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Introduction.

Let (M, g) be a smooth, closed, compact Riemannian manifold. Consider the Laplace-Beltrami operator ∆ which admits a discrete spectral resolution [3, Lemma 1.6.3 p. 51] which means there is an increasing sequence of eigenvalues :

σ(∆) = {0 = λ0 < λ1 λ2 • • • λn → +∞}
and corresponding L 2 -basis of eigenfunctions (e λ ) λ so that ∆e λ = λe λ .

1.0.1. Gaussian Free Fields. We next briefly recall the definition of the Gaussian free field (GFF) associated to ∆. Our definition is probabilistic and represents the Gaussian Free Field φ, also called bosonic Euclidean quantum field in the physics litterature, as a random distribution on M [4, Corollary 3.8 p. 21] [5, eq (1.7) p. 3] [START_REF] Dimock | Markov quantum fields on a manifold[END_REF] (see also [7, section 4.2] for a related definition in a planar domain D).

Definition 1.1 (Gaussian Free Field). The Gaussian free field φ associated to (M, g) is defined as follows : denote by (e λ ) λ∈σ(∆) the spectral resolution of ∆. Consider a sequence (c λ ) λ∈σ(∆) , c λ ∈ N (0, 1) of independent, identically distributed, centered Gaussian random variables. Then we define the Gaussian Free Field φ as the random series

φ = λ∈σ(∆)\{0} c λ √ λ e λ (1.1)
where the sum runs over the positive eigenvalues of ∆ and the series converges almost surely as distribution in D (M ).

The covariance of the Gaussian free field defined above is the Green function :

G(x, y) = λ∈σ(∆)\{0}
1 λ e λ (x)e λ (y)

where the above series converges in D (M × M ).

We next recall the definition of polygon Feynman amplitudes.

Definition 1.2 (Feynman amplitudes). Let (M, g) be a closed compact Riemannian manifold and G the Green function of the Laplace-Beltrami operator ∆.

Define the formal product of Green function :

tn = G(x1, x2) . . . G(xn, x1) (1.2)
as an element in C ∞ (M n \ diagonals).

1.0.2. From TQFT to Riemann invariants. In topological field theories of Chern-Simons [START_REF] Axelrod | Chern-simons perturbation theory[END_REF][START_REF] Kontsevich | Feynman diagrams and low-dimensional topology[END_REF][START_REF] Dijkgraaf | Perturbative topological field theory[END_REF] and of BF type [11, 12, 13] [14, 3.4], one has a correspondance :

closed manifolds -→ partition function Z (M ) = ∞ n=0 h n Fn(M ) (1.3)
where the Fn (M ) are invariants of the C ∞ -structure and do not depend on the choice of metrics needed to define the propagator of the theory. For non topological theories, it was proved by Belkale-Brosnan [START_REF] Belkale | Periods and Igusa local zeta functions[END_REF] and Bogner-Weinzierl [START_REF] Bogner | Periods and Feynman integrals[END_REF] that Feynman amplitudes are special numbers called periods. As a consequence of the quantum field theory formalism of Segal [START_REF] Segal | The definition of conformal field theory[END_REF], Stolz-Teichner [START_REF] Stolz | What is an elliptic object[END_REF][START_REF] Kandel | Functorial Quantum Field Theory in the Riemannian setting[END_REF][START_REF] Stolz | Lecture notes: Functorial Field Theories and Factorization Algebras[END_REF], a QFT should give a correspondance from closed manifolds endowed with extra Riemannian or complex structure to complex numbers. On Riemannian manifolds, numbers of QFT might become sensitive to variations of the metric g and have no reasons to be periods anymore. The goal of the present paper is to study the dependence of the partition function Z in the Riemannian metric g.

1.0.3. Motivations of our results. In the present paper, we shall study the renormalized partition function

Zg (λ) = E exp - λ 2 M : φ 2 (x) : dv(x) ∈ C[[λ]] (1.4) 
of a free bosonic theory when the dimension of (M, g) equals 2 d 4 where we need some extra renormalization when d = 4, see Proposition 1.4. The partition function Zg(λ) ∈ C[[λ]] depends only on the isometry class of (M, g) and a natural question would be what informations on (M, g) can be extracted from Zg (λ) as a formal power series.

We can also formulate a related question as follows : let ϕ : M → M be a diffeomorphism and let G be the Green function of ∆g. (M, ϕ * g) is isometric to (M, g) and induces a diffeomorphism Φ : 1.0.5. Fluctuations of the integrated Wick square. In quantum field theory on curved space times, one is interested in the behaviour of the stress-energy tensor and its fluctuations under quantization of the fields the metric stays classical. For instance, many works of Moretti [START_REF] Moretti | One-loop stress-tensor renormalization in curved background: the relation between ζ-function and pointsplitting approaches, and an improved point-splitting procedure[END_REF][START_REF] Moretti | Local ζ-function techniques vs. point-splitting procedure: a few rigorous results[END_REF][START_REF] Moretti | Comments on the stress-energy tensor operator in curved spacetime[END_REF][START_REF] Moretti | Local ζ-functions, stress-energy tensor, field fluctuations, and all that, in curved static spacetime[END_REF][START_REF] Hack | On the stress-energy tensor of quantum fields in curved spacetimescomparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients[END_REF] deal with the renormalization of various quantum field theoretic quantities, for instance the stress-energy tensor, using zeta regularization and local point splitting methods. In the present paper, we study fluctuations of the integral of the Wick square M : φ 2 (x) : dv(x) on the manifold M which is a simpler observable and is the integral of the field fluctuations in Moretti's work. In aQFT, it also appears in the work of Sanders [START_REF] Sanders | Local versus global temperature under a positive curvature condition[END_REF] and is interpreted as a local temperature.

