Introduction

The machinery employed in the present work operates with concepts of temporal and probable events. The use of time and probability in this work is in a sense standard and is not our main preoccupation. The use of the terminology expressiveness does not refer to its usual interpretation as there is little reference in this work to the semantics of timed processes in terms of temporal logic. Automata are formalisms based on a state/transition model. These are viewed in this work as encodings of behaviour. Machine runs are understood as sequences describing "internal" while traces as sequences describing "external" behaviour. We define measures on the runs and traces of machines, and place homomorphisms on runs and isomorphisms on runs and traces. Two machines will have the same expressiveness strength if there exists a bijection between their collection of runs or traces determined by these run isomorphisms, homomorphisms or trace isomorphisms. Domestic appliances, personal computers, chronometer devices, are produced in series and required to operate in a strictly similar fashion. This principle is essentially referring to isomorphisms. Technology evolves and similar computing behaviour may be obtained by accessing different resources. Machines are compared using homomorphisms.

Overview

It is not coincidental that temporal information is used in computerized environments for generating randomness, as in the Random library of Java. This is an effective choice of future system configurations, as pragmatic as tossing a coin, as poetic as gazing into the stars.

There is a tradeoff between what is informally called expressiveness of a given machine and the tractability of its model checking problem. Model checking can be concisely described as deciding whether a given machine models a particular kind of property specified in a suitable logic. The logic used should be expressive enough to be applied to the class of machines, while the machine in question may or may not model a specific collection of formulas of the logic. This leads to an understanding of how systems behave under all possible circumstances. Undesirable system configurations are to be detected at an early stage in the modelling process. This is an evolved form of testing whereby one proposes a purely formal process amenable to algorithmic analysis. It is then important to understand the expressiveness strength of timed and probabilistic implementations and incorporate them within a hierarchy, as properties of given process instances may be deduced from this. A well known example of such a hierarchy is the Chomsky hierarchy of grammars [START_REF] Chomsky | Three models for the description of language[END_REF].

All of the formalisms discussed in this work possess the Markovian property, whereby future configurations, or their distributions, depend only upon the present configuration. In our conceptual framework machines possess a property denoted as expressiveness which may be analysed in a relative fashion. Machines are also understood as compressions of behaviour, therefore expressiveness and behaviour may be analysed mathematically. The formalisms considered may be understood as a chain of inclusions, each model building on a simpler one: finite state automata, probabilistic automata, timed automata, probabilistic timed automata. This intuition is also important in understanding our results.

The Turing Machine has an infinite number of configurations, which is a necessary condition for proving undecidability results. Due to a pigeonhole argument, restricting this formalism to a finite number of configurations, for example imposing restrictions on the size of the tape, results in its Halting Problem becoming decidable [START_REF] Kuroda | Classes of languages and linear-bounded automata[END_REF]. Hence the various restrictions of this machine in the shape of simpler automata.

The line of research that proposed using automata for the purpose of formal verification was envisioned by Clarke and Emerson. Queille and Sifakis worked on a similar project independently. The Association for Computing Machinery confers in 2007 the Turing Award to Clarke, Emerson and Sifakis [START_REF] Emerson | 25 years of model checking[END_REF].

In this work, a finite state automaton is a set of states and edges between those states. They are viewed as transducers in the following intuitive sense: there exist Turing Machines that take as input encodings of finite state automata and produce output sequences known as "runs".

A timed automaton is a finite state automaton extended with clocks, real valued variables that measure the time passed since their initializations. The edges may be associated with guards, which test for timing constraints. In such cases an edge may be enabled or disabled depending on the constraint being satisfied. A probabilistic automaton is defined using probabilities that determine the likeliness of the next configuration. A probabilistic timed automaton is a timed automaton extended with probability distributions. The target state of a transition is both a function of time and probability.

In this work we are guided by an Occam razor principle, by which one uses the computing formalism which is both necessary and sufficient in order to model a problem from a given domain of study, to be understood as a paraphrase of Leibniz: the simplest in description, the richest in manifestation

An example

Timed and probabilistic implementations can be used in real time applications as diverse as safety-critical navigation (where real-time reactivity is of utmost importance), web/network protocols (whereby communication protocols must be robust in the presence of uncertain network latency), algorithmic trading (where time is critical to exploit an emerging trend) or weather detection systems (whereby chaotic determinism can be approximated by probabilities).

We believe it is important to identify the model which is both sufficient and necessary for modelling a particular system from a particular domain. We start with an example of a protocol in which randomizations may become useful.

Collision avoidance Two agents move towards each other on a tight pathway. As they approach one another it becomes obvious they will collide. They stop and attempt to pass. Many attempts at crossing may result in moving in the same direction.

The deterministic protocol has chances of failure: the agents may be caught in a long loop with undesirable effects, the pathway may become blocked. A situation that may be interpreted as a problem of resource management. We require a protocol that will allow the impasse to be resolved most of the time, quickly.

Adding a randomisation layer to the decision protocol may in the average case decrease the time spent in this situation. Animate beings have a temporal dimension so in practice the natural way of applying such a randomized protocol is by adding timing information to the model. This approach makes use of multidimensional time intervals called zones. Another approach would be to apply a probabilistic mechanism, that is, to assign probabilities to the transitions of the timed formalism.

Intuitions

Runs and traces are associated with machine computation and they correspond intuitively to their internal and external operation. The lengths of these objects are restricted to those magnitudes induced by the Peano Axioms without the Axiom of Induction. That is, we speak about arbitrarily large natural numbers. We provide a measure that gives an account of the likeliness of runs and traces being brought to realization. The criterion in choosing this measure is a decrease in the likeliness of the run or trace being brought to realization as their length progresses. Our main contribution is the development of three relations of expressiveness that enable us to compare finite state automata, timed automata, and probabilistic automata.

