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Abstract—Named Data Networking (NDN) is a disruptive yet
promising architecture for the future Internet, in which the
content diffusion mechanisms are shifted from the conventional
host-centric to content-centric ones so that the data delivery
can be significantly improved. After a decade of research and
development, NDN and the related NDN Forwarding Deamon
(NFD) implementations are now mature enough to enable stake-
holders, such as telcos, to consider them for a real deployment.
Consequently, NDN and IP will likely cohabit, and the Future
Internet may be formed of isolated administrative domains, each
deploying one of these two network paradigms. The security
question of the resulting architecture naturally arises. In this
paper, we consider the case of Denial of Service. Even though
the Interest Flooding Attack (IFA) has been largely studied and
mitigated through NACK packets in pure NDN networks, we
demonstrate in this paper through experimental assessments
that there are still some ways to mount such an attack, and
especially in the context of coupling NDN with IP, that can hardly
be addressed by current solutions. Subsequently, we leverage
hypothesis testing theory to develop a Generalized Likelihood
Ratio Test (GLRT) adapted to evolved IFA attacks. Simulations
show the relevance of the proposed model for guaranteeing the
prescribed Probability of False Alarm (PFA) and highlights the
trade-off between detection power and delay. Finally, we consider
a real deployment scenario where NDN is coupled with IP to
carry HTTP traffic. We show that the model of IFA attacks is
not very accurate in practice and further develops a sequential
detector to keep a high detection accuracy. By considering data
from the testbed, we show the efficiency of the overall detection
method.

Index Terms—Computer networking attack, Interest flooding
attack, DDoS detection, Hypothesis testing, Named Data Net-
working.
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I. INTRODUCTION

OVER the last few years, the amount of traffic on the
Internet has kept increasing due to a wider range of

connected devices, as well as bandwidth-consuming services
and the amount of content they generate1. Such growth has put
high pressure on the underlying infrastructure which has been
invented decades ago with a different use of the Internet in
mind. Recent research efforts to confront this challenge have
resulted in several disruptive network architectures. Among
them, Information-Centric Networking (ICN) [1], [2], and
particularly Named Data Networking (NDN) [3], [4] has been
regarded as the most promising Internet architecture for the
future. It is advocated that, by moving from the conventional
host-centric content diffusion mechanisms to content-centric
ones, the data delivery can be more efficiently optimized.
Specifically, in such a network, each content object is given a
name which can be addressed at the network level by network
elements, instead of the hosts’ Internet Protocol (IP) address.
To improve the delivery of popular data, contents can be
delivered in a multicast manner and from any nodes, thanks
to stateful NDN routers with a caching capability.

After a decade of research and development, the NDN archi-
tecture together with its forwarding daemon implementation is
now widely acknowledged as the most mature ICN proposal,
and the most promising solution regarding real deployment
considerations. Similarly to IPv6 which has been progressively
introduced and which cohabits with IPv4, the most credible
scenario for an NDN deployment will most likely consist of
dedicated domains, each composed of a single protocol stack,
altogether interconnected by dedicated gateways. Although the
security of each individual protocol stack has been largely
studied, the question of their coupling remains open and
challenging. In this paper, we consider the case of Denial of
Service which, in such a deployment context, can be inefficient
in an IP domain due to the stateless nature of the protocol,
while being wasteful in an NDN one due to its stateful
nature [5], as assessed by the NDN board2.

In this paper, we study the statistical detection of Interest
Flooding Attack (IFA) in the realistic context of NDN coupled

1See: Cisco Visual Networking Index (VNI) 2017.
2See: named-data.net/project/faq/
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with IP and altogether carrying Hyper Text Transfer Protocol
(HTTP) traffic issued by IP hosts. The problem is cast within
the framework of hypothesis testing theory. As opposed to
machine-learning based approach, hypothesis testing requires
an accurate statistical model of the problem it is aimed at
detecting. However, this methodology has indisputable ad-
vantages including assessment of the test performance and
interesting insights on how the parameters affects the de-
tectabiltiy. To the best of our knowledge, this approach has
only been used for IFA detection in our prior works [6], [7],
[32] that the present paper intends to extend. The present paper
proposes to make a step toward the practical application of
those prior works by using realistic data, obtained from a real
deployment in a testbed environment, where web content is
retrieved through an NDN island coupled with existing IP
networks. The contribution of the present paper is detailed
in Section II-D, the main ones are the following:
1. We argue for the persistence of IFA’s threat in NDN by
revealing an IFA scenario that succeeds even with the existence
of NDN protection mechanisms, and assess the attack scenario
by providing the results of experimentations conducted on the
last NDN implementation available to date. Note that almost
none of the previous works, and especially our prior works,
considered such protection mechanism.
2. We design an optimal Likelihood Ratio Test (LRT) of IFA
in the theoretical case of a perfectly known legitimate traffic.
The optimality of this statistical test is ensured no matter what
the attack payload is. This test serves as an upper bound of
the expected detection accuracy for IFA.
3. We propose a parametric statistical model upon which is
designed a practical Generalized LRT (GLRT) for the scenario
where the legitimate traffic is unknown.
4. We extend our detector to increase its accuracy by develop-
ing a sequential version based on the initial snapshot GLRT.
Using a sequential approach is almost necessary because it
is shown, in this paper, that in a real implementation the
effect of IFA is much less obvious as what has been assumed
from simulations; therefore, gathering evidence from several
samples is crucial.
5. We assess the overall performance of our detection solution,
using both simulations and real experimentations. Simulation
results first allow us to evaluate intrinsic properties of our
detection approach. The statistical properties of the proposed
GLRT are then evaluated with real data collected from the
deployed attack scenario. As far as we know, such a real
deployment has never been done before in any previous
work. This allows us to compare the theoretical findings with
empirical results as well as to compare the performance of our
proposal to other detection methods.3

The rest of the paper is organized as follows. Section II
presents a background on NDN, on IFA and how previous
works address it. Section III summarizes our previous work
of investigating IFA in native NDN and introduces the newly
investigated use-case of NDN coupled to HTTP, as well as the
IFA scenario regardless of the NACK existence. Section IV

3The source codes and data used in the paper will be made freely available
for reproducible research.

presents, step by step, our design for the IFA detection using
the hypothesis testing theory including a detection problem
statement, an optimal detection when traffic parameters are
known, a generalized detection when traffic parameters are
unknown and finally, a sequential detection. In Section V, the
proposed detection method is assessed with simulated data to
show the relevance of the theoretical findings, followed by
an evaluation with real data, to demonstrate the efficiency
and accuracy of the detection method. Finally, Section VI
concludes the paper and discusses future work.

II. RELATED WORK

In this section, we provide an NDN background and present
the principle of IFA. Then, we survey a set of remarkable
proposals which aim at detecting and mitigating this attack.
Also, we pay particular attention to an NDN protocol enhance-
ment whose purpose is to solve the IFA intrinsically. Finally,
we motivate our proposal with regards to all the previously
identified competitors in this area.

A. Named Data Networking

ICN is a networking paradigm which is based on data
objects. The key concept in ICN is that it names each data
object in the network, instead of using IP addresses for naming
hosts and nodes. ICN also deploys in-network caching to
enhance the delivery of popular data objects. Besides, a node
in ICN does not have to connect to one specific server to
get data. Alternately, this node sends a request with the data
name and the network will return the corresponding object,
either from a cache or from the original provider. Based on
these concepts, many ICN architectures have been introduced,
including Data-Oriented Network Architecture (DONA) [8],
Publish-Subscribe Internet Technology (PURSUIT) [9], Net-
work of Information (NetInf) [10] and NDN [3] which is the
most popular and acknowledged in the research community.
Beyond its novel architectural principles, NDN has been fully
implemented. Tools such as the ndnSIM [11] simulator and
the NDN Forwarding Daemon (NFD)4 have been developed
that serve as reference implementations.

In NDN, communications are based on requests for hierar-
chical content names and are performed by Interest and Data
packets. A user sends an Interest to request a content and
receives a Data in return. An NDN router includes three main
components. First is the Forwarding Information Base (FIB)
which contains routing information for Interest. Secondly, the
Content Store (CS) is essentially a local cache which stores
recently requested Data to improve performances. Finally,
the Pending Interest Table (PIT) contains entries for each
forwarded Interest, and uses them as reverse-path routing
information for Data. A PIT entry contains an NDN name
and multiple incoming interfaces.

