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Abstract

We have recently proposed a multiplicative regularization to reconstruct me-

chanical forces acting on a structure from vibration measurements. This

method does not require any selection procedure for choosing the regulariza-

tion parameter, since the amount of regularization is automatically adjusted

throughout an iterative resolution process. The proposed iterative algorithm

has been developed with performance and efficiency in mind, but it is ac-

tually a simplified version of a full iterative procedure not described in the

original paper. The present paper aims at introducing the full resolution

algorithm and comparing it with its simplified version in terms of computa-

tional efficiency and solution accuracy. In particular, it is shown that both

algorithms lead to very similar identified solutions.
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1. Introduction

In a paper, recently published in MSSP, we have introduced a multi-

plicative regularization to tackle source reconstruction problems [1]. The

proposed formulation aims at properly exploiting one’s prior knowledge on

the sources to identify. To this end, it is assumed that the structure is excited

in N different regions by local excitation fields Fi of different natures (local-

ized or distributed), while the measured vibration field X is supposed to be

corrupted by an additive Gaussian white noise. Under these assumptions,

the reconstructed excitation field Fm is sought as a stationary point of the

functional:

Jm(F) = ‖X−HF‖22 ·
N∑
i=1

‖LiFi‖qiqi , (1)

where:

• H is the transfer functions matrix of the structure, which describes its

dynamic behavior;

• Li is a smoothing operator controlling the regularity of the solution in

region i;

• qi is a tuning parameter defined in the interval ]0,+∞[ and ‖ • ‖qi is

the `qi–norm. Practically, qi ≤ 1 if the solution vector LiFi tends to be

a priori sparse. On the contrary, qi = 2 if the solution vector is a priori

rather distributed.

By construction, the resolution of the reconstruction problem from the

multiplicative regularization defined in Eq. (1) requires the implementation

of an iterative procedure. In the original paper, we have implemented an
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adapted Iteratively Reweighted Least Squares (IRLS) algorithm [2, 3]. Ba-

sically, it consists in computing iteratively the solution of the problem by

recasting the `qi–norm into a weighted `2–norm. As a result, the estimated

force vector F(k+1)
m at iteration k+1 of the IRLS algorithm is sought as the

stationary point of the functional (see Ref. [1]):

J (k+1)
m (F) = ‖X−HF‖22 ·

∥∥∥W(k)1/2LF
∥∥∥2
2
, (2)

where W(k) is a global diagonal weighting matrix defined from the solution

computed at iteration k, namely F(k)
m , and L is the global smoothing operator.

In the original paper, it is indicated that after some calculations F(k+1)
m

is finally expressed as:

F(k+1)
m =

(
HHH + α(k+1) LHW(k)L

)−1

HHX, (3)

where α(k+1) is the adaptive regularization parameter, defined such that:

α(k+1) :=

∥∥∥X−HF(k)
m

∥∥∥2
2∥∥∥W(k)1/2LF(k)

m

∥∥∥2
2

. (4)

However, attentive readers will notice that the force vector F(k+1)
m given

by Eq. (3) with α(k+1) defined by Eq. (4) is not exactly a stationary point of

J
(k+1)
m (F), since the latter is obtained from Eq. (3) with α(k+1) defined such

that:

α(k+1) =

∥∥∥X−HF(k+1)
m

∥∥∥2
2∥∥∥W(k)1/2LF(k+1)

m

∥∥∥2
2

. (5)

However, because α(k+1) depends explicitly on F(k+1)
m , finding a stationary

point of J
(k+1)
m (F) requires the implementation of an iterative procedure
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[4, 5, 6, 7]. Consequently, replacing Eq. (3) by an ad hoc iterative reso-

lution allows defining the full resolution algorithm.

In the following sections, we will show that the resolution algorithm

presented in the original paper is actually a simplified version of the full

resolution algorithm described below. More specifically, it will be shown

through numerical and experimental validations that both algorithms lead

to very similar reconstructed excitation fields, while exhibiting different per-

formances.