Our results are not trivial for two reasons. Indeed, one may object that the automata considered may be defined as restrictions or extensions of a more general or more particular type of machine. As far as we can tell, Figure 1.2: Collision avoidance: using a probabilistic protocol the problem of expressiveness strength (in terms of isomorphism) may not be solved through this method, since demonstrations that some machines compute differently will still be required. The second reason is the finer interpretations our thesis provides of the concepts of simulation and black-box testing, corresponding to homomorphic expressiveness and trace expressiveness respectively.

Machines equivalent under isomorphic expressiveness are identified abstractly as expressing in the same way, through an exact agreement on the internal state of the machine. Another type of identification is observed when studying trace expressiveness, understood as an agreement on the external state of the machine, while particular kind of behaviours can be brought to realization by machines expressing other machines under homomorphic expressiveness, a refinement of a machine. The first type of expressiveness has to do with precise identification under a very strict correspondence. The second type of expressiveness is concerned with comparing automata traces, which is a different form of studying the machines in question, a black box methodology. The third is understood the variation in implementation of systems, which can in theory be multiply realized, that is, implemented differently and addressing the same specifications.

Situations may demand precise replicas of machines and their mechanisms: personal computers, chronometer devices, refrigeration appliances, automobiles, they are produced in series and required to operate in a strictly similar fashion. Users would certainly want that a particular type of mechanism described by a particular type of specification behaves as expected.

The reason somebody purchases a Ford Laser may be that it is a Ford Laser. This principle corresponds to isomorphic expressiveness.

As technology changes and develops guided by principles of efficiency, one observes that the same "computing" behaviour may be obtained with access to different "internal" resources. A 2002 Ford Laser should be an improvement of the 1981 version and users would expect an improvement in behaviour. Machines are then compared using homomorphisms.

One may wish to abstract mechanisms of "computation" from a purely external perspective and decide through this method if the machine fits a specification, hence the need for trace expressiveness. Users or technicians may have a sharp sense, an expectation or a developed intuition of how the mechanism should behave. An electrical engineer may understand portions of the technical description of a Ford Laser while a mechanical engineer other portions. Trace expressiveness may be a suitable approach in these cases.

An outline

In [START_REF] Chomsky | Three models for the description of language[END_REF] Chomsky takes a formal approach at analysing the grammar of a natural language and describes three possible options of increasing complexity for English grammars, finite-state, phrase structure and transformational.

It is shown that finite-state grammars are inadequate because they fail to span all possible sentences of the English language while phrase structure grammar is overly complex. Chomsky describes the hierarchy of languages induced by formal grammars, including formal automata.

Probabilistic automata were proposed in Rabin [START_REF] Michael O Rabin | Probabilistic automata[END_REF]. A theory of probabilistic automata is developed as a natural generalization of finite automata applying to the reliability of sequential circuits.

The probabilistic formalism is proved expressively stronger than the deterministic automata and deterministic automata can be obtained from prob-abilistic automata. The languages recognized are stochastic languages which include regular languages recognized by deterministic automata.

Strauch and Veinott [START_REF] Ralph | A property of sequential control processes[END_REF] show a given process using initial randomization is equivalent to a fully deterministic process. They consider expressiveness of sequential processes involving randomization and show there exists a rule which induces the same probability on the process as any initial randomization.

Lehmann and Rabin [START_REF] Lehmann | On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem[END_REF] show that probabilistic algorithms applied in distributed environments may solve a wider class of problems than deterministic algorithms.

Hence it is shown here that under certain assumptions probabilistic phenomena subsume deterministic phenomena. They are concerned with avoiding deadlocking situations in distributed systems, computing environments in which agents communicate.

They propose a distributed solution to the deadlocking problem, by showing that distributed systems of probabilistic processors are essentially more powerful than distributed systems of deterministic processors, that is, there are certain useful behaviours that can be realized only by the former.

Molloy [START_REF] Michael | Performance analysis using stochastic petri nets[END_REF] gives an equivalence between certain type of models applying to distributed systems and models applying to stochastic processes. This is an isomorphism between behaviour of Petri nets, formalisms modelling distributed behaviour, and Markov processes abstracting stochastic behaviour. Jou and Smolka [START_REF] Jou | Equivalences, congruences, and complete axiomatizations for probabilistic processes[END_REF] approach the problem of equivalence directly and partition probabilistic processes into several equivalences according to several relations identified.

They study several notions of process equivalence, in the context of probabilistic labelled transition systems, formalizations of probabilistic processes with labels assigned to state transitions that mark changes in state. They name these equivalences trace, failure, ready, and bisimulation.

Segala and Lynch [START_REF] Segala | Probabilistic simulations for probabilistic processes[END_REF] define and evaluate several probabilistic simulation relations for concurrent probabilistic systems. Untimed properties of concurrent systems are identified with those expressible in a logic of timed probabilistic computation.

The bisimulation theorem is given and proved in [START_REF] Blackburn | Modal Logic[END_REF]. Bisimulation is a technique used in showing that structures related by some conditions behave in a similar way. Modal and Propositional Logic are used to specify statements or theories that mathematicians may choose to analyse rigorously. Formulas must satisfy purely syntactic criteria while their semantics may be variable depending on an interpretation. Bisimulation operates at the semantic level, establishing a certain relationship between two models of a language.