M × M → M × M such that the pull-back Φ * G ∈ D (M × M ) is
In probability, the Wick square is also related to loop measures associated to some random walks on graphs [START_REF] Le | Markov Paths, Loops and Fields: École D' Été de Probabilités de Saint-Flour XXXVIII-2008[END_REF][START_REF] Gregory | Topics in loop measures and the loop-erased walk[END_REF] and it is assumed that the continuous Wick square should be related to some loop measures. 1 it is an open convex cone of the space of 2-tensors On Riemannian manifolds of negative curvature, there is a strong analogy between Brownian motion on the base manifold M , the continuous version of random walks, and the geodesic flow on the unitary cosphere bundle S * M over M . Our main results, Proposition 1.4 and Theorem 1, give an explicit relation between fluctuations of the Wick squares, the partition functions Zg(λ), periodic geodesics and rigidity on manifolds with negative curvature. 1.0.6. Periods of the geodesic flow. We recall the definition of the periods of the geodesic flow [25, section 10.5].

Definition 1.3 (Periods).

Let us consider the moduli space of Riemannian metrics R(M ) on some smooth, closed, compact manifold M . For every element of R(M ), choose a representative (M, g). We denote by (Φ t )t : S * M → S * M the geodesic flow acting on the unitary cosphere bundle S * M . Then for every class [(M, g)] ∈ R(M ), we define the periods P(g) as the set :

P(g) = {T > 0 s.t. Φ T (x; ξ) = (x; ξ) for (x; ξ) ∈ S * M } ⊂ R>0.
(1.6)

The set P(g) is called the lenght spectrum of (M, g). 

φ 2 ε (x) := φ 2 ε (x) -E φ 2 ε (x)
and define the renormalized partition functions :

Zg(λ) = lim ε→0 + E exp - λ 2 M V (x) : φ 2 ε (x) : dv , when d = (2, 3), Zg(λ) = lim ε→0 + E exp - λ 2 M V (x) : φ 2 ε (x) : dv - λ 2 M V 2 (x)dv 128π 2 | log(ε)| , when d = 4.
Then the sequence cn(g) is well-defined for n > d 2 and the partition functions Zg satisfies the following identity for small |λ| :

Zg(λ) = exp   P (λ) + n> d 2 (-1) n cn(g)λ n 2n    (1.7)
where P is a polynomial of degree 2 in λ, P = 0 when d < 4 and Z -2 g extends as an entire function on the complex plane C whose zeroes lie in -σ(V ∆ -1 ).

Note that V ∆ -1 ∈ Ψ -2 (M ) is a pseudodifferential operator of negative degree hence is a compact operator and σ(∆ -1 V ) is well-defined. At this point, it was pointed out to the author by Claudio Dappiaggi that there should be some explicit relation between the renormalization done here and the methods from the papers [START_REF] Dappiaggi | The algebra of Wick polynomials of a scalar field on a Riemannian manifold[END_REF][START_REF] Carfora | Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory[END_REF][START_REF] Dang | Renormalization of quantum field theory on Riemannian manifolds[END_REF] on Euclidean algebraic Quantum Field Theory which uses an Euclidean version of Epstein-Glaser renormalization. From the above, we deduce the following corollaries when V = 1 ∈ C ∞ (M ) : Corollary 1.5. Let (M1, g1), (M2, g2) be a pair of compact Riemannian manifolds without boundary of dimension 2 d 4, then the following claims are equivalent :

(1) cn(g1) = cn(g2) for all n > d 2 , (2) the partition functions coincide Zg 1 = Zg 2 , (3) (M1, g1), (M2, g2) are isospectral.

In particular the Einstein-Hilbert action, hence χ(M ) when M is a surface, is determined by Zg by the formula :

SEH (g) = Res| s= d 2 -1 λ,Zg (λ) -2 =0 λ s-1 .
and if (g1, g2) are metrics with negative sectional curvatures, then P(g1) = P(g2) where the lenght spectrum is the singular support of the distribution :

t → λ,Zg (λ) -2 =0 e it √ λ ∈ D (R>0). (1.8)
We next give the main Theorem of our note which deals with the rigidity of the Riemannian structure in negative curvature where the fluctuations of the Wick square are encoded by the probability law of the random variable M : φ 2 (x) : dv. Theorem 1. Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension d = (2, 3), φ is the Gaussian free field with covariance G with corresponding measure µ. Denote by φε = e -ε∆ φ to be the heat regularized GFF.

Then the limit M :

φ 2 (x) : dv(x) = lim ε→0 + M φ 2 ε (x)dv(x) -E M φ 2 ε (x)dv(x)
converges as a random variable in L p (D (M ), µ), p 2 with the following properties :

(1) Let N be a non necessarily compact, finite dimensional submanifold of Met (M ). Then the set of metrics g ∈ N ∩ R (M ) <0 such that the random variable M : φ 2 (x) : dv has given law is finite.

(2) When d = 3, for a sequence (Mi, gi) i∈N of Riemannian 3-manifolds of negative curvature such that the random variable M : φ 2 (x) : dv has a fixed given law, one can extract a subsequence such that Mi has fixed diffeomorphism type and gi → g to some metric g in the C ∞ topology.

The above two results hold true for manifolds (M, g) with given partition function Zg(λ).

Our result gives an example of metric dependent (non topological) Quantum Field Theory where the knowledge of the partition function gives both some topological and metrical constraints on the Riemannian manifold (M, g).

1.2. Acknowledgements. I would like to thank Thibault Lefeuvre, Marco Mazzucchelli and Colin Guillarmou for teaching me some methods from inverse problems which are used in the present paper and also thanks to Claudio Dappiaggi, Michal Wrochna, Jan Dereziński, Estanislao Herscovich and Christian Gérard for keeping my interest and motivation for Quantum Field Theory on curved spaces.

Proof of Proposition 1.4.

The results of Proposition 1.4 are particular cases of the main results from [START_REF] Dang | Renormalization of determinant lines in quantum field theory[END_REF]. However, for the sake of clarity, we shall give a self-contained proof which is simpler in our case since we work with scalar fields in low dimension d 4.