Fig. 1a illustrates the Interest forwarding. When an NDN
router receives an Interest, it checks the CS first. If a cached
copy exists, the router sends this copy back to the incoming
interface. If a cached copy does not exist, but a PIT entry

4See: named-data.net/doc/NFD/current.

http://named-data.net/doc/NFD/current/
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(a) Interest forwarding process

(b) Data forwarding process

Fig. 1. NDN forwarding process for (a) Interest and (b) Data packets

for this content name has already been created, the Interest’s
incoming interface is added to this entry and the Interest is
dropped. Otherwise, a new entry is created, and the Interest
is forwarded using the routing information in the FIB. If no
matching route is found, the Interest can be discarded or
broadcast, depending on the routing policy of the router.

Similarly, Fig. 1b presents the Data forwarding process.
When an NDN router receives a Data packet, it checks the PIT.
If a matching PIT entry is found, it caches the Data before
forwarding it to all the corresponding interfaces in the PIT
entry, and then this entry is removed. If there is no matching
PIT entry, it means that the NDN router did not request this
Data, hence the Data drop. One can note that there are several
reasons why a Data may not match any PIT entry, among
which: (1) received Data may violate specific requirements
stated in the Interest (for instance users can specify that Data
must be fresh or exclude some versions) (2) PIT entry may
have been removed either because it has already been resolved
or due to too long a response delay and (3) the Data is
received from an interface which is different from the one
over which Interest has been forwarded. This last case has
been studied in [12], leveraging the fact that a router cannot
verify all signatures [13], to implement an attack in which
an attacker can poison responses and consequently related in-
network caches, by sending unsolicited corrupted data for any
random (popular) content name.
The whole process ensures that one Interest results in only
one Data packet.

B. Interest Flooding Attack

New network components and protocols come with novel
potential attacks and NDN is not an exception, even though
it is based on the paradigm of security-by-design [14], [15].
The most important threats identified in NDN are related to
privacy [16], due to the in-network data caches, content forgery
or pollution [13] to fool their popularity, and PIT overloading
[17]. Detailed reviews on NDN security can be found in [18],
[19].
In this paper, we focus on an attack that aims at overloading
the PIT and referred to as Interest flooding attack (IFA).

Roughly speaking, it essentially is a variation of the Denial
of Service (DoS) attack in NDN [20]. The principle of IFA
consists in sending a lot of malicious Interest packets for non-
existent contents. Such Interests cannot be resolved by any
Data. Hence, the corresponding PIT entry cannot be removed.
When the PIT is overloaded, new Interest packets cannot
be handled because there is no more room to create a PIT
entry and they are thus dropped. This attack can have serious
consequences on the network. Given that Interests for non-
existing content are extremely easy to generate, they can cause
large-scale damages on the network infrastructure.

1) Detection and Mitigation: Several solutions for detect-
ing and mitigating IFA have been proposed to date, see for
instance [18] for a recent review. In [21], Dai et al. present
their Interest trace back mitigation strategy. When the PIT’s
size exceeds a threshold, a spoofed Data is created by the
NDN router to respond to a long-unsatisfied Interest. These
Data are eventually forwarded back to the source of the attack
by tracing PIT entries. At the same time, NDN routers also
limit the incoming packet rate of interfaces to which they send
spoofed Data.

In [22], Tang et al. identify the compromised name prefixes
used to launch IFA and then announce these malicious prefixes
to neighbors. There are two phases in this identification pro-
cess: rough detection and accurate detection. In the first phase,
malicious interfaces are detected by computing a satisfaction
ratio, a ratio between the number of outgoing Data and
incoming Interest on an interface. When this ratio exceeds
a threshold, the interface is considered under attack. The
threshold of this phase is preconfigured for all cases. In the
accurate detection phase, expired Interests on the reported
interface are recorded. The prefix that has the largest expired
ratio is considered hostile.

Having the same idea of using statistics to identify harmful
interfaces, the Poseidon approach [23] maintains two mea-
surements: the satisfaction ratio and the PIT space used up
by Interest from each interface. Once an alarm occurs, an
NDN router issues an alert message to its neighbors on the
malicious interface. When an NDN router receives an alert,
it also triggers the same countermeasure but with a lower
threshold, to better identify the compromised interface.

Among previously mentioned detection and mitigation pro-
posals, the satisfaction-based push back [24] is the most
notable one. This proposal is similar to Poseidon: routers ex-
change announcements to neighbors and adjust their reactions
based on these messages. Although this solution monitors the
satisfaction ratio, it does not have a separate detection phase.
The ratio is used to calculate periodically Interest limits in
announcements between routers.

A fundamentally different approach has been proposed
in [25] which questions the necessity of the stateful nature
of ICN. Given IFA’s attack mechanism, the authors show that
if the NDN protocol is modified into a stateless fashion, the
IFA attack becomes much less efficient. However, this solution
requires redesigning the whole NDN concept and is only
evaluated with IFA designed for an NDN stateful protocol.

It is also noteworthy that several prior works, such as [26],
[27], proposed to study statistical methods for IFA detection.
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In [26] the author proposed to use the well-known Gini
coefficient to measure a side effect of IFA: the discrepancy in
the range of requested content. The authors in [27] use a model
of the IFA attack in the time-frequency domain using wavelets
transform. Based on a statistical model of lower frequencies
sub-band, a simple statistical method is proposed.

2) NACK packet: Though all those works constitute inter-
esting solutions for IFA detection and mitigation, a recent
update in NDN implementation prevents Interests to remain
awhile in the PIT: instead of addressing a standalone solution
against IFA, the authors of [28] proposed to extend the NDN
forwarding mechanism by introducing the NACK packet. This
mitigation is noteworthy since it is integrated into the NDN
reference implementation since its version 0.5.1 and poten-
tially deprecates all previous detection proposals in this area.
Indeed, as noted in [29], the implementation of NACK prevents
all attacks scenario in which it is assumed that an Interest for a
non-existing content will stay a very long time, if not forever,
in the PIT since a NACK packet for such Interest will be
issued. When an NDN router can neither satisfy nor forward
an Interest, a NACK is sent to downstream routers with an
error code. There are three NACK error codes implemented,
namely (1) Duplicate, (2) Congestion, and (3) No Route. The
first code indicates that the router is still waiting for the Data
of an identical Interest packet. The second one implies that the
Interest cannot be forwarded due to congestion occurring on
the outgoing link and the last one means that the router does
not have any eligible route in FIB to forward the Interest. As
such, downstream routers can adapt their sending rates to avoid
overloading the upstream. Also, it helps downstream routers
determine the cause of NACK to decide further forwarding
strategies. Besides, NACK prevents Interest messages carrying
names of non-existing content from being forwarded further
to occupy other routers’ PIT.

Although NACK is an effective mechanism to mitigate IFA,
there are still several limitations. First, the NACK mechanism
is based on the Interest prefix to mitigate the overload. If
an attacker can send Interests with different prefixes, the
router must issue a NACK for each prefix. Such a reaction
can be burdensome while it could be more efficient to limit
the sending rate of the face under attack. Secondly, using
NACK means that a router’s forwarding strategy depends on
its upstream. A malicious upstream can hence add a delay to
its response to postpone the sending of NACK to downstream,
thus enabling a vulnerability for IFA. Finally, dealing with a
non-existing name may be time-consuming, especially when
several routes are available because the router will try all
available routes before giving up and sending a NACK to
downstream [28].