Roughly speaking, bisimulation is a relatively weak transfer principle, a two way phenomenon that relates "objects" of study according to back, forth and satisfaction conditions. The back and forth conditions require a somewhat standard back and forth argument while the satisfaction criteria require a type of equivalence between the objects of study, and in this way bisimilarity is established. In [START_REF] Blackburn | Modal Logic[END_REF] the bisimulation theorem is given in the following form if there exists a bisimulation relation between two models, then these models satisfy the same modal formulas.

A literature review

Process configurations are abstracted for the purpose of modelling. For a system with states the system may be in some state at an instance of time [START_REF] Derman | A note on memoryless rules for controlling sequential control processes[END_REF]. Undecidability may be avoided in some cases as some problems can be solved by restricting the class of machines considered. For example, Timed Automata are not determinizable, there is no mechanism for translating a timed automaton into a deterministic timed automaton, a nice model that preserves decidable boolean properties of DFAs in the Chomsky Hierarchy [START_REF] Alur | A theory of timed automata[END_REF].

In [B 66] Büchi studies a system of logic and used automata to characterize the class of formulas expressible within the system. It was shown for every formula without free individual variables, one can obtain a finite automaton in which inputs correspond to the free predicate variables of the formula, such that the output of the automaton at a given time indicates whether the formula is true or false when the inputs up to that time provides the interpretation of the predicate variables. Dill wrote his thesis in 1988 [START_REF] Dill | Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits[END_REF]. He developed and implemented a theory of automatic hierarchical verification. In 1991, Alur wrote his thesis [START_REF] Alur | Techniques for automatic verification of real-time systems[END_REF] in which he introduced formal methods for specification and automatic verification of finite state real time systems. Timed automata are formalized in A theory of timed automata [AD94] through using results in [B 66]. The authors introduce timed automata to model the behaviour of real time systems over time. They recommend a treatment of probabilistic timed processes. An important assumption in a fair portion of this framework is a weak type of discreteness assumption, different states of a given process may be identified, or at least abstracted for the purpose of modelling. For such a system with states, it is usually said that the system is in some state at some instance of time. This is to be contrasted with a kind of hypothesis by which a superior level of accuracy in representation may only be attained by analogue devices [START_REF] Lewis | Analog and digital[END_REF].

Finite state automata are abstract machines based on a state/transition paradigm. Philosophical issues arise in studying this abstraction, most importantly perhaps the interpretation of the problem of determinism. Note that any process that supposes a change in configuration involving choice, including probabilistic choice, frames the problem of determinism. We need not concern ourselves with the phenomenon of undecidability, as many useful computational problems can be solved using simpler automata. Computation begins on a start state then moves according to the specifications of the transition relation. Accepting states may be nominated in the context of acceptance conditions.

States may be distinguished as accepting according to the problem we need to solve. We say the machine accepts the word and define the language of the machine as the collection of strings accepted. Languages accepted by finite automata are called regular languages [START_REF] Chomsky | Three models for the description of language[END_REF]. An automaton is deterministic if it has one and only one run for any word. The collection of languages accepted by deterministic and nondeterministic automata are the same. Certain natural problems arise in this context, as some types of behaviour become desirable as studied in [AMPS98]. A Büchi Automaton is a finite state machine with a collection of accepting states. A word is accepted if some state in the accepting collection repeats infinitely often, during the course of the computation. For a Müller Automaton, a run is accepting if the states that repeat infinitely often in a computation are all distinguished. These are the Büchi and Müller accepting conditions. The class of deterministic Müller, and Büchi languages, are one and the same [START_REF] Alur | A theory of timed automata[END_REF].

Probability In this work, a probability is a rational. The classical view of probability may be conceptualised as the ratio of favourable cases to the number of possible cases. If elementary events are assigned equal probabilities, the probability of a disjunction of elementary events is the number of events in the disjunction divided by the total number of elementary events [START_REF] Castell | A consistent restriction of the principle of indifference[END_REF]. Frequentist probability is defined as the limit of frequency in a large number of trials, motivated by problems that do not present symmetry. Essentially this is assuming the Law of Large Numbers [START_REF] Neyman | Frequentist probability and frequentist statistics[END_REF]. This view is also consistent with our account since the value of a limiting process is always a rational, in the sense of computable analysis [START_REF] Weihrauch | Computable analysis: an introduction[END_REF].

Models of computation

Timed automata This formalism was introduced by Alur & Dill in 1994 in "A theory of timed automata" [START_REF] Alur | A theory of timed automata[END_REF], by building on the theory of Intensive research preceded the seminal article of Alur & Dill. Dill [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF] studied verification of finite state concurrent systems by introducing timing assumptions. A scheme was described that allows timing assumptions to be incorporated into automatic proofs of arbitrary finite state temporal properties. Alur, Courcoubetis and Dill in 1990 in [START_REF] Alur | Modelchecking for real-time systems[END_REF] studied model checking for real time systems. This research extended model checking to the analysis of real time systems, whose correctness depends on the magnitudes of the timing delays. Alur and Henzinger in [START_REF] Alur | Back to the future: Towards a theory of timed regular languages[END_REF] introduce two way timed automata, that can move back and forth while reading a timed word, which leads, like nondeterminism, to the undecidability of language inclusion. Alur et al. in [START_REF] Alur | Computing accumulated delays in real-time systems[END_REF] present a verification algorithm for duration properties of finite state real time systems. While simple real time properties constrain the total elapsed time between events, duration properties constrain the accumulated time during which certain state predicates hold.

Alur and Dill [START_REF] Alur | A theory of timed automata[END_REF] then write the theory of timed automata. They introduce timed automata to model the behaviour of real time systems over time. A timed automaton accepts timed words, infinite sequences in which a real valued time of occurrence is associated with each symbol. They considered closure properties, decision problems, and subclasses while studying deterministic and nondeterministic transition structures, and Büchi and Müller acceptance conditions.