We first discuss the case of dimension d = (2, 3). Start from the relation [START_REF] Glimm | Quantum Physics, A Functional Integral Point of View[END_REF]Prop 9

.3.1 p. 211] E exp - λ 2 M V (x) : φ 2 ε (x) : dv(x) = exp - 1 2 T r L 2 log I + λe -2ε∆ ∆ -1 V -λe -2ε∆ ∆ -1 V
which holds true for small |λ| since e -2ε∆ ∆ -1 V ∈ Ψ -∞ (M ) is smoothing. Then by Lemma 5.1, there is an explicit relation connecting Fredholm determinants detF , Gohberg-Krein's determinants det2 and functional traces (see also [36, p. 212]), this relation reads :

exp - 1 2 T r L 2 log I + λe -2ε∆ ∆ -1 V -λe -2ε∆ ∆ -1 V = detF I + λe -2ε∆ ∆ -1 V -1 2 exp( λ 2 T r L 2 (e -2ε∆ ∆ -1 V )) = det2 I + λe -2ε∆ ∆ -1 V -1
which follows immediately from the properties of Gohberg-Krein's determinants det2.

Observe that the function pt

: ξ ∈ R → e -t|ξ| 2 defines a family (pt) t∈[0,+∞) of symbols in S 0 1,0 (R) such that pt → t→0 1 in S 0 1,0 (R) where p ∈ S 0 1,0 (R) iff |∂ j ξ p(ξ)| Cj (1 + |ξ|) -j [37, Lemm 1.2 p. 295]. By a result of Strichartz [37, Thm 1.3 p. 296], pt( √ ∆) = e -t∆ → t→0 + Id in Ψ 0 1,0 (M ). (2.1)
By composition of pseudodifferential operators, we find that e

-2ε∆ ∆ -1 V → ε→0 ∆ -1 V in the space Ψ -2 (M )
of pseudodifferential operators of order -2 which implies that the convergence occurs in the ideal I2 of Hilbert-Schmidt operators by [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF]Prop B 20]. By continuity of H ∈ I2 → det2 (I + H), we find that

Zg(λ) = lim ε→0 + E exp - λ 2 M V (x) : φ 2 ε (x) : dv = det2 I + λ∆ -1 V -1 2 . (2.2)
From the properties of det2 I + λ∆ -1 V recalled in Lemma 5.1, we find that the divisor of Z -2 

g coincides with the subset {z s.t. zλ = -1, λ ∈ σ(∆ -1 V )} ⊂ C hence when V = 1,
log E exp - λ 2 M V (x) : φ 2 ε (x) : dv(x) = -1 2 ∞ k=1 (-1) k+1 λ k k T r L 2 e -2ε∆ ∆ -1 V k -λT r L 2 e -2ε∆ ∆ -1 V = -1 2 -λ 2 2 T r L 2 e -2ε∆ ∆ -1 V 2 + ∞ k=3 (-1) k+1 λ k k T r L 2 e -2ε∆ ∆ -1 V k
where we need to renormalize both terms T r L 2 e -2ε∆ ∆ -1 V and T r

L 2 e -2ε∆ ∆ -1 V 2 since for all k 3, equation 2.1 implies e -2ε∆ ∆ -1 V k → ε→0 + ∆ -1 V k ∈ Ψ -2k (M ) which are trace class. The first term T r L 2 e -2ε∆ ∆ -1 V is subtracted by Wick renormalization but we have the term T r L 2 e -2ε∆ ∆ -1 V 2 left.
We shall use pseudodifferential calculus to extract the singular parts of this term. The second term can be arranged

T r L 2 e -2ε∆ ∆ -1 V 2 = T r L 2 e -4ε∆ ∆ -2 V 2 + T r L 2 e -2ε∆ ∆ -1 [V, e -2ε∆ ∆ -1 ]V ,
where the family of heat operators (e

-ε∆ ) ε∈[0,1] is bounded in Ψ 0 (M ) by equation 2.1, the commutator term [V, e -2ε∆ ∆ -1 ] is therefore bounded in Ψ -3 (M ) uniformly in the parameter ε ∈ [0, 1]
. By composition in the pseudodifferential calculus, we thus find that e

-2ε∆ ∆ -1 [V, e -2ε∆ ∆ -1 ]V ∈ Ψ -5 (M ) , uniformly in ε ∈ [0, 1]
and is therefore of trace class by Proposition [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF]Prop B 20] and since we are in dimension d = 4, uniformly in the small parameter ε ∈ [0, 1].

Finally, we found that T r

L 2 ∆ -1 e -ε∆ V e -ε∆ 2 = T r L 2 e -4ε∆ ∆ -2 V 2 + O(1)
. Then the singular part of T r L 2 e -4ε∆ ∆ -2 V 2 is easily extracted using the heat kernel asymptotic expansion [START_REF] Berline | Heat kernels and Dirac operators[END_REF] as :

T r L 2 e -4ε∆ ∆ -2 V 2 = 1 2 1 0 T r L 2 e -(4ε+t)∆ V 2 t 2-1 dt + O(1) = 1 2(4π) 2 1 0 t (4ε + t) 2 dt M V 2 (x)dv + O(1) = M V 2 (x)dv 32π 2 1+4ε 4ε (u -1 -4εu -2 )du + O(1) = M V 2 (x)dv(x) 32π 2 | log(ε)| + O(1).
We conclude by the observation that for small |λ| :

Zg(λ) = lim ε→0 + E exp - λ 2 M V (x) : φ 2 ε (x) : dv - λ 2 M V 2 (x)dv 128π 2 | log(ε)| = lim ε→0 + exp      λ 2 4 T r L 2 ∆ -1 e -2ε∆ V 2 - λ 2 M V 2 (x)dv 128π 2 | log(ε)| O(1) + ∞ k=3 (-1) k λ k 2k T r L 2 e -2ε∆ ∆ -1 V k      = lim ε→0 + exp λ 2 4 T r L 2 ∆ -1 e -2ε∆ V 2 - λ 2 M V 2 (x)dv 128π 2 | log(ε)| det3 I + λ∆ -1 e -2ε∆ V -1 2 = e P (λ) det3 I + λ∆ -1 V -1 2
where we recognized Gohberg-Krein's renormalized determinant det3 which converges since ∆ -1 e -2ε∆ V →

ε→0 + ∆ -1 V ∈ Ψ -2 (M )
hence in the Schatten ideal I3 and P is a polynomial of degree 2. Now we conclude similarly as for dimension d = (2, 3), det3 I + λ∆ -1 V vanishes with multiplicity on the set -σ(∆ -1 V ) which implies that Zg determines σ(∆) when V = 1.

