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Abstract

Additive regularizations, such as Tikhonov-like approaches, are certainly the

most popular methods for reconstructing forces acting on a structure. These

approaches require, however, the knowledge of a regularization parameter,

that can be numerically computed using specific procedures. Unfortunately,

these procedures are generally computationally intensive. For this particular

reason, it could be of primary interest to propose a method able to proceed

without defining any regularization parameter beforehand. In this paper, a

multiplicative regularization is introduced for this purpose. By construction,

the regularized solution has to be calculated in an iterative manner. In doing

so, the amount of regularization is automatically adjusted throughout the res-

olution process. Validations using synthetic and experimental data highlight

the ability of the proposed approach in providing consistent reconstructions.

Keywords: Inverse problem, Force reconstruction, Multiplicative
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1. Introduction

The reconstruction of forces exciting a structure from vibration mea-

surements belongs to the class of ill-posed problems in Hadamard’s sense.

Practically, this means that such an inverse problem does not necessarily

have a unique stable solution. A standard approach to stabilize the inverse

problem consists in constraining the space of admissible solutions by includ-

ing in the formulation of the reconstruction problem some prior information

on the distribution of forces to identify. To this end, the inverse problem

is generally expressed as a constrained minimization problem. In this the-

oretical framework, the constraint is defined as a regularization term R(F)

that encodes prior information on the force distribution F. Formally, if X is

the measured vibration field and H is the transfer functions matrix of the

studied structure, then the minimization problem may be written:

min
F
F(X−HF) subject to R(F) ≤ β, (1)

where F(X−HF) is the data fidelity term which controls the a priori on the

noise corrupting the data [1, 2] and β is some positive constant [3].

For simplifying its resolution, the previous minimization problem is gen-

erally recast into an unconstrained form, in which the regularization term

appears as an additive constraint. This particular formulation of the inverse

problem is referred to as Tikhonov-like regularization [4, 5] and consists in

searching the excitation field Fa rendering stationary the functional:

Ja(F, λ) = F(X−HF) + λR(F), (2)
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where λ is the regularization parameter, that controls the balance between

data fidelity and regularization terms.

This form of additive regularization has proved its efficiency for recon-

structing mechanical forces, as suggested by the extensive literature dedi-

cated to this topic [6, 7, 8, 9, 10, 11, 12]. However, such a regularization

is based on the assumption that the regularization parameter λ can be ade-

quately selected. A proper choice of the regularization parameter is all the

more crucial as it conditions the quality of the reconstructed solution. That

is why, several automatic selection methods have been developed, such as the

Morozov’s discrepancy principle [13], the Generalized Cross Validation [14],

the Unbiased Predictive Risk Estimator [15], the Bayesian estimator [16] or

the L-curve method [17]. It can be noted that all these methods generally

requires intensive computations, since they are based either on the calcula-

tion of the root of some equation, the minimization of some functional or the

determination of the maximum curvature of a certain curve.

For the reason mentioned in the previous paragraph, it could be of pri-

mary interest to circumvent to this possibly undesirable feature by using

a regularization strategy, that eliminates the need for the selection of the

optimal regularization parameter before computing the regularized solution.

Such a requirement is fulfilled by the multiplicative regularization, originally

developed by van den Berg et al. in the context of contrast source inver-

sion [18, 19]. This approach consist in including the regularization term as

a multiplicative constraint in the formulation of the inverse problem. As
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a consequence, the identified excitation field Fm is defined as a stationary

point of the functional:

Jm(F) = F(X−HF) · R(F). (3)

The multiplicative strategy has been successfully tested in a variety of

applications over the past decade, such as microwave imaging [20], image

deblurring [21], inverse electromagnetic scattering [22] or geophysics [23].

To the authors’ knowledge, the multiplicative regularization has received

little attention in the field of structural mechanics. In the present paper,

a multiplicative regularization strategy is proposed for reconstructing the

forces acting on a structure. It is intended to present a credible alternative

to additive regularization, which is the classical choice to solve force recon-

struction problems. For this purpose, this paper is divided into five parts,

each of them presenting a particular feature of the proposed strategy. In sec-

tion 2, the main properties of the multiplicative regularization are introduced

in order to better explain why such an approach can be used as an alternative

for identifying mechanical sources exciting a structure. The formulation of

the proposed multiplicative regularization is introduced in section 3, while an

iterative algorithm is derived in section 4 to solve the resulting minimization

problem. Finally, the ability of the proposed approach in providing consis-

tent reconstructions is illustrated using synthetic and experimental data in

sections 5 and 6.
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2. Main features of the multiplicative regularization

Before presenting the proposed multiplicative regularization into more

details, it is worth explaining its main features. To this end, let us consider

the simpler form of multiplicative regularization, based on the same data-

fidelity and regularization terms as the standard Tikhonov regularization.

Formally, this means that one seeks the excitation field Fm rendering the

functional:

Jm(F) = ‖X−HF‖22 · ‖F‖22 (4)

stationary. This is equivalent to computing the first-order optimality condi-

tion, that is:
∂Jm(F)

∂F

∣∣∣∣
F=Fm

= 0. (5)

From a practical standpoint, it is convenient to express the previous con-

dition in a more explicit form. After simple algebraic manipulations, Eq. (4)

becomes:

Fm =
[
HHH + α(Fm) I

]−1
HHX, (6)

where HH is the hermitian transpose of H and α(Fm) =
‖X−HFm‖22
‖Fm‖22

defines

the regularization parameter of the multiplicative approach [see Appendix A].