They showed that nondeterministic timed automata are closed under union and intersection, but not under complementation, whereas deterministic timed Müller automata are closed under all boolean operations. They present a PSPACE algorithm for checking the emptiness of the language of a nondeterministic timed automaton. Further, they proved that the universality problem and the language inclusion problem are solvable only for deterministic timed automata. Both problems are undecidable in the nondeterministic case and PSPACE complete in the deterministic case. They discussed the application of this theory to automatic verification of real time requirements of finite state systems. Their zone based approach was adapted to probabilistic timed automata in [START_REF] Kwiatkowska | Symbolic model checking for Probabilistic Timed Automata[END_REF].

Probabilistic automata This formalism was proposed in Rabin [START_REF] Michael O Rabin | Probabilistic automata[END_REF]. A probabilistic automaton may be defined with a finite set of states, an input alphabet, a discrete probability distribution assigned to pairs of states (edges) and a probabilistic transition relation that determines the collections of edges, transitions and start states. An edge induced by the probability distribution is enabled if its associated probability is greater than Figure 1.5: a probabilistic protocol zero. States are configurations of the system that can be reached with a given probability. The languages recognized by probabilistic automata are called stochastic languages. These include the regular languages, as a subset. Segala and Lynch in [START_REF] Segala | Probabilistic simulations for probabilistic processes[END_REF] define and evaluate several probabilistic simulation relations for probabilistic systems according to two criteria: compositionality and preservation of interesting properties. Baier et al. in [START_REF] Baier | Deciding bisimilarity and similarity for probabilistic processes[END_REF] deal with probabilistic and nondeterministic processes represented by a variant of labelled transition systems where any outgoing transition of a states is augmented with probabilities for the possible successor states.

Probabilistic timed automata A probabilistic timed automaton is a probabilistic automaton extended with clocks that associate timing information with the run of the machine. In any configuration there is a nondeterministic choice of either making a discrete transition depending on the probabilities associated with each edge or letting time pass if the corresponding invariant condition is satisfied. In 1991, Alur, Courcoubetis and Dill [START_REF] Alur | Modelchecking for probabilistic real-time systems[END_REF] realized the necessity of verification of probabilistic real time systems. System behaviour is compared with a temporal logic formula. In Research by Kwiatkowska and collaborators [START_REF] Kwiatkowska | Symbolic model checking for Probabilistic Timed Automata[END_REF] focuses on probabilistic timed automata and extends the zone approach to this formalism while considering system behaviour which guarantees divergence of time in almost all cases.

Chapter 2 Preliminaries

After the usual explanation of nomenclature, we note here the main results of the paper "A theory of timed automata" by Alur & Dill [START_REF] Alur | A theory of timed automata[END_REF]. The authors introduce timed automata to specify behaviour of systems over time. A timed automaton accepts timed words: real-valued time associated with symbols.

The authors consider closure properties and decision problems while studying deterministic and non-deterministic transition structures, employing Büchi and Müller acceptance conditions [START_REF] Alur | A theory of timed automata[END_REF].

They show that the class of languages accepted by non-deterministic timed automata are closed under union and intersection, but not under complementation, whereas deterministic timed Müller automata are closed under all Boolean operations. This results in an algorithm for checking the emptiness of the language of a non-deterministic timed automaton. 19

Notation

Maps are denoted by α, ϑ, ι, µ, ς. We only refer to nonnegative instances of N, Q, R, denoted by n, n , n , n 1 , n 2 . . . , q, q , q , q 1 , q 2 . . . , x, x , x , x 1 , x 2 . . . Sequences Formal enumerations of symbols used in this work mainly to denote machine runs. Denote the empty sequence by ∅. Indexing is done through i, j, k, m, r, t For a finite sequence ς = (t 1 , t 2 . . . t k) let |ς| = k and ς(i) = t i . For sequences ς, ς write ςς for concatenation and write ς ς if ς is an initial segment of ς . Sequences may be padded using the character #.

Definition 1. We say a sequence is partially hidden if members are replaced by the same symbol uniformly wrt indexing.

For syntax purposes, sequences collapse, the following are indiscernible

(t 1 1 . . . t 1 k), (t 2 1 . . . t 2 k), (t 3 1 . . . t 3 k) . . . and t 1 1 . . . t 1 k , t 2 1 . . . t 2 k , t 3 1 . . . t 3 k . . .
and any sequence ς may be extended, or partially hidden using #, that is, there exists sequence ς with ς ς , and there exists sequence ς with

ς (ni) = # and ς (ni + j) = ς(ni + j) for all i > 0 and 1 ≤ j ≤ n -1 Skeleton We use a set of states S = {s 1 , s 2 . . . s k }
τ = τ 1 , τ 2 . . . τ k such that ∀i < k[τ i < τ i+1]
Remark 1. For any τ and any index i there exists x = 0 such that x < τ i -τ i-1 . Definition 2. Denote by x τ (i) the value (τ i -τ i-1)/2. The values x τ (i) are referred to as glimpses.

Denote by T the set of time sequences. Clocks are real valued variables gathered in a finite set C. We distinguish between clocks c 1 , c 2 . . . c m and their values

x 1 , x 2 . . . x m as follows. A clock valuation is a function ι : C m → R m + .
If clear from context we write ι(c r) to denote the value ι(c)(r). Denote by I the set of clock valuations. Clock constraints are assigned to edges (s, s) of timed machines. Write con ∈ CON(s, s). They are of the form

con ::= x < c | c < x | x < x + c | c = x | ¬con | con ∨ con
The valuation ι satisfies the constraint con, write ι con, if con resolves to a true inequality after substituting uniformly each clock variable c in con with the corresponding ι(c). Clock resets r are assigned to edges. Resets take binary values, r(c) = 0 for unset and r(c) = 1 for set.