Conclusion of the proof. The proof of identity

Zg(λ) = exp   P (λ) + n> d 2 (-1) n cn(g)λ n 2n    (2.3) 
follows immediately from the fact that for n > d 2 , composition in the pseudodifferential calculus implies that (∆ -1 V ) n ∈ Ψ -2n (M ) is trace class hence the integrals cn(g) = M n tn(x1, . . . , xn)V (x1) . . . V (xn)dvn are convergent and equal to T r L 2 (∆ -1 V ) n . The conclusion follows from the relation of Gohberg-Krein's determinants detp with functional traces summarized in Lemma 5.1.

Proof of Corollary 1.5.

Corollary 1.5 is an immediate consequence of Proposition 1.4 and of the deep Theorem of Colin de Verdière [START_REF] De Verdière | Spectre du Laplacien et longueurs des godsiques priodiques[END_REF][START_REF] De Verdière | Spectre du Laplacien et longueurs des godsiques priodiques[END_REF], Duistermaat-Guillemin [40, Thm 4.5 p. 60] relating the spectrum of the Laplacian and the lenght spectrum. We recall, in the particular case of metrics with negative curvature, Theorem 2 (Trace formula). Let (M, g) be a smooth compact Riemannian manifold with negative sectional curvatures and ∆g the Laplace-Beltrami operator. Then the spectrum σ (∆g) determines the non marked lenght spectrum by the trace formula :

2Re    λ∈σ(∆g ) e i √ λt    = γ γ mγ| det (I -Pγ) | 1 2 δ (t -γ ) + L 1 loc , (3.1) 
2 where γ , mγ are the period and multiplicity of the orbit γ and Pγ is the Poincaré return map. Furthermore, the singularities of the wave trace equals the lenght spectrum :

ss   2Re    λ∈σ(∆g ) e i √ λt       = { γ |[γ] ∈ π1 (M )} (3.2)
which implies the Laplace spectrum σ (∆g) determines the lenght spectrum of (M, g).

For geodesic flows in negative curvature, the set of periods forms a discrete subset of R>0 hence each period is isolated and the corresponding periodic orbits are isolated and in finite number. In the notation of [START_REF] Johannes | The spectrum of positive elliptic operators and periodic bicharacteristics[END_REF], each Zj has dimension 1 and dj = 1. In that case, Duistermaat-Guillemin (see also [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF]Thm 3 p. 195]) give a leading term for the real part of the distributional flat trace 2Re T r (U (.)) ∈ D (R>0) of the wave propagator

U (t) = e it √ ∆g : 2Re T r (U (.)) = [γ]∈π 1 (M ) i -σγ γ e -iT.γ mγ| det (I -Pγ) | 1 2 δ (t -γ ) + L 1 loc .
In case the metric has negative curvature, each closed geodesic make a non-zero contribution to the singular support of U since the Maslov index σγ = 0 for all γ as noted in [42, Coro 1.1 p. 73] and the subprincipal symbol of ∆g vanishes hence the term e -iT.γ = 1 which gives the desired result.

The identity

SEH (g) = Res| s= d 2 -1 λ,Zg (λ) -2 =0 λ s-1
follows immediately from the spectral interpretation of the integral of the scalar curvature (Einstein-Hilbert action) [43, Thm 6.1 p. 26]. Let us briefly recall the principle of this derivation. The first heat invariant of the scalar Laplacian is directly related to the scalar curvature, for Re(s) > d 2 , the sum λ∈σ(∆),λ>0 λ -s converges by Weyl's law and coincide with T r L 2 ∆ -s . By the heat kernel expansion, the trace T r L 2 ∆ -s admits an analytic continuation as a meromorphic function whose poles at s = d 2 -1 are related to the first heat invariant. 4.0.3. Spectrum of ∆ and the law of the Wick square M : V φ 2 (x) : dv. Furthermore, the law of the random variable M : V φ 2 (x) : dv, more precisely its moments are related to the partition function Zg(λ) by the observation that the series

Zg(λ) = ∞ n=0 (-1) n 2 n n! E M : V φ 2 (x) : dv n converges absolutely for λ∆ -1 2 V ∆ -1 2 I 2 < 1
where . I 2 is the Hilbert-Schmidt norm. Therefore by Proposition 1.4, the law of M : V φ 2 (x) : dv determines Zg and its zeroes hence the spectrum of ∆ when V = 1. Therefore the second claim from Theorem 1 follows from the rigidity results of Anderson [START_REF] Michael T Anderson | Remarks on the compactness of isospectral sets in low dimensions[END_REF] for isospectral manifolds of dimension 3 s.t. the lenght of its shortest geodesic is bounded from below, see Theorem 5.

4.1.

Rigidity in negative curvature. To conclude the proof of Theorem 1, it remains to show that : Proposition 4.1. Let M be a smooth closed compact manifold and N be some finite dimensional submanifold in Met(M ) which is not necessarily compact. Set ε > 0 and consider the set R(M ) -ε of isometry classes of metrics with negative curvature Kg -ε < 0. Set Ñ to be the image of N under the quotient map Met (M ) → R (M ). Then the set of isospectral metrics in Ñ ∩ R(M ) -ε is finite.