The previous relation clearly shows that the multiplicative approach re-

quires an iterative process to automatically adapt the amount of regular-

ization, since the related regularization parameter α(Fm) explicitly depends

on the regularized solution Fm. For this reason, the parameter α will be

referred to as the adaptive regularization parameter. This particular feature

is the primary advantage of the multiplicative regularization over the addi-
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tive approach, because it eliminates the need for choosing the regularization

parameter λ before computing the regularized solution.

It should however be noted that the multiplicative regularization defined

by Eqs. (4) and (5) has one obvious and trivial solution, corresponding to

the global minimum of the functional Jm(F) which is equal to zero:

Fm = 0 (i.e. α(Fm)→ +∞). (7)

Generally, this trivial solution is obtained when the noise level is high (typi-

cally greater than 20%) [24] or the initial solution is the zero vector. On the

other hand, another trivial solution can be obtained when α(Fm) → 0. In

this situation, it is possible to approach the least-squares solution, namely:

Fm ≈ H+X, (8)

where H+ =
(
HHH

)−1
HH is the Moore-Penrose pseudoinverse. This so-

lution arises when the noise level is very small (less than 1%) or the initial

solution is equal to or too close to this solution. Consequently, these observa-

tions highlight the importance of the choice of the solution used to initialize

the iterative procedure to avoid these trivial solutions, if they are not the

actual solutions of the problem.

Another interesting feature of the multiplicative regularization is that the

point (log ‖X−HFm‖22, log ‖Fm‖22) lies on the L-curve [24, 25, 26]. More pre-

cisely, this is the point of intersection between the L-curve and a straight line

with a slope equal to -1 [see Appendix B]. This property makes the multi-

plicative and additive regularization strictly equivalent if the regularization
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parameter is chosen such that λ := α(Fm), as suggested by Eq. (6). Actually,

provided that the L-curve exhibits only one corner, the solutions obtain from

both strategies slightly differ [24, 26]. In case of multiple corners, the success

of the multiplicative regularization strongly depends on the initial guess used

to initialize the iterative process [27]. In the end, the multiplicative regular-

ization can be viewed as an a posteriori parameter choice method [25, 26, 27].

However, as it will be made clearer in the next of the paper, it turns out

that the multiplicative regularization is computationally less demanding than

additive regularization. This difference is mainly due to the estimation of the

optimal value of the regularization parameter λ, that is generally performed

from automatic selection procedures like the L-curve principle [17]. Indeed,

most of these procedures are usually based on the computation of the SVD

of H, which is known to be computationally expensive.

3. Proposed multiplicative regularization

In structural mechanics, forces of different nature can simultaneously ex-

cite a structure. One has to notice that, in practical situations, information

on both the nature and the location of forces is generally roughly known.

Consequently, to aid the reconstruction process in finding a consistent solu-

tion, one has to construct a regularization term which properly reflects and

exploits this prior information. To this end, suppose that the structure is

excited in N different regions by local excitation fields Fi of various types (lo-

calized or distributed, for instance). This allows expressing the regularization
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term R(F) as a sum of local regularization terms R̃(Fi), that is:

R(F) =
N∑
i=1

R̃(Fi), (9)

where R̃(Fi) is the regularization term associated to the zone i. It reflects

one’s prior knowledge of the nature of the forces in this particular region.

At this stage, it is necessary to specify the expression of the local regu-

larization terms. The main condition they have to satisfy is to be flexible

enough to reflect different priors. This requirement is fulfilled by the follow-

ing regularization term:

R̃(Fi) = ‖LiFi‖qiqi , (10)

where qi is a tuning parameter included in the interval ]0,+∞[, ‖ • ‖qi is

the `qi-norm or quasi-norm and Li is a smoothing operator controlling the

regularity of the solution in the zone i.

To properly choose the value of the tuning parameter qi in each zone, it

can be noticed from Fig. 1 that the smaller qi is, the larger is the weight on

small values of LiFi. On the contrary, for large values of LiFi, the smaller qi

is, the smaller is the weight on these values. This difference in the weighting

behavior for small and large values of LiFi can be directly observed in the

solutions obtained, since for qi ≤ 1 the solution vector LiFmi will tend to have

only a few non-zero values, while for qi = 2 it will tend to have only a few very

small values. From this analysis, it can be inferred that distributed sources

are promoted for qi = 2 and Li = I, while localized sources are favored for

qi ≤ 1 and Li = I. For promoting piecewise continuous solutions, one can set
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qi ≤ 1 and define the smoothing operator Li as the discretized form of the nth-

order differential operator using the corresponding finite difference scheme

[28]. Thus, the solution Fmi is approximated by piecewise constant segments

if n = 1, while the solution is approximated by piecewise polynomials of

degree 1 if n = 2 [29].
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Figure 1: Penalty function p(x) = |x|qi associated to the regularization term for (—)

qi = 2, (−−) qi = 1 and (− · −) qi = 0.5

To complete the formulation of the multiplicative regularization, one has

to define the data fidelity term. As classically assumed in the literature, if

one supposes that the vibration field X is corrupted by an additive Gaussian

white noise, it is reasonable to express the data fidelity term such that:

F(X−HF) = ‖X−HF‖22. (11)

Finally, by introducing Eqs. (10) and (11) into Eq. (3), one obtains the
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general expression of the functional Jm(F):

Jm(F) = ‖X−HF‖22 ·
N∑
i=1

‖LiFi‖qiqi . (12)

It should be noted that the data fidelity and regularization terms defined

in Eqs. (10) and (11) have been used by the authors in a previous work

to derive the additive version of the proposed multiplicative regularization

[12]. Results obtained in this earlier work have demonstrated that such

data fidelity and regularization terms are well adapted to address the force

reconstruction problem. That is why, similar conclusions are expected with

the proposed multiplicative strategy.