Our results will assume an undividable unit of measurement of time. This convention is not unlike the results of [START_REF] Alur | A theory of timed automata[END_REF] where it is shown that timing of timed automata may be restricted to the rational numbers. We explain this here, by saying that members of the time sequences used shall all be multiples of g ∈ Q and we write x 1 , x 2 . . . to mean x 1 g, x 2 g . . .

Bisimilarity

We use the results outlined in this section for showing that the timing information of a timed automaton can be restricted to integral values. Bisimulation is a technique used in showing that structures related by some conditions behave in a similar way. Modal Logic is an extension of Propositional Logic; both are used to specify statements/theories that mathematicians may choose to analyse rigorously. Definition 3. A Modal Language consists of a collection of proposition letters Φ = {p 1 , p 2 • • • }, a modal operator ♦ and well-formed formulas φ obtained by the rule:

φ := p i | ⊥ | ¬φ | ψ ∧ φ | ♦φ
Models provide interpretations, they associate reference to syntax. Therefore, well-formed formulas must satisfy purely syntactic criteria while their semantics may be variable depending on the interpretation. For the sake of exhaustiveness, we note that logicians sometimes use the terms "intended" to speak about an interpretation which is obvious in a given context and "non-standard" to mean anything else somebody may choose to imagine.

Definition 4. A model for a modal language is a triple M = (W, R, V) where:

W is a non-empty collection; R is a binary relation on W ; V is a map V : Φ → 2 W .
The pair F = (W, R) is referred to as a frame. Whenever V (φ) = X we shall say members of X satisfy φ, denoted by X |= φ.

We define that M satisfies φ at point w, denoted (M, w) |= φ, as follows:

(M, w) |= p i iff w ∈ V (p i); (M, w) |= ⊥; (M, w) |= ¬φ iff (M, w) |= φ; (M, w) |= φ 1 ∨ φ 2 iff (M, w) |= φ 1 or (M, w) |= φ 2 ; (M, w) |= ♦φ iff there is w ∈ W with wRw such that (M, w) |= φ.
Bi-simulation operates at the semantic level, establishing a certain relationship between models of a modal language.

Definition 5 (Bi-simulation). Let M = (W, R, V) and M = (W , R , V) be two models of a modal language L.

A relation B ⊆ W × W is a bi-simulation between the two models if:

(i) if wBw then w and w satisfy the same collection of atoms of L (the satisfaction condition);

(ii) if wBw and Rwv then there exists v ∈ W such that vBv and R w v (the forth condition);

(iii) if wBw and R w v then there exists v ∈ W such that vBv and Rwv (the back condition).

The bi-simulation theorem is given and proved in [START_REF] Blackburn | Modal Logic[END_REF]. We state and make use of it here in showing a certain type of automaton should be "modified" in a certain way in order to make computation possible. Roughly speaking, bi-simulation is a relatively "weak" two-way phenomenon that relates "objects" of study according to the well-defined back, forth and satisfaction conditions.

Theorem 1 (Bi-simulation Theorem). If there exists a bi-simulation relation between models M and M then for any modal formula φ, M |= φ if and only if

M |= φ.

Timed automata

Collections provide containment. Functions provide functionality. We will use the terms "class" and "collection", "function" and "map" interchangeably.

For a collection C denote by 2 C the collection of its sub-collections. For any collection C denote by I C its collection of assignments ι : C → R, that is, the collection of maps that give a real value to any element of C, for t ∈ R, a collection of variables X and v ∈ I C denote by [X → t]v the map that assigns t to each x ∈ X and agrees with v over the rest of the variables and denote by E(C) the collection of inequations (c) involving elements of C defined by: (c

) := x ≤ c | c ≤ x | ¬ | 1 ∧ 2 ,
where c ∈ C and x ∈ Q. For two collections S and S , define CON to be the collection of maps con : C → 2 E(C) , for r ∈ Q we say r satisfies con(c) and write r |= con(c) if for all inequations ∈ con(c), r satisfies equation (c).

An alphabet Σ is a finite list of symbols. Sequences of symbols from Σ are words, which may or may not be accepted by machines. Collections of words form languages, some of which are recognized by machines. Denote by Σ * the class of words of arbitrary length over Σ. Denote by Σ ω the class of infinite words over Σ. An ω-language is a subclass of this class. Definition 6. A timed sequence is an infinite sequence of time values τ i ∈ R satisfying the following: Monotonicity: τ increases strictly monotonically: τ i+1 > τ i ; Progress: for every t ∈ R there is τ i such that τ i > t.

A timed word is a pair (σ, τ) where σ is an infinite word and τ is a timed sequence. Definition 7. A timed automaton is an ordered collection (Σ, S, S 0 , A, C, δ) where:

Σ is an input alphabet;

S is a finite collection of states; S 0 ⊆ S is a collection of start states;

A ⊆ S is a distinguished collection of states;
C is a collection of rational-valued variables called clocks.

δ : S × Σ × 2 C × CON(C) → 2 S determines

a collection of edges;

A timed automaton configuration is a pair (s, v) where s ∈ S and v ∈ I C . We will refer to v as a clock interpretation.

Reachability and Language Emptiness are decision problems defined here. Intuitively, "reachability" means possibility of attaining desirable affairs, according to criteria defined in a clear and consistent manner. "Emptiness" is the complement of reachability in the following sense: it means certain acceptance criteria may not be satisfied by any possible computation. In the problem of controller synthesis, which is coincidental to our research, reachability is to be desired and emptiness to be avoided at any cost by synthesizing a strategy, that is a sequence of inputs that keeps the automaton within desired configurations.

