
(0)
s ) ∝ 1, one has:

p(τ (0)n , τ (0)s |X) ∝ p(X|τ (0)n , τ (0)s ) =

∫
p(X|F, τ (0)n , τ (0)s ) p(F|W, τ (0)s ) dF.

(A.3)

After some calculations, one establishes that [see Ref. [24] for details]:

p(τ (0)n , τ (0)s |X) ∝ Nc(X|0, I/τ (0)n + HW−1HH/τ (0)s ). (A.4)

Practically, it is generally easier to find the solution of the dual minimiza-

tion problem: (
τ̂s

(0), τ̂n
(0)
)

= argmin(
τ
(0)
s ,τ

(0)
n

) − log
[
p(τ (0)n , τ (0)s |X)

]
. (A.5)

The previous minimization problem is equivalent to the minimization of

the functional:

J(τ (0)s , τ (0)n ) = − log
[
p(τ (0)n , τ (0)s |X)

]
= XHΣ−1X + log |Σ|, (A.6)

where Σ = I/τ (0)n + HW−1HH/τ
(0)
s .

This functional can be simplified by introducing in the previous relation

the regularization parameter λ(0) defined such that:

λ(0) =
τ
(0)
s

τ
(0)
n

. (A.7)

In doing so, the functional to minimize becomes:

J(τ (0)s , λ(0)) = τ (0)s XH
(
λ(0)I + HW−1HH

)−1
X−N log τ (0)s

+ log
∣∣λ(0)I + HW−1HH

∣∣ . (A.8)
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To find the optimal value of τ (0)s , it remains to find a stationary point

of the functional J(τ
(0)
s , λ(0)) with respect to τ (0)s . Mathematically, this is

performed by applying the first-order optimality condition, namely:

∂J(τ
(0)
s , λ(0))

∂τ
(0)
s

∣∣∣∣∣
τ
(0)
s =τ̂s

(0)

= XH
(
λ(0)I + HW−1HH

)−1
X− N

τ̂s
(0)

= 0. (A.9)

After rearranging the previous equation, one obtains:

τ̂s
(0) =

N

XH
(
λ(0)I + HW−1HH

)−1X . (A.10)

Finally, the optimal value of τ (0)n is directly obtained from Eq. (A.7), since:

τ̂n
(0) =

τ̂s
(0)

λ(0)
. (A.11)

Appendix B. Calculation of the potential energy and its gradient

The implementation of the Hamiltonian Monte Carlo requires the calcu-

lation of the potential energy U(qr) and its gradient ∂U(qr)
∂qr

. By definition,

the potential energy is given by:

U(qr) = − log
[
p
(
qr|X,F(k−1)

r , τ (k−1)n , τ (k−1)sr

)]
. (B.1)

Practically, the conditional probability distribution p (qr|X,Fr, τn, τsr) is

written (the superscripts (k − 1) have been removed for the sake of clarity):

p (qr|X,Fr, τn, τsr) =
Cτ

Mr
qr
s

Γ(1/qr)Mr
qαr+Mr−1
r exp

[
−βr qr − τsr‖Fr‖qrqr

]
, (B.2)

where C is a constant.
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Since the potential energy is defined up to a constant, one obtains:

U(qr) = Mr log Γ(1/qr)−
Mr

qr
log τsr − [αr +Mr − 1] log qr

+ βr qr + τsr‖Fr‖qrqr .
(B.3)

From the previous relation, the gradient is easily obtained:

∂U(qr)

∂qr
= βr+τsr

Mr∑
i=1

(|Fri|qr log |Fri|)−
αr +Mr − 1

qr
+

1

q2r
[Mr log τsr −Mrψ(1/qr)] ,

(B.4)

where Fri is the ith component of the force vector Fr and ψ(x) is the digamma

function.
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