4. Resolution of the inverse problem

The resolution of the reconstruction problem defined by the multiplica-

tive regularization presented in section 3 requires the implementation of an

iterative procedure. As already evoked in section 2, it is mainly related to

the specificity of the multiplicative regularization consisting in adaptively

determining the amount of regularization throughout the resolution process.

On the other hand, the definition of an iterative algorithm is all the more

necessary that the solution of a reconstruction problem involving `qi-norms

has generally no closed-form expression.

To properly handle both issues, it is proposed to implement an Iteratively

Reweighted Least-Squares (IRLS) scheme. Such an iterative procedure has

already been successfully used in previous studies to solve force reconstruc-

tion problems written in the form of an additive regularization [11, 12]. In
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the next of this section, an adapted version of this algorithm is introduced

to deal with the proposed multiplicative strategy.

4.1. General principles

The basic idea behind the IRLS algorithm is to replace the direct calcu-

lation of the stationary point of the functional Jm(F) [see Eq. (12)], by an

equivalent iterative process having an explicit and unique solution at each

iteration. For this purpose, the `qi-norm has to be recast into a weighted

`2-norm. In doing so, it is expected that solution of the iterative process

converges to the solution of the proposed multiplicative strategy.

The direct application of this idea to the proposed regularization problem

leads to define the estimated force vector F(k+1)
m at iteration k+1 as the vector

rendering stationary the functional:

J (k+1)
m (F) = ‖X−HF‖22 ·

N∑
i=1

∥∥∥W(k)
i

1/2
LiFi

∥∥∥2
2
, (13)

where W
(k)
i is a local weighting definite positive diagonal matrix.

As classically done in IRLS-type algorithm, the weighting matrices W
(k)
i

are defined such that:

W
(k)
i = diag

[
w

(k)
i,1 , . . . , w

(k)
i,j , . . . , w

(k)
i,Ni

]
=


w

(k)
i,1 0

. . .

0 w
(k)
i,Ni

 (14)

with:

w
(k)
i,j = max

(
εi,
∣∣∣f (k)
j

∣∣∣)qi−2 , (15)

11



where Ni is the number of identification points in the zone i, f
(k)
j is the jth

component of the vector LiF
(k)
mi and εi is a small real positive number acting

as a damping parameter. It allows avoiding infinite weights when
∣∣∣f (k)
j

∣∣∣→ 0

and qi < 2. Practically, the damping parameter is automatically selected

once for all during the initialization step from the cumulative histogram of∣∣∣LiF
(0)
mi

∣∣∣. More precisely, its value is chosen so that 5% of the values of
∣∣∣LiF

(0)
mi

∣∣∣
are less than or equal to εi [11, 30].

For implementation convenience, Eq. (13) should be expressed in a more

compact form by introducing two matrices, W(k) and L, defined as follows:

W(k) = diag
(
W

(k)
1 , . . . ,W

(k)
N

)
and L = diag (L1, . . . ,LN) . (16)

The introduction of the global matrices W(k) and L into Eq. (13) allows

writing the functional J
(k+1)
m (F) at iteration k+1 under the following generic

form:

J (k+1)
m (F) = ‖X−HF‖22 ·

∥∥∥W(k)1/2LF
∥∥∥2
2
. (17)

An additional step is finally required to obtain the operational form of

the previous minimization problem. After some simple calculations, one gets

the following explicit expression:

F(k+1)
m =

(
HHH + α(k+1)LHW(k)L

)−1
HHX, (18)

where the adaptive regularization parameter α(k+1) is defined such that:

α(k+1) =

∥∥∥X−HF(k)
m

∥∥∥2
2∥∥∥W(k)1/2LF(k)

m

∥∥∥2
2

. (19)
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4.2. Choice of the initial guess and stopping criterion

The proposed resolution algorithm being iterative, the present section

aims at introducing the choices of the initial guess and the stopping criterion.

4.2.1. Choice of the initial guess

It is clear from section 3 that the proposed multiplicative formulation

is generally non-convex, meaning that the existence of a unique minimizer

is not guaranteed. Consequently, the choice of a good initial guess F(0)
m is

crucial for a successful reconstruction.

A good initial guess can be defined as a coarse solution of the problem, easy

to compute, but sufficiently close to the solution to ensure the convergence

of the iterative process. Such a requirement is fulfilled by the solution of a

standard Tikhonov-like regularization, that is:

F(0)
m =

(
HHH + α(0) LHL

)−1
HHX, (20)

where α(0) is a rough estimate of the converged value of the adaptive regu-

larization parameter or, equivalently, of the value of the regularization pa-

rameter λ picked by the L-curve method.

The parameter α(0) has to be ideally determined without using any se-

lection procedures or large computational efforts in order to preserve the

advantage of the multiplicative strategy. This task proves to be difficult in

practice, because the order of magnitude of the optimal regularization pa-

rameter is a priori unknown from the data only. However, one has to notice

that the optimal regularization parameter is generally comprised between the

smallest and the largest singular values of A =
[
HL−1

]H [
HL−1

]
. From this

13



observation and a series of numerical experiments, we propose a heuristic

rule for determining α(0), that limits the computational efforts and leads to

consistent identified solutions. The proposed estimation procedure is divided

into three steps:

1. Find estimates of the largest and the smallest singular values of A,

noted σ̂1 and σ̂n respectively.