We prove Proposition 4.1 by giving a simple adaptation of a result due to Sarnak [START_REF] Sarnak | Determinants of Laplacians; heights and finiteness[END_REF] in dimension 2 and Sharafutdinov [START_REF] Vladimir | Local audibility of a hyperbolic metric[END_REF] for hyperbolic metrics that in dimensions d = (2, 3), for a finite dimensional manifold of metrics of negative curvature, there are only a finite number of isospectral metrics. The next paragraph is devoted to the first ingredients of our proof which are results from Croke-Sharafutdinov on the decomposition of metrics as sum of a solenoidal and potential part. For any purely potential 2-tensor f = Dθ, it is proved [47, Prop 3.10 p. 28] that π * 2 (Dθ) = X (π * 1 θ) where X is the Lie derivative along the generator of the geodesic flow on SM and (π * 1 , π * 2 ) are the natural operators acting on 1 and 2-tensors which lift them to functions on the sphere bundle SM . We have the following [48, Thm 2.1] : Lemma 4.2. Let M be a smooth closed compact manifold. For any metric g0 of strictly negative curvature 4 , there exists a neighborhood U of g0 in C ∞ (S 2 T * M ) such that for any g ∈ U, there is a metric g = Φ * g isometric to g such that g -g0 is solenoidal w.r.t g0.

Let us explain the idea behind the Lemma as explained to me by Thibault Lefeuvre. One tries to solve the equation Dg 0 Φ * g = 0 with the implicit function Theorem. Intuitively, the picture one should have in mind is that in the space Met(M ) of metrics (viewed as an open cone of the space of 2-tensors hence as a Fréchet manifold), the tangent space Tg 0 Met(M ) to g0 admits the decomposition Tg 0 Met(M ) = solenoidal tensors for g0 ⊕ potential tensors for g0.

The space of potential tensors for g0 is precisely the tangent part to the orbit through g0 of the action of the group of diffeomorphisms which is Tg 0 (Diff(M ).g0). Hence starting from g0 and adding a small solenoidal part exactly means moving in the transversal direction to the orbits of Diff(M ) which means after projection that we are moving in the quotient space R (M ) = Met(M )/Diff(M ). 4.1.2. The compactness results. The second ingredient of our proof of Proposition 4.1 uses compactness results on the space of isospectral metrics. Note that two isospectral Riemannian surfaces (M1, g1) and (M2, g2) have the same genus since the second heat invariant a1 = 1 6 M Kg, which is also a spectral invariant, is proportional to the integral of the scalar curvature Kg on M hence it determines the Euler characteristic thus the genus of M by Gauss-Bonnet. This is no longer true in dimension d = 3. We start by the compactness result of Osgood-Philips-Sarnak [START_REF] Osgood | Compact isospectral sets of surfaces[END_REF] which deals with isospectral families surfaces.

Theorem 4 (Compactness for d = 2). An isospectral set of isometry classes of metrics on a closed surface is sequentially compact in the C ∞ -topology.

For d = 3, we shall use the celebrated result of Brooks-Petersen-Perry [START_REF] Brooks | Compactness and finiteness theorems for isospectral manifolds[END_REF] and Anderson [START_REF] Michael T Anderson | Remarks on the compactness of isospectral sets in low dimensions[END_REF].

Theorem 5 (Compactness for d = 3). The space of smooth compact isospectral 3-manifolds (M, g) for which the lenght of the shortest closed geodesic is bounded from below

M > 0 (4.2)
is compact in the C ∞ topology. In particular, there are only finitely many diffeomorphism types of isospectral 3-manifolds which satisfy 4.2.

Let us explain the meaning of the above statement in practice. Let (Mi, gi)i denotes a sequence of isospectral smooth compact 3-manifolds without boundary. Then there is a finite number of manifolds (M 1 , . . . , M k ) and on each M j a compact family of metrics M j such that each of the manifolds Mj is diffeomorphic to one of the M i and isometric to an element of M i . 4.1.3. Proof of Proposition 4.1 by a contradiction argument. We assume by contradiction that the set of isospectral metrics in Ñ ∩ R (M ) -ε has an infinite number of classes. Therefore, we assume there exists an infinite sequence (gn)n of smooth isospectral metrics on M whose isometry classes ([gn])n are 2 by 2 distinct. So if (gn)n is a sequence of isospectral metrics of negative curvature < -ε, the above compactness Theorems tell us that we may extract a subsequence such that gn → g in the C ∞ -topology. In dimension 3, we can apply the compactness Theorem 5 since the spectrum determines the lenght of the shortest closed geodesic by Theorem 2.

By lemma 4.2, we may assume without generality that the sequence of representatives gn is chosen in such a way that the difference εn = gn -g ∈ C ∞ (S 2 T * M ) is solenoidal w.r.t. g. This will be very important in the sequel since we shall use the injectivity of the X-ray transform for solenoidal tensors w.r.t. g. We assume by contradiction that the sequence of metrics gn is non stationary, which means that the sequence εn = gn -g0 never vanishes for every n and εn → 0 in C ∞ (S 2 T * M ). For each free homotopy class [γ] in π1 (M ), for every n, there is a unique closed geodesic γn : [0, Tn] → M of gn (resp γ of g) in the class [γ]. For each closed curve γ in SM , we define a Radon measure δγ ∈ D (SM ) by equation (5.8) in subsection 5.3 in the appendix. By Proposition 5.3 proved in the appendix, we have the convergence δγ n → δγ in the sense of Radon measures on SM . By the convergence of metrics gn → g, for every free homotopy class [γ] in π1 (M ), for every n, we have the convergence gn (γn) → g (γ) by [50, Lemma 4.1 p. 11].