C. Common Limitations of Prior Works

Though the topic of security in ICN and NDN in particular
has been widely studied, all prior works share three funda-
mental limitations. First of all, they were all designed and
assessed in a purely simulated setup. While simulations may
be very useful, real-life experimentation is crucial to evaluate
the efficiency of a solution in practice. The real deployment

of an NDN network, coupled with the legacy Internet based
on IP, is extremely time consuming but worth considering;
this explains why almost all prior works on IFA detection
and mitigation, see for instance [25]–[27], and in general on
solutions for NDN security issues, see for instance [30], [31]
did not make this final step. But, as shown in the present paper,
the efficiency of a detection method measured in a completely
simulated environment may hardly transfer into real life. In
fact, it is somewhat superficial to design a detection tool
under several assumptions on network traffic and to assess the
proposed detection scheme under exactly the same conditions
(simulated). In this paper we observed, for instance, that in
real environments the traffic under an IFA attack greatly differs
from the widely used and simplistic model of mere increase
in loss-packet rate and that this may deprecate almost all prior
works on IFA detection and mitigation.
Another common limitation of almost all prior works lies in
their unknown performance. Indeed, even statistical methods,
such as those proposed in [26], [27] are only evaluated
empirically and, again, in simulated environments. Empirical
evaluations, on their own, do not allow to guarantee any
reliability of the results whose properties are unknown when
practical setup is changed. The main limitation of detectors
whose statistical performance is not analytically established is
that they can meet a prescribed false alarm rate while, given
the amount of network components, this is unacceptable for
practical application.

Eventually, for a disruptive architecture like NDN, it is
highly unrealistic to assume that it will completely replace
IP networks all of a sudden. Indeed, NDN will likely coexist
with current network architectures before being deployed at
large scale. As such, dedicated gateways enabling the seamless
translation of traffic crossing different protocol stacks will be
implemented and deployed. They will undoubtedly alter the
network traffic behavior and thus need to be considered in the
scenario an attacker plans to implement. This phenomenon
is particularly relevant given the stateless nature of the IP
protocol as opposed to NDN which is of a stateful one.
However, most previous works on IFA validate their solutions
in pure NDN networks, thus questioning their performance in
a real deployment.

D. Contribution of the Present Paper

The present paper addresses the three fundamental limita-
tions of prior art stated in the previous Section II-C. First
of all, by using the statistical hypothesis testing theory, we
overcome the drawback of detection approaches designed
and evaluated over solely empirical evaluations. It is thus
proposed to design a detector with a well-defined threshold
that is calculated according to the user desired false-alarm
rate that works independently on each router. We show that
the proposed method allows the guaranteeing in practice of
a prescribed probability of false-alarm (PFA) as well as the
accurate calculation of ensuing statistical power.
Second, as described in Section II-C, shifting from simulated
to real data traffic is not straightforward. We have implemented
the proposed detection method into a real testbed and found
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that the simple model for IFA network traffic is not accurate.
This requires modification on the model used to build and
extract IFA attack footprints. Eventually, for maintaining high
performance, it is proposed to cast IFA detection within
a sequential framework, meaning that the detection is not
only carried out for each sample independently but also uses
previous results to improve the detection accuracy.
Finally, our work addresses a credible deployment scenario in
which NDN is integrated into the current Internet through ded-
icated islands interconnected with application layer gateways
(i.e. HTTP to NDN and inversely in our paper). This scenario
is from our perspective relevant since (1) it stands for one of
the most credible options to date for an NDN deployment (2) it
is easily achievable by an attacker operating some IP hosts (no
need to perpetrate some intrusive actions to directly act on the
NDN island) and (3) it exhibits a perfect normal appearance
regarding an IP network, due to is stateless nature, while being
wasteful for the sole NDN island. One can also note that the
presence of the application layer gateways change the way the
packets are generated and forwarded. As such, all attacks, as
well as related detection solutions, must be reinvestigated as
compared to IFA attacks perpetrated over pure NDN networks.

The present paper is based on our prior works [6], [7], [32]
that study the IFA detection using hypothesis testing theory.
The proposed statistical test is thus similar to those from
our prior work. However, those prior works only cover the
first aforementioned contribution and is only evaluated using
simulated traffic. The present paper extends, thus, our prior
papers [6], [7], [32] into the following directions. Firstly, by
leveraging the implementation described in [32] to generate
real traffic in NDN islands, it applies and evaluates the
proposed statistical method for IFA detection into conditions
which are as close as possible to what could happen in
a real operated network. Secondly, this work (1) integrates
application layer gateways that affect NDN traffic and (2)
circumvents NACK packets that intrinsically mitigate IFA
effects. By doing so, it is also shown that the network traffic
corrupted in the context of an IFA attack differs greatly from
what has been assumed so far in pure NDN networks and this
requires modification of the detection method.

III. REVISED INTEREST FLOODING ATTACK SCENARIOS

In this section, we take into account the existence of NACK
packets and investigate the feasibility of IFA scenarios in the
literature within the context of (1) native NDN and (2) NDN
coupled with the current IP network.

A. Circumventing NACK for IFA

To inspect IFA’s impact in a native NDN network with
NACK, we implemented a basic test environment with a single
NFD node and monitored its PIT size’s evolution. As the
PIT gets overloaded, the NFD process crashes. Currently, no
protection scheme can prevent such a phenomenon. Therefore,
we consider this event, called the PIT collapse point, as an
indicator of a successful IFA in native NDN. In this subsection,
we reveal credible scenarios to collapse the PIT, and feature
factors impacting this phenomenon.
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Fig. 2. NFD collapse point according to Interest rate and lifetime

1) Attack Scenarios: Among all the setups we have tested
to stress the router’s PIT, there are three scenarios leading to
an abnormal PIT increase or the node collapse point, described
as follows:
• Congesting the link between routers and the provider:
the attacker sends a large number of Interests in a short
time to congest the link between routers and the provider.
Consequently, the provider cannot send NACKs to notify the
router. Therefore, at the time of congestion, the router is under
attack without the presence of NACK.
• Accumulating PIT entries with No Data NACK: this
scenario exploits the vulnerability design of the No Data
NACK5, which allows the PIT to keep an Interest until its
lifetime expires even if it received a NACK [28]. The PIT
entry is removed only when the router has no available face
in FIB to send the Interest.
• Delaying the response with a malicious provider: an
attacker-controlled provider will delay the response of Inter-
ests. The delay should be relatively long to occupy routers as
long as possible and must be lower than the Interest lifetime so
that NACK is not sent. Consequently, the downstream will not
receive any NACK packet while its PIT accumulates entries.

2) Impacting factors of the PIT overload phenomenon:
Based on the scenarios presented, we identified the factors
that augment the attack impact. We selected the second
scenario because it stands for the straightest case for an
attacker to exploit vulnerabilities in the current NDN design
and its NFD implementation. The results show that the attack
effectiveness is impacted by the following factors:
• Attack power: Given by Interest’s lifetime and the attack
rate in Interest per second, these factors facilitate the reach
of the PIT collapse point [33]. A collaborated malicious
user can flood NFD with large Interest lifetime values to
multiply the IFA impact and currently there is no protection
in NFD to prevent this phenomenon. The results of these
experiments are depicted in Fig. 2 which presents an expected
behavior, with a constant limit in terms of the number of
Interest featured by an attack rate inversely proportional to
the Interest lifetime. These results also assess the potential
vulnerability of NDN to the accumulation of PIT entries in
case of No Data NACK. It mainly shows that an attacker can
perform flooding attacks with a small Interest rate by merely

5At the time of our previous work, the NACK is implemented with No Data
code, not with No Route code as currently
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Fig. 3. NFD collapse point according to the number of prefix levels

extending the Interest lifetime.
• Number of prefix levels: The naming convention of NDN
follows a hierarchical scheme, which is similar to URI and
currently, there is no limit to the number of prefix levels. To
measure the impact of this factor, we have created prefixes
with various levels with a constant length of 522 characters.
The result of Fig. 3 shows that an increase in the number of
prefix levels drastically reduces the PIT collapse point; even
worse, this phenomenon seems non-linear, and can affect the
PIT size, in terms of the number of Interests, by three orders
of magnitude when the number of prefixes levels increases
by 100. To the best of our knowledge, the importance of
this factor’s impact has not been identified to date. Thus, it
introduces an easy-to-exploit flaw that the attacker can use to
perform an IFA with limited resources.
• Length of Interests: Since the implementation of the PIT
in NFD is designed as a data structure hosted directly in
the NFD process memory, the length of Interests names
exhibits a clear impact on the PIT collapse point. Hence, the
more complex the Interest name, the more memory space is
required.
• Memory allocation: The memory capacity allocated
to the NFD process has an important impact on the PIT
capacity. Our experiments show that the PIT collapse point is
proportional to the amount of allocated memory.