2. Full resolution algorithm

As explained in the introduction, the full resolution algorithm consists

in replacing the calculation of F(k+1)
m from Eq. (3) by an adapted iterative

process. In other words, the full resolution algorithm is composed of a main

(outer) iteration corresponding to the initialization step, the calculation of

the global weighting matrix W(k) and the evaluation of the stopping criterion

as defined in Ref. [1] and a nested (inner) iterative procedure to compute

F(k+1)
m and α(k+1). Consequently, this section focuses on the implementation

of the nested iterative algorithm only, since the rest of the overall resolution

procedure remains unchanged compared to the original paper.

2.1. Fixed point iteration

As explained previously, the aim of the nested iterative procedure is to

compute F(k+1)
m so that it be a stationary point of J

(k+1)
m (F). The idea here

is to implement a fixed point algorithm, for which the fixed point F(k+1,j+1)
m

4



at (inner) iteration j+1 of the nested process and main (outer) iteration k+1

is expressed as:

F(k+1,j+1)
m =

(
HHH + α(k+1,j+1) LHW(k)L

)−1

HHX, (6)

where the adaptive regularization parameter α(k+1,j+1) writes:

α(k+1,j+1) =

∥∥∥X−HF(k+1,j)
m

∥∥∥2
2∥∥∥W(k)1/2LF(k+1,j)

m

∥∥∥2
2

. (7)

2.2. Initial solution and stopping criterion

As every iterative procedure, the nested algorithm requires the definition

of an initial solution and a stopping criterion. To properly define all the

necessary notations, we introduce the stopping criterion before the initial

solution.

2.2.1. Stopping criterion

To determine when stopping the nested iterative algorithm, the relative

variation δ of the related adaptive regularization parameter between two

successive iterations is studied. Practically, the relative variation δ is defined

such that:

δ =

∣∣α(k+1,j+1) − α(k+1,j)
∣∣

α(k+1,j)
. (8)

As classically done in the literature, the iterative process is stopped when

the relative variation δ is less than or equal to some tolerance. In the present

letter, the tolerance is set to 10−8, which corresponds to the tolerance of the

main iteration loop (see Ref. [1]).
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When the nested iterative process has converged after Nj iterations, the

solution vector F(k+1)
m and adaptive regularization parameter α(k+1) are re-

turned by the algorithm and are defined such that:

F(k+1)
m := F(k+1,Nj)

m and α(k+1) := α(k+1,Nj). (9)

2.2.2. Initial solution

When entering in the nested iterative step of the overall algorithm, the

solution F(k)
m at the previous outer iteration k is known and is used as initial

solution. Formally, this means that the initial solution of the inner iterative

process F(k+1,0)
m is expressed as:

F(k+1,0)
m := F(k)

m . (10)

2.3. Comments

The previous sections reveals the relation between the full resolution algo-

rithm and its simplified version introduced in the original paper. Indeed, the

simplified resolution algorithm is obtained by stopping the nested iterative

process after only one iteration. In addition, to make the differences between

both versions clearer, an overview of both resolution procedures is given in

Fig. 1. One clearly observes that the simplified resolution algorithm requires

less computations than the full version. Consequently, when using the sim-

plified algorithm, one can expect a decrease in the overall computation time

and memory allocations requirements.
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Initialization: Compute α(0) and F(0)
m

Compute W(k)

Compute F(k+1)
m as a stationary point

point of J (k+1)(F)

Initialization: F(k+1,0)
m := F(k)

m

Compute α(k+1,j+1) and F(k+1,j+1)
m

Convergence? No

Yes

α(k+1) and F(k+1)
m

Convergence?

Yes

No

Fm

Eqs. (6), (7)

(a)

Initialization: Compute α(0) and F(0)
m

Compute W(k)

Compute F(k+1)
m as a stationary point

point of J (k+1)(F)

Convergence?