4.1.4. Inequalities satisfied by εn. From the fact that the metrics are isospectral and the lenght spectrum is discrete, we deduce that gn (γn) = (γ) for every n Nγ where the integer Nγ depends on [γ] ∈ π1(M ). By equation (5.8) defining the Radon measures δγ ∈ D (SM ) carried by closed curves γ, the lenght of the curve γ for the metric g is defined as (γ) = δγ (g). The key observation is that since γn is minimizing for gn in the class [γ] implies the inequality δγ n (gn) δγ (gn) but for n Nγ, we find that δγ n (gn) = δγ (g0) from which we deduce the inequality δγ (g0) δγ (gn) which implies

δγ εn εn ∞ 0. (4.3) 
Conversely since γ minimizes the lenght for g0 we have a reverse inequality δγ n (gn) = δγ (g0) δγ n (g0) which implies the second inequality :

δγ n εn εn ∞ 0. (4.4) 
Now we would like to know if we can extract a subsequence from εn εn ∞ ∈ C ∞ (S 2 T * M ) with non trivial limit so that we obtain inequalities on the X-ray transform which are independent of n. We assumed in Proposition 4.1 that the sequence of metrics (gn)n belongs to some finite dimensional manifold N embedded in R(M ). This means we assume there exists an abstract smooth manifold N (not necessarily compact) and a C ∞ -map ι : N -→ Met(M ) → R(M ) where the last arrow is the projection induced by the quotient and the smoothness is understood w.r.t. the C ∞ structures. Put a Riemannian metric g on N and denote by vn a sequence of tangent vectors in Tg 0 N such that ι exp g 0 (vn) = g0 + εn εn ∞ where exp is the Riemannian exponential map induced by the metric g. Since the exponential map v ∈ Tg 0 N → exp g 0 (v) is a diffeomorphism near the origin whose differential at 0 is the identity, we may find that the norm of the sequence vn is equivalent to the distance dist g0 + εn εn ∞ , g0 . Since N has finite dimension and the sequence εn εn ∞ has sup norm 1, the sequence of tangent vectors vn is contained in some bounded subset of Tg 0 N which avoids 0. Then by compactness of bounded subsets in finite dimension, we can extract a subsequence of (vn)n s.t. vn → v∞ = 0 ∈ Tg 0 N . Hence, up to extracting a subsequence, we may assume that

εn εn ∞ -→ n→∞ u ∈ C ∞ (S 2 T * M ) in the C ∞ topology where u = 0 and u ∞ = 1.
Passing to the limit in both inequalities 4.3 and 4.4 and using the fact that δγ n → δγ in the sense of Radon measures, we find that the limit u satisfies I2(u)γ = δγ (u) 0 and I2(u)γ = δγ (u) 0 hence for any free homotopy class [γ] ∈ π1(M ), I2(u)γ = δγ (u) = 0. But since u is solenoidal w.r.t. g and u ∈ ker (I2), we conclude that u = 0 by injectivity of the X-ray transform I2 acting on solenoidal g tensors [START_REF] Croke | Spectral rigidity of a compact negatively curved manifold[END_REF]Thm 1.3] which contradicts u = 0 in C ∞ (S 2 T * M ). Therefore a consequence of Lidskii's Theorem reads when |z| B 1 < 1 :

∞ m=1 (-1) m+1 z m m T r(B m ) = k log (1 + zλ k (B)) . (5.2) 
By [START_REF] Simon | Trace ideals and their applications, volume 120 of mathematical surveys and monographs[END_REF]Theorem 3.7], the Fredholm determinant can be identified with a Hadamard product :

k (1 + zλ k (B)) = detF (1 + zB) (5.3)
from which it follows that the Fredholm determinant is related to the functional traces by the following sequence of identities :

detF (1 + zB) = k exp(log(1 + zλ k (B))) (5.4) = exp k log(1 + zλ k (B)) = exp ∞ m=1 (-1) m+1 z m T r(B m ) (5.5)
where the term underbraced involving traces is well-defined only when |z| B 1 < 1 and the first equality comes from the infinite product representation and the last equality follows from equation 5. Then plugging these identities in the formula for detF (I + Rp(A)) yields :

detF (1 + Rp(A)) = k (1 + z(Rp(λ k (A))) = k exp (log (1 + z(Rp(λ k (A)))) = exp k log (1 + z(Rp(λ k (A))) .
For fixed k, we also have the identity :

log (1 + z(Rp(λ k (A))) = log((1 + zλ k (A)) exp p-1 n=1 (-1) n n -1 λ k (A) n ) = log(1 + zλ k (A) + p-1 n=1 (-1) n n -1 λ k (A) n = ∞ n=p (-1) n+1 z n n λ n k (A).
From which we deduce the important identity :

detF (1 + Rp(A)) = exp k ∞ n=p (-1) n+1 z n n λ n k (A) .
We want to intepret the above formula in terms of functional traces of powers of A. Hence the next idea is to invert summations in k and in n for z small enough because of the following estimates :

k z n |λ k (A)| n = z n A n 1 = z n A j A p[ n p ] 1 |z| n A j ∞ A p[ n p ] 1
by Hölder's inequality for trace class operators

|z| n A j ∞ A p [ n p ] 1 |z| n A j ∞ A [ n p ]p p C|z| n A n p
where C = sup j∈{1,...,p} A j ∞. Therefore sum inversion yields :

k log (1 + z(Rp(λ k (A))) = k ∞ n=p (-1) n+1 z n n λ n k (A) = k log(1 + zλ k (A)) - p n=1 (-1) n+1 z n n λ n k (A) = ∞ n=p (-1) n+1 z n n k λ n k (A) = ∞ n=p (-1) n+1 z n n T r(A n )
where the last equality again follows from Lidskii's Theorem. Therefore, we have the following :

Lemma 5.1 (Gohberg-Krein's determinants and functional traces). For all A ∈ Ip, the Gohberg-Krein determinant detp(1 + zA) is an entire function in z ∈ C and is related to traces T r(A n ) for n > d 2 by the following formulas :

detp(1 + zA) = exp ∞ n=p (-1) n+1 z n n T r(A n ) = k (1 + zλ k (A)) exp p-1 n=1 (-1) n n -1 λ k (A) n
where the infinite product vanishes exactly when zλ k (A) = -1 with multiplicity.

5.3.