B. Implementing IFA over an NDN Island Deployed in the
Current Internet

1) On the Coupling of NDN with IP: As a credible deploy-
ment scenario for NDN, we investigate a use-case where an
Internet Service Provider (ISP) couples an NDN network to
the existing IP network to provide the HTTP service to users,
as illustrated in Fig.4. Addressing web services is a relevant
step toward the integration of NDN into the existing networks
because it is among the most popular on the Internet. In this
scenario, an NDN island is deployed inside the ISP’s core
network to leverage the benefits of its caching system and low-
latency data delivery for a substantial part of traffic. Thanks
to recent virtualization techniques (e.g., Network Function
Virtualization), NDN routers can be deployed without the need
for dedicated hardware or causing interruptions to existing ISP
networks.

As the current Internet and web users do not implement
NDN, their IP traffic is forwarded to dedicated gateways [34]

Fig. 4. Context of NDN coupled with HTTP application

which translate HTTP traffic to NDN traffic and vice versa.
Two types of gateways are necessary to translate HTTP traffic
over IP into NDN packets: ingress gateway (iGW) and egress
gateway (eGW). The operation of iGW and eGW is briefly
demonstrated in Fig. 5. When an HTTP request arrives at
iGW (arrow 1), it is translated into Interests and injected in
the NDN network. Interests that cannot be satisfied by NDN
routers’ cache will reach the eGW. The eGW checks Interest’s
name for fragmentation and retrieves remaining chunks of the
HTTP request if needed (arrows 3 and 4). After that, the
eGW reconstructs the original HTTP request and sends it to
the corresponding HTTP server (arrow 5). When an HTTP
response arrives (arrow 6), the eGW converts it into Data
packets and sends them into the NDN network, reaching the
iGW (arrow 7). The first Data is considered as a response
to the Interest from the arrow (2). The eGW also includes
information about fragmentation in the Data name, so that the
iGW can retrieve remaining chunks of the HTTP response
(arrows 8, 9). Afterward, the iGW reconstructs the HTTP
response and delivers it to the client. All of these operations
and the existence of the NDN island is entirely transparent to
network users. Hence the users can still experience the benefits
from NDN without any adaptation effort from their side.

2) Proposed Attack Scenario: Fig. 5 reveals an exploitable
flaw to corrupt the NDN network: after a long enough delay
between the HTTP request and the corresponding HTTP
response (arrows 5 and 6), the first Interest (arrow 2) expires.
Hence, the first Data (arrow 7) is considered unsolicited and
rejected by iGW. As such, only the third attack scenario
identified in section III-A1 enables an attacker to implement
an IFA in the operational context presented above. More
precisely, by leveraging a botnet or an equivalent means, the
attacker can own the control of multiple web users and a
malicious web server on the Internet (see Fig.4). Attacker-
controlled users will browse for the website hosted on the
malicious server. With the existence of NACK packets, the
attack relies on intentionally adding a large delay to the
response from the malicious server so that Interests exchanged
in the NDN core network will linger in the router as long as
possible. Moreover, by using a malicious server and delaying
its response, the attacker can bypass the protection mechanism
against IFA of NACK packet. Furthermore, since malicious
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HTTP client iGW eGW HTTP server

IP NDN IP

(1) HTTP request
(2) Interest:

/eGW/get/uri/2/1
(3) Interest:
/iGW/get/uri/2/2

(4) Data:
/iGW/get/uri/2/2

(5) HTTP request

(6) HTTP response

(7) Data:
/eGW/get/uri/2/1/etag/2/1

(8) Interest:
/iGW/get/uri/2/1/etag/2/2

(9) Data:
/iGW/get/uri/2/1/etag/2/2

(10) HTTP response

Fig. 5. Interaction between ingress and egress gateway

requests occupy NDN routers during the attack, legitimate
users will suffer longer delays when accessing a website.
It is also important to note that the use of NDN/HTTP
gateways may slightly increase the delay to respond legitimate
Interests. However, as noted in [34], the additional delay
due to NDN/HTTP translation seems negligible. Besides, this
additional delay affects all Interests (both legitimated or IFA
generated). Eventually, it is worth noting, as a possible future
work, that while NDN/HTTP gateways may allow novel attack
vectors, those are outside the scope of the present paper which
focuses on IFA attack.

IV. INTEREST FLOODING ATTACK DETECTION

This section presents our proposal to address the case of IFA
detection. It first focuses on the local instantaneous detection
for a given interface of a given router, assuming that the packet
loss rate is known a priori. Then, we extend the local detection
to address the case where the packet loss rate is unknown. To
further enhance the detection accuracy, a sequential detection
is presented. For the sake of clarity, the notation is simplified
by omitting the index of the interface and the router.

A. Definitions

In the following, the number of incoming Interest packets
and outgoing Data packets at an instant t, denoted as it and
dt respectively, are measured for each router’s face. Ideally,
each incoming Interest at a face should result in one outgoing
Data packet. However, in any networks, part of the packets
could be lost (even under regular legitimate uses, due to either
transmission error, congestion or faulty hardware or cabling).
Hence, let

`t = 1− dt
it

=
it − dt
it

(1)

be the measured packet-loss (unresolved Interests) rate at the
instant t. It is worth noting that the ratio `t, see (1), represents
the packet loss rate under the assumption the round-trip-time is
small compared to the sampling period. Additionally, the loss
packet rate ratio is negligibly affected by interests resolved
over the next sampling period since those are compensated by
the number of data packets associated with interests from the
previous sampling period. This phenomenon is also taken into
account in the present work which assumes that responses to

Interests are a random process.
Following the model proposed in [23], [24], it is assumed that,
at the instant t, all Interests have the same probability of not
being resolved, denoted as pt. Under normal situation, such
probability should correspond to the expectation of measured
packet-loss rate, i.e., E(`t) = pt. Therefore, dt should follow
a binomial distribution B(it, 1−pt) with expectation E(dt) =
it(1−pt). By contrast, when IFA occurs, a significant number
of Interests are sent to the pirate server, resulting in an abrupt
increase of the packet-loss rate `t.

To model the impact of IFA, let us denote Na the number
of malicious Interests sent, per unit of time, during the IFA
by attacker-controlled hosts besides the legitimate Interests,
denoted as i?t . Hence, the IFA can be characterized by an
increase in the number of incoming Interests:

it = i?t +Na. (2)

One should note that it is impractical to distinguish legitimate
Interests i?t from the whole flow of Interest packets it. More-
over, because the Na additional malicious Interests cannot be
responded to, the expectation of overall packet-loss rate is
increased as follows:

a = E(`t)− pt =
(1− pt)Na
i?t +Na

. (3)

The above relation comes from the fact that, whether an IFA
is currently happening or not, the expected number of Data
packets received at a given face remains the same:

(1− pt)i?t = E(dt) = (1− pt − a)(i?t +Na),

⇔ (1− pt)Na
i?t +Na

= a.

B. Detection Problem Statement

To facilitate the problem description, let us assume that
the expected packet-loss rate pt is known. According to the
characterization in Section IV-A, the IFA detection problem
consists in choosing between two hypotheses: H0: “the num-
ber of incoming Interests it and outgoing Data packets dt
are consistent with what is expected from pt” and H1: “dt
is significantly lower than what is expected from it and pt”.
Those two can be written formally as a choice between the
following statistical hypotheses:{

H0 : dt ∼ B (it, 1− pt) ,
H1 : dt ∼ B (it −Na, 1− pt) , Na > 0.

(4)

Formally, a statistical test is a mapping δ : R 7→ {H0;H1},
i.e., hypothesis Hi , i ∈ {0, 1} is accepted if δ(x) = Hi
(see [35] for a thorough introduction to hypothesis testing).
We focus on the Neyman-Pearson bi-criteria approach that
simultaneously aims at guaranteeing a prescribed Probability
of False-Alarm (PFA) while maximizing the power function
(or correct detection probability). Let Pi(E) , i ∈ {0, 1} be
the probability of the event E under the hypothesis Hi. For
a prescribed PFA α0, the Neyman-Pearson approach aims at
finding a test δ whose PFA is upper bounded by α0. Hence,
let:

Kα0
= {δ : P0[δ(`t) = H1] ≤ α0} , (5)
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be the class of all tests whose PFA are upper bounded by α0.
The goal is to find in Kα0 a test that maximizes the power
function, or correct detection probability, formally defined by:

βδ = P1[δ(`t) = H1]. (6)

The hypotheses formulated in (4) highlight the main dif-
ficulties of the present testing problem. First, we note that
the IFA implies a change in both expectation and variance
of the measured loss-packet rate `t. Secondly, the parameters
of attack payload Na or a (see (2) and (3)) are unknown.
Ideally, the test δ should be Uniformly Most Powerful (UMP),
that is it should maximize the power function βδ , regardless
the attack payload a [35, Chap.3]. Unfortunately, UMP test
scarcely ever exists. Thirdly, the greatest difficulty is that the
expected loss-packet rate is unknown in practice. It therefore
has to be estimated from data and this problem is studied in
detail in Section IV-D.