Definition 8 (Timed Automaton Run). A run r = (s, v) of a timed automaton T = (Σ, S, S 0 , C, δ) over a timed word (σ, τ) is an infinite sequence of the form

(s 0 , v 0) -→ σ 1 τ 1 -→ (s 1 , v 1) -→ σ 2 τ 2 -→ (s 2 , v 2) -→ σ 3 τ 3 -→ • • • with s i ∈ S and v i ∈ I C , for all i ≥ 0, indicating that δ(s i-1 , σ i , {c 1 • • • c t }, { 1 • • • k }) = S i+1 ,
where s i+1 ∈ S i+1 satisfying the following requirements: Initiation: s 0 ∈ S 0 and v 0 (x) = 0 for all x ∈ C;

Consecution: for all i ≥ 1, there is an edge in δ of the form δ((s i-1 , σ i , {c 1 • • • c t }, con i-1) = S for some S ⊆ 2 S and s i ∈ S such that v i-1 + τ i -τ i-1 |= { 1 • • • k } and v i = [{c 1 • • • c t } → 0](v i-1 + τ i - τ i-1). The notation (s, v) -→ σ τ -→ (s , v)
indicates that the automaton changes configurations from configuration (s, v) to configuration (s , v) when reading input symbol σ at time τ . We say (s , v) is a successor of (s, v).

Remark 2. Definition 8 induces the successor relation over a run r: (s , v) is the successor of (s, v) if there exist σ, τ, τ such that: δ(s, σ,

{c 1 • • • c t }, con)) = S for v (c i) = 0, such that v |= con and s ∈ S.
For a given collection of well-formed modal formulas Ψ and any automaton T , define a map that sends each statement ψ ∈ Ψ to the collection of runs of T , denoted by R, that satisfies ψ: ∆ : Ψ → R. We call such a map the distinguishing map of the automaton T . It is immediate that any distinguishing map is well-defined. We say the language L ψ (T) of T relative to

ψ is non-empty, that is L ψ (T) = ∅, iff ∆(ψ) = ∅.
Definition 9. For a timed automaton T and some accepting criteria ψ deciding if L ψ (T) = ∅ is the problem of language emptiness. For a state s of T , deciding whether there exists a run r over a timed word (σ, τ) such that s ∈ r is the problem of reachability.

Acceptance criteria may be defined depending on properties we may want to test for.

Definition 10 (Büchi Acceptance). A timed automaton T accepts an infinite timed word (σ, τ) if there is a run r of T that visits a distinguished state s infinitely often.

A timed automaton T accepts a finite timed word (σ, τ) if there is a run r of T whose last state s ∈ A is an accepting state.

Timed regular languages

The class of timed regular languages is the class of languages accepted by timed automata under the Büchi acceptance criteria. Alur & Dill show they are closed under the boolean operations.

Theorem 2 (Alur & Dill). The class of timed regular languages R t is closed under finite union and intersection.

Proof. There exist constructions for the union and intersection of timed automata.

For the union, we take the union of the collections of states and define the accepting states as any of the states that were accepting. The transition function is obtained, similarly, by the operation of union. That is, for automata T 1 , T 2 for which we assume their collection of states is disjoint, we construct

T ∪ = (Σ ∪ , S ∪ , S ∪ 0 , A ∪ , C ∪ , δ ∪) with Σ ∪ = Σ 1 = Σ 2 , S ∪ = S 1 ∪ S 2 , S ∪ 0 = S 01 ∪ S 02 , δ ∪ = δ 1 ∪ δ 2 and A ∪ = A 2 ∪ A 2 .
Suppose without loss of generality (σ, τ) ∈ L(T 1). There is a run r of T 1 over (σ, τ) that visits an accepting state s ∈ A 1 infinitely often. By construction, s ∈ S ∪ , s ∈ A ∪ and r is also a run of T ∪ by definition of δ ∪ . Conversely, suppose r is a run of T ∪ an accepting state s ∈ A ∪ infinitely often: by construction of S ∪ either s ∈ S 1 or s ∈ S 2 so suppose s ∈ S 1 ; then obtain r , an accepting run of T 1 , by restricting the members of r to the states of T 1 , that is, replace a subsequence e of r of the form e = (s i-1 , v i-1) -→ σ i τ i -→ (s i , v i), with e = e iff s i-1 , s i ∈ S 1 , otherwise if s i-1 / ∈ S 1 choose the minimum j for which s j ∈ S 1 and similarly if s i / ∈ S 1 choose the minimum k for which

s k ∈ S 1 such that e = (s j , v j) -→ σ i τ i /(i-j) -→ (s j+1 , v j+1) -→ σ i τ i /(i-j+1) • • • -→ σ i τ i -→ (s i , v i).
Due to the fact that T 1 accepts and due to the density of Q, these choices are always possible.