The formalism of X-ray transform. Periodic orbits γ of the vector field X ∈ C ∞ (T (SM )) which generates the geodesic flow of g on SM are defined as continuous maps :

γ : t ∈ [0, Tγ] -→ (γ(t), γ(t)) ∈ SM (5.6)
where γ is parametrized at unit speed. The closed geodesic γ defines a distribution in D (SM ), denoted by δγ, as follows :

δγ, f = Tγ 0 f (γ(t), γ(t)) dt. (5.7) 
A symmetric m-tensor f ∈ C ∞ (S m T * M ) can be lifted as a function on the tangent bundle T M , polynomial of degree m in the fibers by the following (x, v) ∈ T M → f (x, v) ∈ C. It follows that the distributions δγ act on symmetric m-tensor C ∞ (S m T * M ) as follows :

δγ, f = Tγ 0 f (γ(t), γ(t)) dt.
(5.8)

By considering the collection of all maps (δγ) [γ]∈π 1 (M ) , for all periodic geodesics, we can define the X-ray transform.

Definition 5.2 (X-ray transform). The X-ray transform is defined as :

I2 : f ∈ C ∞ S 2 T * M -→ δγ, f = Tγ 0 f (γ(t), γ(t)) dt [γ]∈π 1 (M ) (5.9)
which maps 2-tensors to sequences indexed by the free homotopy classes π1(M ) of closed loops in M . 

ϕ t Y (x, v) = ΦY • ϕ τ Y (t,x,v) • Φ -1 Y (x, v) (5.14) 
where τY (t, x, v) → t in C 0 ([0, T ] × M) for all T > 0 when Y → X in C 1 (T M).

A corollary of the above result Proposition 5.3 (Convergence result for Radon measures.). Let X ∈ C ∞ (T (SM )) be a smooth Anosov vector field on SM . Let Xn be a sequence of vector fields which converges to X in C ∞ (SM ). Then for every free homotopy class [γ] ∈ π1 (M ), there exists Nγ ∈ N and a unique subsequence of periodic orbits (γn) n Nγ of the vector field Xn which converges to a periodic orbit γ of X. The corresponding delta distributions δγ n , n Nγ will converge to the limit distribution δγ in the sense of Radon measures.

Proof. Let f ∈ C 0 (SM ) be a continuous test function. Denote by ϕ t n (resp ϕ t ) the flow generated by Xn (resp X) on SM . By definition δγ n (f ) = (γn) 0 f • ϕ t n (xn, vn)dt for any (xn, vn) ∈ γn. The existence of the sequence γn → γ is a simple consequence of structural stability. Let Φn ∈ C 0 X (M, M ) denotes the sequence of homeomorphisms conjugating the two flows whose existence comes from Theorem 6 :

ϕ t n (x, v) = Φn • ϕ τn(t,x,v) • Φ -1 n (x, v)
where τn(t, x, v) → t uniformly on [0, T ] × SM for all T > 0 and Φn → Id in C 0 (SM ). Therefore for every (x, v) on the periodic orbit γ, the sequence (xn, vn) = Φn (x, v) lies in the periodic orbit γn by structural stability and converges to (x, v). It follows that when n → +∞, δγ n (f ) = 

  the Green function of the Laplace-Beltrami operator ∆Φ * g. It follows that integrals of non divergent Feynman amplitudes are isometry invariant numbers and depend only on the Riemannian structure. What informations on the Riemannian structure (M, g) can be recovered from integrals of Feynman amplitudes over configuration space ? In what follows, we introduce some preliminary definitions before we state our two main results on Riemannian rigidity from quantum fields. 1.0.4. The moduli space of metrics. The set of C ∞ Riemannian metrics on M with the usual Fréchet topology on smooth 2-tensors is denoted by Met(M ) 1 . We have the natural action of Diff (M ), the set of diffeomorphisms of M acting by pull-back on Met(M ), then we define the moduli space of Riemannian metrics as a quotient space : R(M ) = Met(M )/Diff (M ) (1.5) where a sequence of isometry classes [gn] → n→+∞ [g] if there is a sequence of representatives gn of [gn] which converges to g in the C ∞ -topology [23, p. 602] [24, p. 233] (see also [25, p. 175]).

  the partition function Zg determines the spectrum σ(∆) of the Laplace-Beltrami operator ∆. 2.1. Explicit counterterms in dimension d 4. When d = (2, 3), ∆ -1 is only Hilbert-Schmidt but not trace class and we only need the Wick renormalization to renormalize the partition function which is exactly what is done by considering Gohberg-Krein's renormalized determinant det2. When d = 4, for small |λ|, we have the series expansion :

4 .

 4 Proof of Theorem 1.4.0.2. Existence of Wick square as random variable. We use a very nice result on Gaussian measures that can be found in Glimm-Jaffe [36, Prop 9.3.1 p. 211]. In dimension d = (2, 3), the operator ∆ -1 2 V ∆ -1 2 ∈ Ψ -2 (M ) is Hilbert-Schmidt and therefore the Wick renormalized functional M : V φ 2 (x) : dv is a well-defined random variable in all L p (D (M ), µ), p ∈ [2, +∞) where µ is the Gaussian Free Field measure on D (M ) with covariance ∆ -1 .

4. 1 . 1 .

 11 Space of metrics. We work on a smooth closed compact manifold M of dimension d = 2, 3. The convergence of isometry classes [gn] → [g] means that there is a sequence of representatives gn → g in the C ∞ topology for 2-tensors. It was proved by Croke-Sharafutdinov [46, Thm 2.2 p. 1269] [47, Thm 3.8 p. 26] that Theorem 3. Let (M, g) be a compact Riemannian manifold s.t. the geodesic flow on S * M is Anosov. Then every symmetric 2-tensor T ∈ C ∞ S 2 T * M admits the following unique decomposition T = T s + Dθ (4.1) where T s is the g-solenoidal part of the tensor 3 and Dθ = σ∇θ is the potential part where θ ∈ C ∞ (T * M ) is a 1-form, ∇ is the covariant derivative w.r.t. g and σ is the symmetrization operator [46, p. 1267-1268].