C. Optimal Likelihood Ratio Test for Known Loss Rate

This section presents the theoretical optimal Likelihood
Ratio Test (LRT) and assesses its statistical performance. Since
the binomial law belongs to the exponential distribution family,
there exists a UMP test that is given by the following decision
rule, see [35, Corollary 3.4.1]:

δ?(dt) =

{
H0 if dt ≥ h(it; pt),

H1 if dt < h(it; pt),
(7)

where the threshold h(it; pt) depends on both the number of
Interests packets it and expected pack-loss rate pt, so that
δ? ∈ Kα0

(5). However, evaluating the statistical properties
of a test such as (7) is hardly possible. Besides, the decision
threshold must always be recomputed because it depends on
parameters it and pt that change at each instant t. In short,
though a test such as (7) is simple to build, it is hardly usable
in practice.

Therefore, it is possible to simplify the IFA detection
problem by applying the central limit theorem (CLT) [35,
Theorem 11.2.5], assuming that the number of Interests sent
it is large, which is a usual case for a router face. Hence, dt
under H0 can be modeled as:

dt  N (it(1− pt), itpt(1− pt)) , (8)

where represents the convergence in distribution as it tends
to infinity. Let us define the residual packet-loss rate rt as the
difference between observed and expected loss rates: rt =
`t − pt. Under H0, the residual one will be:

rt =

(
1− dt

it

)
− pt  N

(
0,
pt(1− pt)

it

)
. (9)

On the opposite, when an IFA happens, the residual tends to:

rt  N
(
a ,

pt(1− pt)
it

− Napt(1− pt)
i2t

)
. (10)

Let us denote σ2
t the variance under H0 and σ2

a the decrease
of variance due to the IFA:

σ2
t =

pt(1− pt)
it

, σ2
a =

Napt(1− pt)
i2t

=
apt
it
. (11)

Interestingly, the two terms from variances in Eq. (9)-(10) find
their origin in distinct phenomena. On the one hand, σ2

t is a
directly related random aspect of packet resolution while, on
the other hand, the term σ2

a is due to the fact that IFA attack
Interests surely generate no Data back which thus “reduces
the randomness” of measured packet-loss rate.
One can note that the decrease of variance is due to the
increase of it during the attack, i.e., from it = i?t in (9) to
it = i?t+Na in (10) while the number of received Data packets
does not change. It follows from Eq. (9) - Eq. (10), that the
testing problem (4) can be reformulated as:

rt ∼

{
N
(
0, σ2

t

)
under H0,

N
(
a, σ2

t − σ2
a

)
under H1.

(12)

Equation (12) shows that parameter a completely characterizes
the impact of IFA on packet-loss rate, hence it is used in the
remaining of this paper to quantify the attack payload.

Based on the previous equations (8) – (12), it is now
possible to define an optimal test for IFA detection as stated
in the following theorem:

Theorem 1. With rt defined as in (9), the following test:

δ?(rt) =

{
H0 if rt ≤ τ?,
H1 if rt > τ?,

(13)

is an Asymptotically Uniformly Most Powerful (AUMP) test
for the testing problem (4).

Proof. The proof provided in Appendix A demonstrates the
asymptotic optimality of the test (13).

As previously discussed, the application of the CLT (9)
allows establishing the statistical properties of the optimal
UMP test, presented by the following proposition:

Proposition 1. Assuming that the number of Interests it tends
to infinity, for any prescribed PFA α0, the decision threshold,
τ?, given by:

τ?(α0) = σtΦ
−1 (1− α0) , (14)

guarantees that the test δ? (13) is in Kα0
. Here Φ and Φ−1

are the standard normal cumulative distribution function and
its inverse function, respectively. Using the decision threshold
given in (14), the power function of the UMP test δ? (13) is
given by:

βδ?(a)=1−Φ

(
τ?(α0)−a√
σ2
t −σ2

a

)
. (15)

The assessment of the statistical performance of AUMP
test δ?(rt) serves as an upper bound on the detection per-
formance one can expect from any practical IFA detection
method. Another interesting aspect of the proposed asymptotic
approach is that it is possible to set a threshold satisfying a
prescribed PFA. This threshold only depends on the desired
PFA α0, it and pt which are all known. This approach
simplifies the problem of dealing with a binomial distribution
whose cumulative distribution function is difficult to compute.
However, a notable consequence of the underlying binomial
distribution is that the residual packet-loss rate rt has both its
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expectation and its variance impacted by the IFA. Hence the
power function of proposed AUMP test not only depends on
the attack payload a but also on the impact on the variance of
rt through the denominator

√
σ2
t − σ2

a.

D. Generalized Likelihood Ratio Test

This section addresses the case where the expected packet-
loss rate pt is unknown. In such a situation, a usual approach
consists in designing a Generalized LRT by substituting the
unknown parameter (the expected packet-loss rate pt in our
case) with its estimation using the Maximum Likelihood.

1) Packet-loss Rate Model: As a first step, it is pro-
posed to gather the N last measurements of packets-loss rate
`t = (`t−N+1, . . . , `t). Since the fluctuation of the packet-loss
rate is limited and smooth [36], [37], its expectation can be
modeled by a polynomial:

pt = Hxt, (16)

where H is a matrix of size N × q whose elements hn,j =
nj−1, n ∈ {1, . . . , N}, j ∈ {0, . . . , q − 1} and x =
(x0, . . . , xq−1) is the vector of the q coefficients of the
polynomial. Such a model has been widely used in signal
processing, see [38]–[41] for applications in Internet traffic
modeling and image processing.

Assuming that packet-loss rate measurements `t are sta-
tistically independent, it follows from previous asymptotic
distribution (8) that under the hypothesis H0, the observations
can be modeled as:

`t  N (Hxt , Σ0) , (17)

where Σ0 is a diagonal covariance matrix whose elements are
given by pu(1−pu)

iu
, u ∈ {t−N + 1, . . . , t}.

When an attack is started at the instant tth, the packet-
loss rate drops for the very last samples (before affecting all
inspected samples). Hence under hypothesis H1, as iT tends
to infinity, the packet-loss can be modeled as:

`t  N (Hxt − ava , Σ0 −Σa) , (18)

where Σa, as in Eq. (11)-(12), represents the variance decrease
due to the IFA generated Interests; va represents the number
of samples whose loss-packet rate is changed due to the attack
and is to be set according to the user’s desire since, as shown in
Eqs.(23)-(26) and in Section V-A there is a tradeoff between
quick and accurate detection; the user can set, for instance,
va = (0, 0, . . . , 0, 1)T , implying that only the very last sample
is affected by the IFA attack, for the quickest detection and can
set va = (0, . . . , 0, 0, 1, 1, 1, 1, 1)T to detect IFA footprint over
the 5 last samples with higher accuracy at a cost of delayed
detection.

Under the Gaussian distribution model, it is well known
that the maximum likelihood estimation of packet loss rate p
is equivalent to the least square estimation:

p̃t = H(HTH)−1HT `t. (19)

The ensuing residuals r are defined, as in Equation (9), as:

r̃t = `t − p̃t = H⊥`t, (20)

where H⊥ = IN − H(HTH)−1HT , with IN the identity
matrix of size N , represents the projection onto the orthogonal
complement of the subspace spanned by the columns of H.