The estimate of the largest singular value is given by the upper bound

of σ1, namely [31]:

σ̂1 (A) =
√
‖A‖∞‖A‖1. (21)

The estimation of the smallest singular value is obtained from σ̂1 and

an estimate κ̂ of the condition number of A, namely:

σ̂n (A) =
σ̂1 (A)

κ̂ (A)
. (22)

2. Define a set Sα0 of possible values of α(0) ∈ [σ̂n, σ̂1] using a constant

logarithmic spacing to take into account the decrease of the singular

values.

3. Choose α(0) = median (Sα0).

Because this estimation procedure is heuristic, it may sometimes fail to

give a good starting point for the iterative process. In such a situation, it is

always possible to choose α(0) as the regularization parameter picked by the

L-curve. Incidentally, the computational efficiency of the overall procedure

is affected in proportion to the size of the transfer functions matrix.
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4.2.2. Choice of the stopping criterion

The proposed iterative algorithm offers a natural definition of the stop-

ping criterion, based on the relative variation of the adaptive regularization

parameter between two successive iterations. In the present paper, the rel-

ative variation δ of the adaptive regularization parameter is defined such

that:

δ =

∣∣α(k+1) − α(k)
∣∣

α(k)
. (23)

As classically done in the literature, the iterative process is stopped when

the relative variation δ is less than or equal to some tolerance. Experimen-

tally, it has been found that setting the tolerance to 10−8 allows obtaining

consistent reconstructions.

4.3. Generic resolution algorithm

To clearly highlight each step of the proposed iterative process, a detailed

generic version is given in table 1.

5. Numerical validation

The numerical study of the proposed multiplicative regularization has two

main purposes. First of all, it aims at highlighting the particular interest of

properly exploiting one’s prior knowledge of the nature and locations of the

sources to identify. Second, it is intended to provide a fair comparison of the

performance of the proposed approach with its additive counterpart, in order

to clearly reveal the practical advantage of the multiplicative approach.
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Table 1: Generic resolution algorithm

Inputs: Transfer functions matrix H, Measured vibration field X,

Selected zones {i}, Differentiation matrix L, Tolerance tol

Output: Reconstructed force vector Fm

Initialization: Compute α(0) from procedure described in sec. 4.2.1

Compute F
(0)
m from Eq. (20)

Compute εi from the cumulative histogram of
∣∣∣LiF

(0)
mi

∣∣∣
Initialize δ to 1

Initialize k to 0

Iteration:

while δ > tol

Compute W
(k)
i from Eq. (14)

Construct W(k) from Eq. (16)

Compute α(k+1) from Eq. (19)

Compute F
(k+1)
m from Eq. (18)

Update δ using Eq. (23)

k ← k + 1

end

return Fm ← F
(k)
m
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5.1. Description of the test case

In the present numerical validation, one seeks to identify a point force of

unit amplitude acting on a thin simply supported steel plate with dimensions

0.6× 0.4× 0.005 m3. The coordinates of the point force, measured from the

lower left corner of the plate, are (x0, y0) = (0.42 m, 0.25 m). Practically, this

configuration allows studying the influence of the definition of local regular-

ization terms, since the present excitation field exhibits two types of spatial

distribution over the structure, namely a smooth distribution of the reaction

forces at boundaries and a singular distribution around the location of the

point force.

To properly simulate experimental measurements, the exact vibration dis-

placement field Xexact is first computed from a FE mesh of the plate made

up with 187 shell elements, assuming that only bending motions are measur-

able. Then, the exact displacement field is corrupted by an additive Gaussian

white noise with a signal-to-noise ratio equal to 30 dB. It should be added

that a structural damping has been introduced in the calculation to avoid

infinite displacement amplitudes at resonance frequencies. Here, the struc-

tural damping ratio is equal to 0.01.

Regarding, finally, the transfer functions matrix H, a FE model of the

plate with free boundary conditions is used, assuming that only bending mo-

tions are measured. In other words, the computed transfer functions matrix

H is dynamically condensed over the measurable dofs only [11, 32]. The main

interest in using free boundary conditions to model the dynamic behavior of
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the plate is to allow the identification of external excitations acting on the

structure as well as reaction forces at boundaries [10].

5.2. Application of the proposed multiplicative regularization

To assess the ability of the proposed multiplicative strategy in providing

consistent reconstructions, it is first necessary to define the reference force

vector Fref that could serve as a proper benchmark. This reference force

vector is computed from the transfer functions matrix H and the exact dis-

placement field Xexact thanks to the following relation:

Fref = H−1Xexact. (24)

Let us begin this numerical study with the identification of the excitation

field at 500 Hz, i.e. outside the resonance frequencies of the plate. As shown

in Fig. 2, the reference force vector corresponds to the description of the test

case given in the previous section, since it exhibits smooth reaction forces at

boundaries of the plate as well as a unit point force at (x0, y0) = (0.42 m,

0.25 m).

A naive identification of the force vector Fnaive is obtained by replacing

the exact vibration field by the corrupted one in Eq. (24). As shown in

Figure 3, the reconstruction fails, since the identified excitation field is highly

dominated by the noise. This disappointing result is related to the presence

of small singular values in H causing the amplification of the noise vector

components in the reconstructed solution [28].