5. Appendix. 5 . 1 .(- 1 )(- 1 ) 1 B m 1 (- 1 )

 5111111 Spectral identities related to Fredholm determinants. We quickly recall some identities relating the Fredholm determinant detF (I + B) for trace class operator B : H → H acting on some separable Hilbert space H and functional traces of powers of B. The Fredholm determinant detF (I + B) is defined in [51, equation (3.2) p. 32] asdetF (I + zB) = ∞ k=0 z k T r(Λ k B) (5.1)whereΛ k B : Λ k H → Λ k Hacting on the fermionic Fock space Λ k H is trace class. Using the bound Λ k B 1 B 1 k! [51, Lemma 3.3 p. 33], it is immediate that detF (I + zB) is an entire function in z ∈ C (see also [52, Thm 2.1 p. 26]).For any compact operator B, we will denote by (λ k (B)) k its eigenvalues counted with multiplicity. For any B ∈ I1, by Lidskii Theorem [51, Equation 3.2 p. 46], B m is trace class for any integer m, T r(B m ) = k λ k (B m ) where λ k (B m ) are the singular values of B m . By the spectral mapping Theorem, k λ k (B m ) = k λ k (B) m . It follows that T r(B m ) = k λ k (B) m and : ∞ m=1 m+1 z m m T r(B m ) = ∞ m=1 m+1 z m m k λ k (B) mwhere both sides converge for |z| < B -1 1 by the inequality for the Schatten 1-norm k |λ k (B) m | B m which follow from [52, eq (4.5) p. 57 and (5.4) p. 60] as in [51, proof Thm 5.4 p. 69]. We can interchange the sums which yields : m+1 z m m λ k (B) m = k log (1 + zλ k (B)) .

  2. Note the important fact that exp ∞ m=1 (-1) m+1 z m T R L 2 (B m ) which is defined on the disc D = {|z| B 1 < 1} has analytic continuation as an entire function of z ∈ C.

5. 2 .

 2 Gohberg-Krein's determinants. Set p = [ d 2 ] + 1 and let A belong to the Schatten ideal Ip. Following[51, chapter 9], we consider the operatorRp(A) = [(I + A) exp( n n A n ) -I] ∈ I1which is trace class by [51, Lemma 9.1 p. 75] since A ∈ Ip. Then following [51, p. 75], we define the regularized determinant as detp(I + zA) = detF (1 + Rp(zA)) where detF is the Fredholm determinant defined above. The quantity detp is well defined since B = Rp(A) is trace class. The function Rp(z) is an entire function hence by the spectral mapping Theorem for entire functions, we find that λ k (Rp(A)) = Rp(λ k (A)) where Rp(z) = zh(z) for h an entire function (the domain is C). Therefore for every k, note that λ k (B) = Rp(λ k (A)) hence for every fixed k we have the identity log (1 + zλ k (B)) = log (1 + zλ k (Rp(A))) = log (1 + z(Rp(λ k (A))).

5. 4 .

 4 Convergence of Radon measures corresponding to closed geodesics. The goal of this paragraph is to show that if gn → g in the metrics of negative curvature, then for every free homotopy class [γ] ∈ π1(M ), denote by γn (resp γ) the unique corresponding sequence of closed geodesic for gn (resp g), the sequence δγ n converges to δγ in the sense of Radon measures. We shall use the structural stability result of Anosov flows in the version of De La Llave-Marco-Moriyon [53, Thm A.2 p. 598].Theorem 6 (Structural stability). Let (M, g) be a Riemannian manifold of negative curvature and set M = SM to be the sphere bundle of M . We denote by X ∈ C ∞ (T M) the geodesic vector field of the metric g and by C 0 X (M, M) the space of homeomorphisms from M to M which are C 1 along integral curves of X and C 0 (M) denotes continuous functions on M. Then there exists a C 1 neighborhood U of X, a submanifold N ⊂ C 0 X (M, M) and a C 1 map :S : U -→ N × C 0 (M) (5.10) Y -→ (ΦY , hY ) (5.11)satisfying the structure equation :(Φ -1 * Y hY )Y = ΦY * X (5.12)where (ΦX , hX) = (Id, 1) ∈ C 0 X (M, M) × C 0 (M ).The equation 5.12 follows from [53, equation (e) p. 592]DΦY (x, v) (X(x, v)) = hY (x, v) Y (ΦY (x, v)) ,(5.13)this implies that DΦY Φ -1 Y (x, v) X(Φ -1 Y (x, v)) = hY Φ -1 Y (x, v) Y (x, v) hence ΦY * X = Φ -1 * Y hY Y .The above equation means that flows in a neighborhood U of X are conjugated to the flow generated by X up to reparametrization of time, more precisely let ϕ t Y : M → M denotes the flow generated by Y ∈ U ⊂ C 1 (T M), then there exists τY ∈ C 0 (R × M) s.t. :

f 1 2

 1 • ϕ t n (xn, vn)dt = (γn) 0 f • Φn • ϕ τn(t,xn,vn) (x, v)dt → n→+∞ (γ) 0 f • ϕ t (x, v)dtby dominated convergence and since the periods (γn) → n→+∞ (γ) converge [50, Lemma 4.1 p. 11] and (γ) (γn) 2 (γ) for all n Nγ [50, Remark 3]. It follows that the sequence of currents δγ n will converge to the limit current δγ in the sense of Radon measures.

  1.1. Main results. Recall we defined the formal product tn of Green functions in definition 1.2. For a compact operator A, we will denote by σ(A) the set of singular values of A. Our first result reads : Proposition 1.4. Given a closed compact Riemannian manifold (M, g) of dimension 2 d 4, a function V ∈ C ∞ (M ), define the sequence of numbers cn(g) = M n tn(x1, . . . , xn)V (x1) . . . V (xn)dvn, where dvn is the Riemannian density in |Λ top |M n . Let φε = e -ε∆ φ be the heat regularized GFF, :

which is an equality in the sense of distributions in D (R>0)

It is claimed in[START_REF] Croke | Local boundary rigidity of a compact riemannian manifold with curvature bounded above[END_REF] that the Theorem holds true for metrics whose geodesic flow has one dense orbit