2) Generalized Likelihood Ratio Test for Unknown Loss
Rate: Following the model of the packet-loss rate under each
hypothesis (17) - (18) and the definition of residuals r̃t (20),
the IFA detection problem for unknown loss rate can be
formulated as a choice between the following hypotheses:H0 : r̃t ∼ N

(
0, H⊥Σ0H

⊥T
)
,

H1 : r̃t ∼ N
(
aṽa, H⊥Σ0H

⊥T −H⊥ΣaH
⊥T
)
,

(21)

where ṽa = H⊥va is the obtained IFA footprint after estimat-
ing and removing the expected loss-packet rate (20). Here, it
can be noted that, as previously discussed in Section IV-C,
the IFA impacts both the expectation and the covariance of
the residuals.

As previously explained, by replacing in the LRT the
estimated packet-loss (19), it is proposed to design a GLRT
as follows:

δ̃(r̃t) =

{
H0 if ṽTa r̃t ≤ τ̃ ,
H1 if ṽTa r̃t > τ̃.

(22)

From the distribution of the residuals r̃ (21), it is straight-
forward that:

ṽTa r̃t  

{
N
(
0 , s20

)
under H0,

N
(
a‖ṽa‖22 , s20 − s2a

)
under H1.

(23)

where the GLR variance s20 under H0 and the decrease of
variance s2a under H1 are given by:

s20 = vTaH⊥Σ0H
⊥Tva, s

2
a = vTaH⊥ΣaH

⊥Tva. (24)

Similarly to Proposition 1, based on the distribution of the
GLR (23), we can establish the decision threshold and the
power function of the proposed GLRT:

Proposition 2. Assuming that the number of incoming Interest
it tends to infinity, for any prescribed PFA α0, the decision
threshold τ̃ given by:

τ̃ = Φ−1 (1− α0) s0, (25)

guarantees that the test δ̃ (22) is in Kα0
. Using the decision

threshold given in (25), the power function of the UMP
test (22) is given by:

βδ?(a) = 1− Φ

(
s0Φ−1(1− α0)− a‖ṽa‖22√

s20 − s2a

)
. (26)

From the power function (26), one can note that the loss
of optimality of the proposed GLRT is mainly caused by
the factor ‖ṽa‖22. This is explained by the estimation of
the unknown and dynamic packet-loss rate. When the IFA
starts, the packet-loss rate changes suddenly. However, a non-
negligible proportion of such change is modeled as a regular
change of the dynamic legitimate traffic.
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E. Sequential Detection

The tests presented in Sections IV-C and IV-D2 are devoted
to the analysis of a single router interface at a specific time t.
However, in practice it seems natural to increase the accuracy
of the proposed IFA detection by gathering consecutive sam-
ples. Indeed, the IFA footprint may be small enough to make
the detection difficult at once, and collecting evidence over
time may significantly ease the detection. Besides, as it will
be presented in Section V, the traffic under IFA attack is rather
different from the expected model of a “simple” increase in the
loss-packet rate: it increases the loss-packet rate but also makes
it very unstable, changing abruptly from very high to low
values. Therefore, a test based on a single measurement may
be quite inefficient in practice and, throughout a sequential
approach, it is required to collect evidence of an IFA attack
over several samples to overcome this behavior of loss-packet
rate. Another important reason to analyze the data sequentially
is to ease extending the proposed method over all interfaces
from all routers to make a global monitoring system that
can detect IFA. However, it is very unlikely that, when an
IFA starts, its detection will be efficient for all interfaces and
all networking devices at the same time. Hence, keeping a
record of previous results is crucial. Consequently, this section
presents an extension of the previously proposed “snapshot”
GLR test (22) by taking into account previous observations
within a sequential framework.

In the literature, the problem of change-point detection6

has been extensively studied. In brief, the sequential analysis
framework not only aims at detecting a specific event with
highest accuracy, regarding PFA and missed-detection proba-
bility but also introduces the delay as the third criterion of de-
tection performance. More formally, a change-point detection
scheme is defined by a stopping rule S(`1, . . . , `t) 7→ {0, 1}
such that the IFA is detected at first time St for which
S(`1, . . . , `t) = 1. Here, as in all that precedes, the values
`1, . . . , `t represent the loss packet rate, see Eq. (1), over
which the IFA detection is carried out. Let us denote ν the
IFA starting time and St ≥ ν the instant when the attack
is correctly detected. Thus, the detection delay is defined as
DD = St − ν.

Several methods have been proposed in the literature for
change-point detection, among which two have been studied
in the present paper. We first implemented a sliding window
version of Wald Sequential probability Ratio Test (SPRT) as
proposed in [44], [45]. However, we have observed empirically
that the well-known CUmulative SUM (CUSUM), initially
proposed in [46], has better detection accuracy in our cases. It
is thus proposed to use it in the present work. More generally,
the CUSUM has been shown to be optimal in several cases
according to the so-called Lorden’s criterion [47] that consists
in minimizing the average worst case detection delay, formally
defined as:

sup
ν∈N

E [St − ν|St ≥ ν] (27)

6In the literature,see [42] and [43], the term “change-point” usually refers
to the problem in which samples’ distribution changes at an unknown time ν.

for a given worst case average Run Length To False Alarm
(RL2FA), defined as:

inf
ν∈N

E [St|St < ν] (28)

For a given interface at which observations `1, . . . , `t are
collected, see Eq. (1), the CUSUM Ct is defined as:

Ct = max
(
0 ; Ct−1 + vTa r̃t − κ

)
(29)

where vTa r̃t, as defined in Eq. (23), corresponds to the
Generalized Likelihood Ratio between hypotheses H0 and H1

computed with observation `t and with κ, a constant that has
to be set. The main idea behind the CUSUM is to compute
sequential LRs and reset it to zero whenever it goes below
zero, given that observations are independent, and the change-
point has not occurred yet. The constant κ can be interpreted
as the sensitivity of the CUSUM. A large value for κ makes
the reset of Ct to 0 more frequent but may delay the detection.
On the other hand, a small κ allows a faster detection at the
price of a less frequently reset CUSUM, hence smaller average
RL2FA.

V. NUMERICAL RESULTS

In this section, we assess our proposed detection with both
simulated data and real data. The simulated data is necessary
to validate the intrinsic statistical properties of our detection
since, in the simulation environment, we can entirely control
the attack power regardless of the NDN network conditions.
In a second step, the proposed detection is assessed with data
from the real deployment of NDN coupled with IP. Each
subsection begins with a description of the deployed topology,
utilized tools, experiment setup, followed by the evaluations
on the PFA guarantee and the detection power of our detection.

A. Assessment of the Statistical Properties

1) Simulation tool and topology: To generate simulated
data, we use ndnSIM [11] – an open-source NDN simulation
provided by the NDN project. Indeed, ndnSIM faithfully
implements the components of an NDN network, allowing us
to consider every aspect of the network [11]. Simulated data
is processed offline using the Matlab numerical computation
software. To compare the performance of our approach to
existing ones, we reuse one of the topologies from [24],
depicted in Fig.6 - a binary tree with eight hosts and one
content provider. The topology represents one of the worst
cases for IFA detection: indeed, all Interests (both legitimate
and IFA generated ones) are forwarded to the sole content
provider which covers the IFA traffic under the legitimate one.
On the opposite, the detection is much easier if the pirated
server only receives IFA generated Interests resulting in a
much more important loss-packet rate under the attack.

2) Simulation setup: In all of our simulations, the actual
number of Interests sent is generated from a Poisson distri-
bution whose mean value is drawn from a uniform random
variable. The actual packet-loss rate follows an auto-regressive
(AR) model. Such a model has been extensively used to model
both the evolution of users’ requests, and packet-loss rate in
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Fig. 6. Topology for data simulation in ndnSIM

computer networks [37], [48]. More precisely, the packet-loss
rate is given by pt = pt−1 + u with p0 = 0.05 and u drawn
from a uniform distribution with zero mean. Note that for a
realistic behavior, the sign of u is flipped if pt < 0 or if
pt > 0.25, the latter being quite a high value in practice.
Several parameter values have been tested with similar results
trends.

For the proposed GLRT, a set of N = 50 samples is
used, and the polynomial’s degree is q − 1 = 4, hence the
50 × 5 size of matrix H. Unless explicitly stated otherwise,
in all experiments we focus on the quickest detection, i.e.,
the calculation of the GLR ṽTa r̃t, see Eq. (22), is carried out
assuming that only the last sample can be affected by IFA
generated Interests. Thus, the IFA footprint is characterized,
by default, by va = (0, 0, . . . , 0, 1)T , leading to a footprint
after packet-loss rate estimation ṽa with ‖ṽa‖22≈0.6.