A classical idea to stabilize the inverse problem consist in defining a reg-

ularization term that reflects a global a priori on the nature and the spatial

distribution of excitation forces. Obviously, such a regularization requires
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Figure 2: Reference force vector Fref at 500 Hz
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Figure 3: Naive reconstruction of the force vector Fnaive at 500 Hz
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to carefully establish a compromise between the smoothness of the reaction

forces at boundaries and the singularity of the point force. However, the

regularization term being fully adapted neither to localized sources nor dis-

tributed sources, one can infer that the reconstructed excitation field can not

perfectly match the actual one. This remark is illustrated in Figure 4 pre-

senting the reconstructed excitation field from a global regularization term

of the form of Eq. (10) for q = 1.1 and L = I. This particular choice provides

a relevant reconstruction, since the identified point force Fm0 is equal to 0.96

N instead of 1 N, while the reaction forces are in good agreement with the

reference ones. However, the choice of the tuning parameter is not obvious

and requires a great expertise, which is not desirable for an identification

procedure.
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Figure 4: Reconstructed force vector Fm at 500 Hz from corrupted data using a global

regularization term - q = 1.1 and L = I
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The previous results better explain the need for properly exploiting one’s

prior knowledge of the nature and the location of excitation sources. To

obtain a better reconstruction, one has to notice that the force vector to

identify is sparse except at the boundaries of the plate [see Fig. 2]. This

observation leads to define the two reconstruction zones plotted in Fig. 5:

(i) a central region associated to the tuning parameter q1 and containing the

point force only, in which a sparsity-promoting prior has to be employed,

and (ii) a region associated to the tuning parameter q2 and corresponding to

the boundaries of the plate, in which a prior promoting smooth solutions is

required.
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Figure 5: Definition of the reconstruction zones - (◦) zone 1 (sparse), (×) zone 2 (smooth)

and (♦) location of the point force

From the explanations given in section 3, it is reasonable to set (q1, q2) =

(0.5, 2). The resulting reconstructed force vector is presented in Fig. 6. It
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can be seen that the reconstruction is successful, since the reconstructed force

vector is very similar to the reference one. In particular, it is noteworthy that

the identified point force amplitude Fm0 is equal to 0.998 N instead of 1 N.
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Figure 6: Reconstructed force vector Fm at 500 Hz from corrupted data when using local

priors on the spatial distribution of the excitation field - (q1, q2) = (0.5, 2) and L = I

The analysis presented above has been performed outside the resonance

frequencies of the plate. However, force reconstruction at natural frequencies

of a lightly damped structure is known to be far more difficult, since at

these frequencies the shape of the vibration response of the structure is close

to that of the corresponding mode shape. In other words, the vibration

response is mainly driven by boundary forces and not by the point force

itself. From the standpoint of the identification process, this can be regarded

as an increase of the noise level. To assess the ability of the multiplicative

strategy in providing consistent reconstructions at natural frequencies of the
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structure, the identification procedure is applied on the test case described

previously at 378 Hz, 720 Hz and 915 Hz. The corresponding identifications

are presented in Fig. 7. Obtained results show that for each natural frequency

the shape of the identified force vector is consistent with the reference one,

although the amplitude of the identified point force Fm0 is generally slightly

underestimated. Indeed, the identified amplitude is equal on average to 0.912

N instead of 1 N. Nevertheless, these results show that the proposed method

allows having credible information on the sources acting on the structure at

resonance frequencies.

5.3. Comparison with the related additive regularization

The additive counterpart of the proposed multiplicative regularization

has been developed in [11]. Practically, the reconstructed force vector Fa is

the vector that renders stationary the functional:

Ja(F, λ) = ‖X−HF‖22 + λ
N∑
i=1

‖LiFi‖qiqi . (25)

As for the present multiplicative regularization, the previous additive

approach is solved using an IRLS scheme. The main differences between

the both versions of this iterative process lie in the calculation of the initial

solution and the solution at iteration k+1. Indeed, for the additive strategy,

the initial solution writes:

F(0)
a (λ) =

(
HHH + λ(0) LHL

)−1
HHX, (26)

while the solution at iteration k+1 is defined such that:

F(k+1)
a (λ) =

(
HHH + λ(k+1) LHW(k)L

)−1
HHX, (27)
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Figure 7: Identification of the force vector Fm at resonance frequencies of the structure

- (a) Reference at 378 Hz, (b) Identification at 378 Hz, (c) Reference at 720 Hz, (d)

Identification at 720 Hz, (e) Reference at 915 Hz and (f) Identification at 915 Hz - (q1, q2) =

(0.5, 2) and L = I
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where λ(0) and λ(k+1) are respectively the initial and the updated regular-

ization parameters computed using the L-curve principle. This strategy is

referred to as updated additive regularization.