Yes

No

Fm

Compute α(k+1) and F(k+1)
m

Eqs. (3), (4)

(b)

Figure 1: Overview of the resolution procedure – (a) Full resolution algorithm and (b)

Simplified version
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3. Numerical comparison of the full resolution algorithm with its

simplified version

To compare the full resolution algorithm with its simplified version, we

propose to use the test case that has served for the numerical validation in

the original paper. It consists of a simply supported steel plate excited by

a unit point force at 500 Hz. It is also important to note that the exact vi-

bration field, computed using the finite element method, has been corrupted

by an additive Gaussian white noise with a signal-to-noise ratio equal to 30

dB to simulate the measurement noise. For a complete description of the

numerical test case, the readers is invited to refer to Ref. [1].

To obtain consistent reconstructions, it is also important to properly ex-

ploit the characteristics of the excitation field. From Fig. 2a, one can notice

that the force vector to identify is sparse except at the boundaries of the

plate. This observation leads to define two reconstruction zones: (i) a cen-

tral region associated to the tuning parameter q1 and containing the point

force only, in which a sparsity-promoting prior has to be employed, and (ii)

a region associated to the tuning parameter q2 and corresponding to the

boundaries of the plate, in which a prior promoting smooth solutions is re-

quired (see Fig. 5 of Ref. [1]). From the explanations given above, one sets

(q1, q2) = (0.5, 2).

After application of the full and simplified resolution algorithms to the

problem described previously, it seems clear from Figs. 2b and 2c that both

algorithms lead to very similar identified solutions. This qualitative obser-
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vation is confirmed by Fig. 2d, presenting the absolute difference ∆Fm of

the excitation fields Ffull
m and Fsimp

m reconstructed respectively from the full

resolution algorithm and its simplified version. Indeed, one can notice that

∆Fm is at most of the order of 10−15 N in the central region and 10−10 N at

boundaries. To further compare both algorithms in terms of performances

and accuracy, three indicators, namely, the identified point force amplitude

Fm0, the elapsed time te (i.e. the time taken by each algorithm to compute

the regularized solution) and the global reconstruction error E are studied.

Here, the reconstruction error is defined from the following relation:

E =
‖Fm − Fref‖22
‖Fref‖22

× 100, (11)

where Fref is the reference force vector. The values of the indicators, gath-

ered in Table 1, show that the values of the resulting point force amplitude

Fm0 and the reconstruction error E are similar for both algorithms, which is

consistent with the results presented in Fig. 2. However, it is worth noting

that the comparison of the elapsed times evidences that the simplified algo-

rithm has a better computational efficiency than the full version. This result

was actually expected because the inner iterative step is stopped after only

one iteration in the simplified resolution algorithm. To have better a better

insight into the performances of full and simplified resolution processes, it is

interesting to analyze their behavior in terms of number of iterations. Fig. 3a

presents the evolution of the adaptive regularization parameter α(k) with re-

spect to the main iteration number. This figure shows that the full resolution

algorithm tends to converge faster than the simplified version regarding the

main iteration loop. Consequently, the performance difference between the

two algorithms is related to the inner iteration loop of the full version [see
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Fig. 3b]. However, the increase in the computation time resulting from the

full resolution algorithm is limited, since the latter is globally as fast as the

corresponding algorithm used to solve the updated additive regularization

defined in Ref. [1], which solved the reconstruction problem in te = 0.35 s

with Fm0 = 0.986 N and E = 6.22 %.
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Figure 2: Identification of the force vector Fm at 500 Hz – (a) Reference force vector, (b)

Reconstruction from the simplified resolution algorithm, (c) Reconstruction from the full

resolution algorithm and (d) ∆Fm =
∣∣∣Ffull

m − Fsimp
m

∣∣∣ – (q1, q2) = (0.5, 2) and L = I
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Table 1: Comparison of the full resolution algorithm with its simplified version - Fm0:

identified point force amplitude (N), te: elapsed time (s), E: global reconstruction error

(%)

Algorithm version Fm0 te E

Simplified 0.988 0.06 5.94

Full 0.988 0.11 5.94
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Figure 3: Comparison of the full resolution algorithm with its simplified version – (a) Evo-

lution of the adaptive regularization parameter α(k) for (—) the full resolution algorithm

and (−−) its simplified version and (b) Number of inner iterations of the full resolution

algorithm w.r.t. the main iterations
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4. Experimental comparison of the full resolution algorithm with

its simplified version

The previous section tends to indicate that both resolution algorithms

perform equally well. It is however important to confirm this observation by

extending the analysis to a real-world application. The considered structure

is a suspended aluminum plate excited at (x0, y0) = (0.405 m, 0.255 m) by a

shaker fed by a white noise and equipped with a force sensor [see Fig. 4]. For

a complete description of the experimental test case, the reader is referred

to Ref. [1].