3) Results’ analysis: Fig. 7 shows a comparison between
the theoretical PFA and detection power, given in Proposi-
tion 2, and the empirical ones. Even for a threshold that
corresponds to α0 = 10−3, the empirical results match well the
theoretically established ones. This observation is important
since it guarantees a prescribed PFA in a practical situation.
This also shows the sharpness of the theoretical findings and
relevance of the proposed model.

Fig. 8 then compares the theoretical and empirical power
as a function of the IFA payload a for both optimal LRT and
proposed GLRT. We also note that the power is computed
with two prescribed PFA α0 = 0.01 and α0 = 0.1. The figure
shows the relevance of the theoretical findings since empirical
power functions match the theoretical ones. However, for low
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Fig. 7. Comparison between proposed GLRT theoretical PFA and detection
power, see Eq. (22), and empirical ones. The PFA and power are plotted as
a function of the decision threshold τ̃ .
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Fig. 8. Comparison between empirical detection power and theoretical power
function for both optimal LRT and the proposed GLRT. The power function
is plotted as a function of the strength of the anomaly a ∈ [0, 0.02].

PFA as α0 = 0.01, the number of required samples is very
large, hence the lightly less accurate empirical results.

Fig.9 takes one step beyond by showing a comparison
between the theoretical and the empirical power of the pro-
posed GLRT for three numbers of samples corrupted by IFA
generated Interests, denoted M = ‖va‖, 1, 3 and 7. As
one would expect, the power increases with the number of
corrupted samples. This result emphasizes that the proposed
method can be adapted to focus on the quickest detection,
thus aiming at detecting only if the last sample is corrupted
at the cost of lower detection accuracy. On the other hand, it
is also possible to increase the detection delay, consequently
focusing on the detection of several last samples corrupted
by the IFA, to ensure a higher detection accuracy. Finally,
for being comprehensive, Fig. 9 also proposes a comparison
with the detector proposed in [24], which is based on a fixed
threshold for loss-packet rate. Obviously, such an approach
cannot deal with the non-stationary behavior of users and,
so, Fig. 9 shows that such a detector performs significantly
worse than the one proposed in the present paper.

B. Performance Evaluation under Realistic Conditions

1) Use-case topology: To validate the proposed method
with real data, we deployed the NDN topology depicted
in Fig.10. The network consists of four nodes with NFD
installed (v0.5.1 with NACK implemented). The iGW and eGW
connect, respectively, to web users and the Internet. Users’
traffic is generated by a web user emulator described below.
On the other side of the network, we deploy a malicious server
which connects to the eGW and runs an Apache HTTP server
to collaborate with the attacker to perform IFA.

2) Testbed deployment: The use-case topology is deployed
in OpenStack7 - a cloud operating system that helps control
large pools of computation, storage, and networking resources
throughout several physical hardware devices, enabling scala-
bility for large-scale experiments. For each node in the topol-
ogy, a virtual machine (VM) is created following the template
configuration of OpenStack and hosts Ubuntu as the operating
system where corresponding applications (e.g., emulator) are

7See: www.openstack.org.

https://www.openstack.org/
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Fig. 9. Receiver Operational Characteristic (ROC) curves for the proposed
GLRT with different numbers of corrupted samples.

installed. These VMs connect to a virtual network provided
by OpenStack Neutron, the OpenStack Networking Service.
To collect the data, we use the Montimage Monitoring Tool8

(MMT) probe. A plugin for this probe has been developed to
extract NDN protocol fields’ values as well as to perform the
proposed statistical tests.

3) Web user emulator: We developed a web user emulator
based on Jaunt API9 - a Java library for web-scraping that
allows retrieving objects in a web page such as images, CSS
and javascript. The emulator first randomly selects a website
from a given list of popular sites, based on a Zipf distribution
- a well-known distribution to model contents popularity [49].
Next, it retrieves the website’s object list, then checks for
objects’ existence on the Internet. If an object exists and does
not require HTTPS connection, the emulator passes the HTTP
request for that object toward the iGW to retrieve it. After
loading the whole object list, the emulator waits for a while
before selecting a link randomly on the website to browse. This
behavior emulates web users’ action of reading and clicking
when navigating through a web page. Based on prior works
that model users’ requests time [50], the waiting time is drawn
from the exponential distribution. The same process of loading
and waiting is repeated for the secondly selected link. The
emulator then selects another website in the given list and
repeats the whole process.

4) Experiment scenario: Each VM can run several em-
ulators at a time. One can change the amount of traffic
generated by modifying the number of emulators and the
number of threads given to each emulator (the more threads
are given, the shorter the time to retrieve the object list).
Each experiment lasts for 30 minutes, including 15 minutes
under H0 followed by 15 minutes under H1 traffic. In all
experiments, 30 emulators, each with 2 threads, are launched
to generate legitimate traffic. Their average browsing time is
set to 10s. Such a configuration for legitimate traffic generates,
on average, approximately 80 HTTP requests/s. The list given
to the emulator includes 90 websites chosen among the most
popular ones. Using more websites would be unnecessary be-
cause websites located in the tail of the Zipf distribution have
very low probability of being selected. The probe generates

8See: www.doctor-project.org.
9See: jaunt-api.com

Fig. 10. Use-case topology and testbed architecture

a sample after each 4s-interval. Each sample consists of the
number of incoming Interests and outgoing Data for each
interface of all routers. This setup for legitimate traffic and
probe helps reduce the noise in packet loss rate, minimize
unnecessary management effort while achieving a relatively
high i?t , of about 320 legitimate Interests per second, for
allowing the application of the CLT with sufficient accuracy.
Besides, this sample period of 4 seconds constitutes a good
trade-off between reactivity and accuracy since it is small
enough for reaction and large enough to ensure that the number
of Interests whose corresponding Data is received over the
next sample period represents a negligible fraction of packets.

On the attacker’s side, bad (or malicious) emulators will
request only objects from the malicious server’s site. We
vary the attack power by changing the number of malicious
emulators and number of threads given to each emulator.
Because bad emulators want to send as many HTTP requests
as possible, they do not take time to browse the site. Hence, we
set up a very small value to their average browsing time (1ms).
In the following sections, the attack power will be presented
in terms of bad HTTP requests/s for easy understanding. Each
attack setup is run for 10 times in order to increase the
amount of data and, hence, reducing the statistical spread. The
malicious server’s delay is configured to 5s± 100ms. Longer
delay values have been tested, but they are so long that the
emulator cannot establish a connection to the malicious server.
The hosted website also contains a lot of objects, so that
sessions to the malicious server will last longer, prolonging
their loads on the NDN network.

5) Characterization of attack phenomenon: Under the ef-
fect of an IFA, one can expect that the NDN network is
severely occupied. As a result, users will experience longer de-
lays when loading and browsing a website. This phenomenon
is visualized in Fig.11 which shows the delay’s density func-
tions of different scenarios. Note that these probability density
functions have been estimated using the Parzen estimator [51].
One can remark that when there is no attack (black line), the
distribution possesses a high density in the small value zone
and consists of a thin tail, meaning that the delay value is

http://www.doctor-project.org/project_outcomes.htm#demonstration
http://jaunt-api.com/
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Fig. 11. Estimated density of delay under different attack setups

small and does not vary widely. On the other hand, when an
IFA is occurring (green, blue, red lines), the density decreases
around smaller values while the tail becomes thicker with a
larger attack payload, showing a shift to higher response delay
with a larger spread of latency. Such dispersion is enlarged
with more powerful attacks.