To fairly compare previous additive and multiplicative regularization strate-

gies, one first proposes to reconstruct the excitation field at 100 Hz using the

same input data, namely the same transfer functions matrix H, the same

corrupted vibration field X and the same tuning parameters (q1, q2). The

corresponding reconstructions are presented in Figs. 8b and 8c. It is inter-

esting to note that both reconstructed force vectors are close together and

similar to the reference one. In particular, one can notice that the identified

point force amplitudes Fa0 and Fm0 are respectively equal to 0.93 N and 0.94

N instead of 1 N. Actually, the major difference between both calculations

lies in the number of iterations and the elapsed time to reach the conver-

gence. Indeed, the additive regularization requires 16 iterations and 1.45 s to

converge, while the multiplicative version needs 27 iterations but only 0.11

s. It is worth highlighting that even though the multiplicative regularization

requires more iterations than the additive one, it is generally faster. As al-

ready evoked in section 2, this can easily be explained by the fact that the

selection procedure used to determine the values of the regularization pa-

rameters λ(0) and λ(k+1) is based on the computation of SVD (or the GSVD)

of the system. This observation is corroborated by the results presented in

table 2, where the elapsed time of the operations that differ between the al-

gorithms used to compute Fm and Fa are given. As a side note, the running

times of the proposed initialization procedure [see section 4.2.1] and the SVD
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implemented in Matlab® are appraised with respect to the size of the prob-

lem in Appendix C in order to fairly compare both regularization algorithms.

Table 2: Comparison of the elapsed time (te) of the operations differing in the algorithms

used to compute Fm and Fa - The elapsed time given for the update step corresponds to

an average time over all the iterations

Mult. reg.
Updated

add. reg.Operations

te (s) te (s)

Initialization (α(0) or λ(0)) 1.6× 10−2 6.0× 10−2

Update (α(k+1) or λ(k+1)) 7.5× 10−4 6.0× 10−2

This trend is confirmed in table 3, where the identified point force am-

plitude, the number of iterations and the elapsed time are given for both

strategies and several frequencies. The results presented in table 3 clearly

show that the multiplicative approach is significantly faster than the addi-

tive strategy to obtain similar values of the point force amplitude. In the

present case, the multiplicative regularization is about 10 times faster than

the related additive regularization.

However, one can argue that the regularization parameter may be chosen

once for all during the initialization step of the iterative procedure by setting

λ(k+1) = λ(0) [11, 12]. Practically, this non-updated version has the great

advantage of decreasing the computation time of the regularization process,

since the regularization parameter, and so the SVD of the system, is com-
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Figure 8: Comparison of multiplicative and additive regularization strategies at 100 Hz

from the same corrupted vibration data, the same tuning parameters (q1, q2) = (0.5, 2) and

the same differentiation matrix L = I - (a) Reference, (b) Multiplicative regularization,

(c) Updated additive regularization and (d) Non-updated additive regularization
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Table 3: Comparison of the multiplicative regularization and the updated additive reg-

ularization with updated regularization parameter - Fm0 or Fa0: identified point force

amplitude (N), Nit: number of iterations, te: elapsed time (s)

Mult. reg.
Updated

add. reg.Frequency

Fm0 Nit te Fa0 Nit te

100 Hz 0.940 27 0.11 0.930 14 1.45

378 Hz 0.912 16 0.08 0.868 14 1.38

500 Hz 0.998 15 0.11 0.996 8 0.98

720 Hz 0.971 27 0.11 0.970 10 1.14

915 Hz 0.855 18 0.08 0.842 12 1.34

1000 Hz 0.997 26 0.11 0.996 8 0.93

puted only once. In this case, it is clear from Fig. 8d and table 4 that such

additive regularization exhibits time performances and identified solutions

roughly similar to the multiplicative approach. It should, however, be no-

ticed that the corresponding identified point force amplitudes are lower than

those estimated with the multiplicative strategy.

6. Experimental validation

This section aims at confirming the main conclusions drawn in the pre-

vious section by extending the analysis to a real-world application. More

specifically, it is expected to highlight the need for updating the regulariza-

tion parameter throughout the iterative process and subsequently the practi-

cal interest of the multiplicative regularization compared to the more classical
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Table 4: Comparison of the multiplicative regularization and the non-updated additive

regularization without updating the regularization parameter - Fi0: identified point force

amplitude (N), Nit: number of iterations, te: elapsed time

Mult. reg.
Non-updated

add. reg.Frequency

Fm0 Nit te Fa0 Nit te

100 Hz 0.940 27 0.11 0.888 18 0.13

378 Hz 0.912 16 0.08 0.857 15 0.15

500 Hz 0.998 15 0.11 0.982 11 0.13

720 Hz 0.971 27 0.11 0.940 11 0.12

915 Hz 0.855 18 0.08 0.756 13 0.13

1000 Hz 0.997 26 0.11 0.953 11 0.13

additive approach.

6.1. Description of the experimental set-up

The structure under test is a suspended (free) aluminum plate of 0.6 m

in length, 0.4 m in width and 5 mm in thickness [see Fig. 9a]. The plate

is excited at (x0, y0) = (0.405 m, 0.255 m) by a shaker fed by a white noise

signal and equipped with a force sensor [see Fig. 9b].

Measurements of the vibration field were carried out with a scanning laser

vibrometer on a grid of 35× 29 points along x and y directions respectively

using the force signal as phase reference. Regarding the FE mesh used to

model the dynamic behaviour of the plate, it has been designed to perfectly

match the measurement mesh. As a result, it consists of 952 shell elements,
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(a) (b)

Figure 9: Experimental set-up - (a) Suspended plate and (b) Excitation device

making the model theoretically valid up to 4500 Hz. Then, the correspond-

ing FE model with free boundary conditions has been used to compute the

transfer functions matrix H, considering the bending motions as the only

available data. Finally, it is worth noting that a global structural damping

is used in the present experimental validation. Its value has been estimated

from the modal damping ratios obtained from the measured FRFs.

6.2. Application

In the numerical validation, the proposed multiplicative regularization

has been compared to the related additive regularization by either updating

the value of the regularization parameter at each iteration or using a unique

value calculated during the initialization of the IRLS algorithm. We propose

to follow a similar analysis process in this section.