For the intersection, one takes the crossproduct of states to obtain the state collection of the new automaton and defines the crossproduct as accepting if all of its component states were accepting. The transition function is obtained through the same cross product operation. That is, for automata T 1 , T 2 we construct

T ∩ = (Σ ∩ , S ∩ , S ∩ 0 , A ∩ , C ∩ , δ ∩) with Σ ∩ = Σ 1 = Σ 2 , S ∩ = S 1 × S 2 × {1, 2}, S ∩ 0 = S 01 × S 02 × {1}, and A ∩ ⊆ A 1 × A 2 × {1, 2} where (s 1 , s 2 , j) ∈ A ∩ if s j ∈ A j , with δ ∩ ((s 1 , s 2 , k), σ i , RES, con ∩) = (s 1 , s 2 , j) where δ 1 (s 1 , σ i , {c 1 • • • c t }, con 1)) = S 1 with s 1 ∈ S 1 and δ 2 (s 2 , σ i , {d 1 • • • d k }, con 2)) = S 2 with s 2 ∈ S 2 , RES = {c 1 • • • c t }∪{d 1 • • • d k }, con ∩ = con 1 ∪con 2 and j = (k+1) mod 2 if s k ∈ A k and j = k otherwise.
Suppose (σ, τ) ∈ L(T 1) ∩ L(T 2). There are runs r of T 1 and r of T 2 over (σ, τ) that visit accepting states s ∈ A 1 and s ∈ A 2 infinitely often. By construction, (s, s , 1), (s, s , 2) ∈ S ∩ and (s, s , 1)

∈ A ∩ if s ∈ A 1 , δ -1 2 (s , σ i-1 , τ i-1), 2) ∈ A 2 and δ -1 1 (s, σ i , τ i) / ∈ A 1 , while (s, s , 2) ∈ A ∩ if s ∈ A 2 , δ -1 1 (s, σ i-1 , τ i-1), 1) ∈ A 1 and δ -1 2 (s , σ i , τ i) / ∈ A 2 .
We obtain an accepting run r of T ∩ by specifying that (u, u , k) ∈ r if u ∈ r and u ∈ r at the same input instance τ and k is computed as above. r is accepting since the third coordinate cycles through the values 1, 2 if and only if the accepting conditions of the two automata are met. Conversely, suppose r is an acceptin run of T ∩ , so r visits a state (s, s , k) ∈ A ∩ infinitely often; by definition of A ∩ , s ∈ A 1 and s ∈ A 2 and we can obtain accepting runs r and r of T 1 and T 2 by projecting on the first and second coordinates.

It will become useful to abstract the automaton from its timing information -that is, to disregard formally the time at which information is given and project only on content. In this case, we will obtain a finite state machine accepting a regular language.

Definition 11 (Untimed Language). For any timed language L let U ntime(L) = {σ | (σ, τ) ∈ L}. Timed automata do not distinguish between R and Q in the following sense.

Theorem 3 (Alur & Dill). For every timed regular language L and every word σ, σ ∈ U ntime(L) if and only if there exists a sequence of rational numbers τ i such that (σ, τ) ∈ L.

Proof. Fix timed regular language L and let U = U ntime(L).

Define morphism u : L → U by projection on the first coordinate. Define morphism r : U → L in the following way.

Given τ ∈ Q ω , let τ 0 = 0 and τ 0 = 0.

If τ i = τ i-1 + n for n ∈ N and ∈ Q, choose τ i = τ i-1 + n , otherwise choose τ i ∈ Q such that τ i -τ i-1 < n if and only if τ i -τ i-1 < n .
By definition, τ satisfies monotonicity and progress. Note there is an edge from (σ i-1 , τ i-1) to (σ i , τ i) iff there is an edge from (σ i-1 , τ i-1) to (σ i , τ i).

We need to show r(σ) ∈ L if and only if σ ∈ U ntime(L). r(σ) ∈ L implies σ ∈ U ntime(L) follows from definition 11. By choice of τ there exists T such that (σ, τ) ∈ L(T), (σ, τ) ∈ L.

Further, the problem of reachability is reduced to the problem of language emptiness through the following argument.

Lemma 3. Reachability and Language Emptiness are equivalent. That is, for a timed automaton T , ∆[Ψ] = ∅ if and only if at least some state s ∈ A is reachable.

Proof. Distinguish the state to be reached as accepting.

Language emptiness for A can be decided from connectedness and the presence of a cycle in A that contains the distinguished state, which must be reachable from a start state.

The desired state is reachable if and only if the language of the automaton is not empty.

Restriction to integers

It turns out the timing information associated with a given timed automaton can be restricted to the set of positive integers. We will show this by making use of Theorem 1. For this purpose, it needs to be understood what we mean by models, back/forth and satisfaction. Definition 12. Let T be an automaton and L be a modal language in which acceptance criteria are specified.

Interpret the models of L, M = (W, R, V), as follows:

CHAPTER 2. PRELIMINARIES W is the collection of runs of T ;

R is the successor relation over W ;

V : L → 2 W is the distinguishing map of T .
Let T be a timed automaton and T t be the timed automaton obtained by replacing each constant c in each clock constraint of T by t × c, where t ∈ N is the least common multiple of the denominators of the constants appearing in the clock constraints of T . T and T t induce M = (W, R, V) and M t = (W t , R t , V t) as described above. We let Z be the relation on

W × W t induced by: Z(r, r t) if (s, v) ∈ r iff (s, t.v) ∈ r.
Let the derivation of the automaton T t from the automaton T be called an integer transformation, a map γ : CON → CON t .

Lemma 4 (satisfaction). If wZw t then, for any p ∈ L, w ∈ V (p) if and only if

w t ∈ V t (p).
Proof. Take w t = (s, v) ∈ W t and construct w = (s, v/t). Since wZw t one of the runs is accepting iff the other is accepting.

So take w = (s, v) ∈ W . This means v ∈ Q \ N for any v ∈ v. Since wZw t , ι(v) = n and so w ∈ V t (p) implies w t ∈ V (p).

Lemma 5 (forth condition). Let T be a timed automaton and (σ, τ) a timed word.

Then, if w = (s, v) is a run of T over (σ, τ) then w t = (s, t × v) is a run of T t over (σ, t × τ).