As described in the usual behavior of the emulator, a website
is randomly selected based on a Zipf distribution. As a result,
those located at the tail of content popularity are less likely
to be picked and, hence, will contribute less to the density
presented above. To provide an overall view of the IFA effect
on the whole website list with various delays, we record
the latency 20 times for all websites under different attack
scenarios. No click is emulated since randomly selected links
may add more delay to the record, causing inconsistency
between different sites. Websites that are too long to retrieve
(> 300s) are considered unreachable. Fig.12 illustrates the
average delay under attack as a function of average delay
under H0. This figure helps visualize the severity of the
increased delay that users suffer when IFA happens. Each
point represents the measurement of an individual website. For
readability, the black dash line shows the equation y = x, that
is a constant delay under H0 and H1, while solid lines show
the results of an affine regression of these measurements, using
least mean squared error, for each attack scenario. One can
remark that the attack is still successful in terms of increasing
the delay of legitimate clients even when it has a relatively
small power (green line, equivalent to 6 bad HTTP requests/s).
This trend, however, is not significant since it is quite close to
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Fig. 13. Theoretical and empirical loss rate

the neutral line. When the attack power increases, the delay
gets worse, as indicated by the increase of the trends’ slope.

Also, we observe a difference between the theoretical and
the empirical packet loss rate, depicted in Fig.13. In theory,
when the attack starts, the packet loss rate is expected to
increase and then remain stable at a specific value during
the attack period. However, the empirical data shows that
the packet loss rate repeatedly increases and drops during
the attack. These changes occur quite abruptly and seem not
to follow any particular pattern. This phenomenon can be
explained by the fact that it has often been assumed that
IFA creates an increase, in the packet-loss rate, while the
proposed attack scenario, taking into account NACK packets,
only creates a delay but the corresponding data eventually
arrives much later. Thus, the loss packet rate during the attack
changes quite abruptly depending on the exact number of
attack Interest packets sent over each sampling period and
the exact additional server delay, which are both stochastic
processes. Note that for readability, Fig.13 presents a rather
obvious attack scenario in which the loss packet rate is
multiplied by a time factor after the IFA starts.

6) Guarantee of false alarm probability and detector con-
figuration selection: One of the important properties of a
statistical test is its guarantee of a prescribed PFA. To validate
this aspect, we evaluated the empirical packet-loss rate under
all the data collected under H0, that is in more than 48000
samples. For being comprehensive, several parameters of the
proposed method have been selected, namely the window
length N , model degree q and number M of corrupted
samples it is aimed at detecting. Fig.14 depicts the empirically
measured PFA as a function of the detection threshold τ as
well as a comparison with the theoretical PFA given in (25).
This figure shows that empirical results match theoretical
ones in the range of PFA > 5.10−3, implying the accuracy
of our model under H0. Moreover, results from different
configurations are close, showing the ability to guarantee PFA
under various setups.

7) Sequential detector performance: To emphasize the ad-
vantages of gathering consecutive samples, Fig. 15 and 16
compare the performance of the snapshot test in Eq. (22)
with the proposed sequential detection method based on the
CUSUM in Eq. (29) on two different aspects. More specifi-
cally, Fig. 15 illustrates the detection power under a maximum
detection delay constraint P [St − ν ≤Mmax] as a function of
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Fig. 14. PFA as a function of the detection threshold τ for different set of
parameters for the detector, window size N , polynomial degree q and number
of corrupted samples ‖va‖.

the average RL2FA, see (28). The maximal detection delay
is set to Mmax = 10 seconds. On the other hand, Fig. 16
depicts the average detection delay, i.e., E[St − ν|St ≥ ν], as
a function of the average RL2FA.

The comparison is made on both figures for two different
attack payloads, 43 and 50 bad requests/s. For the CUSUM
test, the constant κ is set to 0.005 which corresponds roughly
to the 1% largest values of detection statistics ṽTa r̃ under H0

(see Fig. 7). For the snapshot test, the parameter detection
delay M is set to 10s. To be comprehensive, these figures
also offer a comparison with the proposed detector in [24] by
replacing the proposed GLRT statistics vTa r̃t with the test [24]
in the CUSUM equation (29).

Fig. 15 and 16 clearly show that the gain obtained by
gathering consecutive samples is huge. Indeed, for an average
RL2FA of 300 seconds (5 minutes), one can note that the
probability of detecting an IFA after 10 seconds increased from
roughly 5% for the snapshot test to more than 90% using the
CUSUM procedure. Similarly, Fig. 16 shows that, for the same
average RL2FA, the average detection delay is decreased by a
factor of about 8 from about 40 seconds for the snapshot test
to 5 seconds for the CUSUM test.
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Fig. 15. Power of sequential detection method (probability of detection with
maximal constraint delay) as a function of average RL2FA.
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VI. CONCLUSION

In this paper, we address the problem of IFA in the coupled
NDN-IP network. As compared to existing studies and given
the maturity level of the NDN paradigm, the paper focuses on
a credible deployment scenario in which IP and NDN coexist
in isolated domains interconnected by dedicated gateways. In
such a context, we first demonstrate that despite the implemen-
tation of the NACK packet, IFA is still possible. Moreover, we
propose a practical attack scenario leveraging HTTP traffic.
Results have shown that the proposed IFA scenario succeeds
in degrading the user’s experience (i.e., web loading delay).
To tackle this threat, we first design a GLRT detector and
evaluate its intrinsic performance in a simulation environment.
The results show the relevance of the proposed model with
the close match of empirical and theoretical results, and also
the ability to guarantee a prescribed PFA and to establish the
trade-off between detection power and delay. To address the
IFA in a real context of NDN network coupled with IP to carry
web traffic, the detector is extended to increase its accuracy by
developing a sequential version based on the initial snapshot
GLRT. The results demonstrate the good capability of our
approach to operate in a real context and the significant gain
obtained by the sequential detector, regarding the average
detection delay and the probability of true alarm with the
constraint of maximum detection delay.
As a prospective future work, we have started addressing other
types of attacks in NDN (e.g., content poisoning [52]) by
proposing a monitoring plane that can consider a wide range
of metrics to detect anomalous behavior using the approaches
presented here. First promising results have been obtained
in this direction [53], [54]. Other perspectives are to study
the scalability of the proposed detection in large networks
and to design a collaborative detection method which gathers
information from several routers to enhance the detection
accuracy.
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APPENDIX A
ASYMPTOTIC OPTIMALITY OF PROPOSED TEST δ?(rt)

This appendix proves that the proposed test δ?(rt), defined
in equation (13) is Asymptotically Uniformly Most Powerful
(AUMP) for the testing problem (12) into two steps. First it
shows that the test δ?(rt) is UMP for the testing problem (12)
and, then a proof that this test is AUMP is given.

Let us recall that from Eqs (8)–(11), the testing problem
(12) is defined by the following hypotheses:

rt ∼

{
N
(
0, σ2

t

)
under H0,

N
(
a, σ2

t − σ2
a

)
under H1.

with σ2
t = pt(1−pt)

it
, σ2

a = apt
it

and (1−pt)Na
i?t+Na

= a. The
Likelihood Ratio Λ(x) is given by:

Λ(x) =

√
σ2
t√

σ2
t − σ2

a

exp

(
x2

2σ2
t

− (x− a)2

2σ2
t − 2σ2

a

)
. (30)

It immediately follows that :

∂Λ(x)

∂x
=

(
x

σ2
t

− x− a
σ2
t − σ2

a

)
Λ(x). (31)

Therefore, searching the values on x for which the first term
of Eq.(31) is positive, one finds straightforwardly:

x <
aσ2

t

σ2
a

(32)

Replacing σt, σa, and a by their definition in Eq.(32), a short
algebra gives:

x < 1− pt (33)

Because rt = (1 − dt/it) − pt, see Eq.(9), Eq.(33), one
eventually has :

1− dt
it
− pt < (1− pt)⇒ −

dt
it
< 0 (34)

which is always true since it and dt respectively represent
the received number of Interest and Data packets respectively
and therefore are positive numbers. We note that in the case
where it = 0 = dt, the LR Λ(rt) is “degenerated” because
σt = 0 and σa = ∞. It thus follows that the hypotheses
H0 and H1 (12) admit a monotone LR with respect to rt
and therefore, it follows from the Karlin–Rubin Theorem [35,
Theorem 3.4.1] that the test δ?(rt), see (13), is UMP.

According to the definition of convergence in distribution,
see [35, Definition 11.2.1] and in virtue of both the Port-
manteau [35, Theorem 11.2.1] and the continuous mapping
theorem [35, Theorem 11.2.13] it follows that the power
function of the test δ?(rt) converges to the power function
of the MP test δ?(dt), defined in (7), and therefore that the
proposed test δ?(rt) is Asymptotically UMP for the testing
problem (4).
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