The analysis of the experimental set-up suggests the definition of a sole
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identification region corresponding to the whole surface of the plate. In ad-

dition, the target excitation field being very sparse, the tuning parameter q

is set to 0.5 according to the rule of thumb given in section 3.

Table 5 gathers results identified at (x̂0, ŷ0) = (0.404 m, 0.256 m) by

the multiplicative and additive regularizations for two resonance frequen-

cies (196.25 Hz and 1161.25 Hz) and two non-resonant frequencies (725 Hz

and 1500 Hz). As expected from the numerical validation, the point force

amplitudes produced by the multiplicative and the updated additive regu-

larizations are consistent with the target values, but, in all cases, the multi-

plicative approach is more efficient in terms of computation time. Actually,

more surprising results are obtained for the non-updated additive regular-

ization, because it always fails in recovering the point force amplitude. This

deficiency of the non-updated version clearly appears when displaying the

reconstructed excitation field at a particular frequency. For instance, Fig. 10

shows that the excitation field identified at 196.25 Hz by the non-updated

additive regularization has no physical meaning, while those reconstructed

from the other two strategies succeed in both localizing and quantifying the

point force. This apparent contradiction between the numerical and experi-

mental studies arises because the ratios λ(0)/α(Nit) and λ(0)/λ(Nit) are of the

order of 10 on average in the numerical test case, while they are of the order

of 103 in the experimental validation. This therefore illustrates the need for

updating the regularization parameter throughout the iterative process in

order to optimally adjust the amount of regularization.

Finally, to give a comprehensive overview of the overall performances
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Figure 10: Comparison of additive and multiplicative regularization strategies at 196.25

Hz from the same measured data, the same tuning parameters q = 0.5 and the same

differentiation matrix L = I - (a) Multiplicative regularization, (b) Updated additive

regularization and (c) Non-updated additive regularization
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Table 5: Comparison of the multiplicative regularization and the additive regularizations

- F0: Target point force amplitude (mN), Fi0: identified point force amplitude (mN), Nit:

number of iterations, te: elapsed time (s)

Mult. reg.
Updated

add. reg.

Non-updated

add. reg.Frequency F0

Fm0 Nit te Fa0 Nit te Fa0 Nit te

196.25 Hz 38 39 191 84 41 36 180 5·10−3 7 9

725 Hz 42 42 21 11 45 33 140 6·10−6 4 5

1161.25 Hz 52 55 40 17 56 45 202 3·10−4 5 6

1500 Hz 19 19 30 14 18 78 363 5·10−7 4 5

of the proposed multiplicative strategy, the force spectrum identified at the

point force location is compared in Fig. 11 with that measured by the force

sensor between 10 Hz and 1500 Hz with a frequency resolution of 1.25 Hz.

For the sake of completeness, the spectrum of the point force obtained from

the updated additive regularization is plotted on the same figure.

Before analyzing the results presenting in Fig. 11, it should be noted

that the multiplicative regularization has required 7 hours to reconstruct the

force spectrum, while the updated additive regularization has ended the re-

construction process in 78 hours. As previously observed, the multiplicative

regularization is 10 times faster than its additive counterpart. But, more in-

terestingly, the analysis of the reconstructed force spectrum leads to two main

conclusions. First, the multiplicative and updated additive regularizations

largely underestimate the force amplitude at certain resonance frequencies,

while the reconstruction is satisfactory elsewhere. This contrasted result is
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Figure 11: Reconstruction of the force spectrum - (—) Reference measured by the force

sensor, (−−) Multiplicative regularization and (− · −) Updated additive regularization

partly related to modelling errors insofar as the finite element model has

not been updated from the measured FRFs. Second, it is worth noting that

both regularization strategies behave rather differently around resonance fre-

quencies. Indeed, it is observed that the multiplicative approach generally

provides more consistent reconstructions.

7. Conclusion

In the vast majority of the studies dedicated to the force reconstruction

problem, additive regularization strategies are implemented. Such meth-

ods require the appropriate selection of a regularization parameter before

computing the regularized solution. However, this task can be computa-

tionally intensive. To bypass this potential undesirable feature of additive
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approaches, a multiplicative strategy has been proposed in the present pa-

per. From a theoretical standpoint, its main merit is to iteratively adapt

the amount of regularization with respect to the problem under considera-

tion. As a result, the optimal regularization parameter does not need to be

determined at preliminary stages of the reconstruction process. Another in-

teresting feature of the proposed approach is the definition of a multiplicative

regularization term, that allows properly exploiting one’s prior knowledge of

the nature and the location of the forces acting on a structure. The combina-

tion of the aforementioned characteristics makes the present multiplicative

approach suitable for force reconstruction problems, as highlighted by the

proposed numerical and experimental validations. These validations have

also been an opportunity to compare the multiplicative strategy with related

additive regularizations. In particular, the practical interest of updating the

regularization parameter during the identification process has been pointed

out, as well as the relative performances of the multiplicative approach in

terms of computation time and reconstruction capabilities.