(a) (b)

Figure 4: Experimental set-up - (a) Suspended plate and (b) Excitation device

As in the numerical validation, it is important to exploit our prior knowl-

edge on the excitation field to reconstruct. The analysis of the experimental

set-up suggests the definition of a sole reconstruction region corresponding to

the whole plate. In addition, the target excitation field being very sparse, the
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tuning parameter q is set to 0.5 according to the guidelines given in section

3 of Ref. [1].

To perform a thorough and more detailed analysis of the proposed algo-

rithms, they are applied at two resonance frequencies (196.25 Hz and 1161.25

Hz) and two non-resonant frequencies (725 Hz and 1500 Hz). As observed in

the numerical validation, both algorithms provide similar results, but, in all

cases, the simplified resolution algorithm is obviously computationally more

effective than the full version [see Table 2]. As an example, the excitation

field reconstructed at 196.25 Hz and 725 Hz are presented in Fig. 5. The anal-

ysis of this figure shows that in each case the point force location is properly

identified, since (x̂0, ŷ0) = (0.404 m, 0.256 m). Regarding the reconstruction

of the point force amplitude, obtained results must be compared with the

value measured by the force sensor. This analysis can be performed from Ta-

ble 2. This table is interesting for several reasons. First, it shows that both

algorithms provide a consistent identification of the point force amplitude.

Second, as noticed in the numerical validation, it is confirmed that both

versions of the resolution algorithm lead to very similar identified solutions.

Third, the behavior of the full resolution algorithm is hard to predict (or

erratic) at resonance frequencies in terms of main iteration number. Indeed,

the result obtained at 196.25 Hz corresponds to the behavior observed in

the numerical validation, since the full resolution algorithm converges faster

than its simplified version regarding the main iteration loop. However, a very

different behavior is observed at 1161.25 Hz, where the convergence of the

main loop of the full resolution algorithm is significantly slower than that of
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the simplified version. This can be possibly explained by the non-uniqueness

of the solution at resonance frequencies. Finally, it should be noticed that

the full resolution algorithm generally exhibits performances of the same or-

der of magnitude as the related updated additive regularization in terms of

computation time [see. Ref. [1] for details].

Table 2: Comparison of the multiplicative regularization and the additive regularizations -

F0: Target point force amplitude (mN), Fm0: identified point force amplitude (mN), Nit:

number of iterations, te: elapsed time (s)

Simplified version Full version
Frequency F0

Fm0 Nit te Fm0 Nit te

196.25 Hz 38 39 191 84 39 46 164

725 Hz 42 42 21 11 42 12 110

1161.25 Hz 52 55 40 17 55 52 124

1500 Hz 19 19 30 14 19 13 105

5. Conclusion

This paper can be seen as an extension to the original research paper en-

titled ”A multiplicative regularization for force reconstruction”, which aims

at clarifying the derivation of the resolution algorithm introduced in it. In

particular, it has been shown that the resolution algorithm presented in the

original paper is actually a simplified version of the full resolution algorithm

described in this letter. Furthermore, it has been demonstrated through

numerical and experimental validations that both algorithms lead to very
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Figure 5: Comparison of the full resolution algorithm with its simplified version at (a,b)

196.25 Hz (resonance frequency) and (c,d) 725 Hz (non-resonant frequency) – (a) and (c)

Simplified version, (b) and (d) Full version
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similar reconstructed excitation fields, while exhibiting rather different per-

formances in terms of computational efficiency. This consequenlty explains

the choice made in the original paper to introduce the simplified version of

the full resolution algorithm.
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