Appendix A. Derivation of the explicit form of the multiplicative

regularization

The purpose of this appendix is to detail the calculation leading to Eq. (6),

as it is a key point of this work. For this purpose, one has to remind that

one seeks the solution Fm rendering stationary the functional:

Jm(F) = ‖X−HF‖22 · ‖F‖22. (A.1)

Practically, this is performed by applying the first-order optimality con-
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dition [see Eq. (5)], namely:

∂Jm(F)

∂F

∣∣∣∣
F=Fm

=
∂‖X−HF‖22

∂F

∣∣∣∣
F=Fm

· ‖F‖22 + ‖X−HF‖22 · ‖ ·
∂‖F‖22
∂F

∣∣∣∣
F=Fm

= 2HHHFm · ‖Fm‖22 − 2HHX · ‖Fm‖22 + 2 ‖X−HFm‖22 · Fm

= 0.

(A.2)

After simplifying the previous equation, one has:

HHHFm +
‖X−HFm‖22
‖Fm‖22

Fm = HHX. (A.3)

As a result, the solution Fm is given by:

Fm =
[
HHH + α(Fm)I

]−1
HHX, α(Fm) =

‖X−HFm‖22
‖Fm‖22

. (A.4)

As a side note, it should be noticed that defining the solution of the

multiplicative regularization as a stationary point of the functional Jm(F)

leads to one obvious trivial solution, corresponding to the global minimum

of the functional Jm(F):

Fm = 0. (A.5)

Finally, it is also worth noting that Eq. (A.4) suggests that the least-

squares solution can be approached when α(Fm)→ 0. When such a situation

occurs, one obtains:

Fm ≈ H+X. (A.6)

Appendix B. Proof of the assertions given in section 2

The aim of this appendix is twofold. First, we will prove that a point of

the L-curve corresponds to the solution provided by Eq. (6). Then, we will
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demonstrate that the point of the L-curve given by the solution of the multi-

plicative regularization is the point where the tangent line to the curve has a

slope equal to -1. These proofs are inspired by those given in Refs. [24, 25].

To prove that the point (log ‖X−HFm‖22, log ‖Fm‖22) lies on the L-curve,

let us consider Fm as a stationary point of the functional Jm(F) given by

Eq. (A.1). Let us consider now Fa(λ) as the minimizer of the functional

defining the classical Tikhonov regularization, namely:

Ja(F, λ) = ‖X−HF‖22 + λ ‖F‖22. (B.1)

For any value of the regularization parameter λ, a solution Fa(λ) can be

calculated, since a minimizer of Ja(F, λ) is given by:

Fa(λ) =
[
HHH + λ I

]−1
HHX. (B.2)

From the foregoing, it comes that Fm is a minimizer of Ja(F, λ) for

λ = α(Fm). Consequently, the point (log ‖X − HFm‖22, log ‖Fm‖22) lies on

the L-curve.

Knowing that the solution of the multiplicative regularization defines a

point of the L-curve, it is now possible to show that this point is the point of

intersection between the L-curve and the tangent line with a slope equal to

-1. To this end, it should be first remarked that Fm is not only a stationary

point of Jm(F) [see Appendix A], but also a stationary point of the functional

defined by:

Φm(F) = ξ(F) + η(F), (B.3)
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where ξ(F) = log ‖X−HF‖22 and η(F) = log ‖F‖22.

By applying the first-order optimality condition to the functional Φm(F),

it readily comes:

∂Φm(F)

∂F

∣∣∣∣
F=Fm

=
∂ξ(F)

∂F

∣∣∣∣
F=Fm

+
∂η(F)

∂F

∣∣∣∣
F=Fm

=
∂ξ(F)

∂F

∣∣∣∣
F=Fm

(
1 +

∂η(F)

∂ξ(F)

∣∣∣∣
F=Fm

)
= 0.

(B.4)

Two situations are possible to set the previous equation to zero, since:

∂ξ(F)

∂F

∣∣∣∣
F=Fm

= 0 or 1 +
∂η(F)

∂ξ(F)

∣∣∣∣
F=Fm

= 0. (B.5)

Let us consider the first situation. By using vector calculus, one finds:

∂ξ(F)

∂F

∣∣∣∣
F=Fm

=
∂ log ‖X−HF‖22

∂F

∣∣∣∣
F=Fm

= 0

⇔ ∂ log ‖X−HF‖22
∂‖X−HF‖22

∣∣∣∣
F=Fm

· ∂‖X−HF‖22
∂F

∣∣∣∣
F=Fm

= 0

⇔ 2

‖X−HFm‖22

[
HHHFm −HHX

]
= 0.

(B.6)

Consequently, the first situation leads to the least-squares solution Fm =

H+X.

The analysis of the second situation directly implies that:

∂η(F)

∂ξ(F)

∣∣∣∣
F=Fm

= −1

⇔ η(Fm) = −ξ(Fm) + C,

(B.7)
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where C is a constant. The latter equation shows that the solution Fm defines

a point lying on a straight line with a slope equal to -1 and tangent to the

L-curve (because Fm defines a point on the L-curve as shown previously).

Appendix C. Comparison of the running times of the proposed

initialization procedure and the SVD calculation

This appendix aims at comparing the running times of the heuristic pro-

cedure proposed to estimate α(0) with the SVD calculation used to compute

λ(0) and λ(k+1). To this end, we have measured the overall running time of

these operations applied to 100 realizations a random matrix A of dimensions

N × N (with N ∈ [10, 104]). Figure C.1 presents the evolution of the run-

ning times with respect to the size of the problem in log-log scale (common

logarithm).

As suggested by the results presented in sections 5 and 6, the proposed

heuristic procedure becomes significantly faster than the SVD calculation as

the size of the problem increases. It should also be noted that for small-

size problems (N < 70), the SVD is more efficient. However, the latter

observation needs to be put into perspective, since the running times are

then less than 0.4 s for both calculations.
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