Proof. Let R((s i , v i), (s i+1 , v i+1)). Since constant constraints of T are multiplied by t under ι to obtain T t and if r r implies r.t r .t where ∈ {<, >, ≤, ≥}, it follows that R ((

s i , t × v i)), (s i+1 , t × v i+1)).
Lemma 6 (back condition). Let T be a timed automaton and (σ, τ) a timed word.

Then, if w t = (s, v) is a run of T t over (σ, τ) then w = (s, v t) is a run of T over (σ, t × τ).

Proof. Let R t ((s i , v i), (s i+1 , v i+1)). Since constant constraints of T t are divided by t under ι -1 to obtain T and if r r implies r/t r /t where ∈ {<, >, ≤, ≥}, it follows that R((s i , t × v i /t)), (s i+1 , t × v i+1 /t)).

The desired result follows.

Theorem 4 (Alur & Dill). Acceptance is invariant under integer transformations.

Proof. Result follows from 4, 6 and 5 by Theorem 1: let two machines T and T be related under bi-simulation, that is there exists a bi-simulation relation between the model M = (W, R, V) induced by T and the model M = (W , R , V) induced by T . This means for any run w ∈ W and any run w ∈ W Z(w, w) so V (p) = w iff V (p) = w for any p ∈ ψ (satisfaction), in other words the two runs are characterized by the same modal formulas; if w = (s, v) then w = (s, t.v) (forth condition), that is w is obtained from w by an integer transformation; if w = (s, v) then w = (s, v)/t (back condition), that is w is obtained from w by an inverse integer transformation. Therefore, the runs of T can be put into a one-to-one correspondence with the runs of T in such a way that satisfaction is preserved, therefore L ψ (T) = L ψ (T).

The region automaton

A timed automaton can be transformed into a finite state automaton using the region construction, described in this section.

The region relation operates on clock interpretations.

Definition 13 (Region Relation). Let T = (S, Σ, δ, S 0 , C) be a timed automaton and for each clock x ∈ C denote by c x the largest integer that upperbounds any clock constraint in which x appears.

For any two clock interpretations of T , v and v let v ∼ v if and only if:

(i) For all clocks x ∈ C, either v(x) = v (x) ≤ c x or v(x), v (x) > c x ;
(ii) For all clocks x, y ∈ C with v(x) ≤ c x and v(y) ≤ c y , f ract(v(x)) ≤ f ract(v(y)) if and only if f ract(v (x)) ≤ f ract(v (y));

(iii) For all clocks x ∈ C with v(x) ≤ c x and v (x) ≤ c x , f ract(v(x)) = 0 if and only if f ract(v (x)) = 0.

The region relation induces an equivalence.

Remark 7. ∼ is an equivalence relation.

Proof. ∼ is reflexive: v ∼ v. This fact is immediate, as all three conditions in the definition are reflexive.

∼ is symmetric: for suppose v ∼ v . (i) is expressed by an equality, which is symmetric, (ii) is a logical equivalence which induces symmetry, (iii) likewise, therefore v ∼ v.

∼ is transitive by a similar argument to symmetry.

Proof. Suppose v ∼ v . (1) If v(x) = v (x) ≤ c x then (a) and if f ract(v(x)) ≤ f ract(v(y)) iff f ract(v (x)) ≤ f ract(v (y)) (b) and if f ract(v(x)) = 0 iff f ract(v (x) = 0)
then statement follows by order isomorphism.

(2)If v(x), v (x) > c x then statement follows vacuously.

In other words, ∼ is well-defined w.r.t. clock constraint satisfaction. Next, we order clock regions through a successor relation.

Definition 14 (Time Successor Relation on Clock Regions). A clock region

α is a time-successor of a clock region α if and only if for each v ∈ α, there exists a positive t ∈ R such that v + t ∈ α .

Therefore the time successors of a clock region α are all the clock regions that will be visited by a clock interpretation v ∈ α as time progresses.

Remark 10. The time-successor relation on regions is a partial order.

Proof. Reflexivity follows from definition, since we can let t = 0.

Antisymmetry: suppose α is a successor of α and α is a successor of α . Then if v ∈ α we have v + t ∈ α and also

v + t + s ∈ α which implies v, v + t, v + t + s ∈ α = α .
Transitivity: let α be a successor of α and let α be a successor of α . Then v + t ∈ α and v + t + s ∈ α .

We define the region automaton associated with a timed automaton. We do this in order to settle the decidability of the reachability question.

Definition 15 (Region Automaton). Let T = (S, Σ, δ, S 0 , C) be a timed automaton. The corresponding region automaton R(T) is a deterministic finite automaton R(T) = (S R , Σ R , δ R , S 0R) such that:

(s, α) ∈ S R if s ∈ S and α is a region of T ; Σ R = Σ; δ R ((s, α), a) = (s , α) if δ(s, a, {c 1 • • • c t }, con) = S for some v ∈ α, t ∈ Q, con ∈ CON and {c 1 • • • c t } a collection of clock resets, such that α is a time-successor of α, v ∈ α, t ∈ α and t |= con; (s, [v 0]) ∈ S 0R if s ∈ S 0 and v 0 (x) = 0 for all clocks x ∈ C;
Remark 11. The region automaton R(T) of a timed automaton T is unique.

Proof. Uniqueness of S R , Σ R , S 0 follows from definition. Furthermore δ R is well-defined by 8.

Definition 16 (Projection on R(T)). For a run r = (s, v) of a timed automaton T of the form

(s 0 , v 0) -→ σ 1 τ 1 -→ (s 1 , v 1) -→ σ 2 τ 2 -→ (s 2 , v 2) -→ σ 3 τ 3 -→ • • • define the projection of r over R(T) to be the sequence [r] of the form (s 0 , [v 0]) -→ σ 1 -→ (s 1 , [v 1]) -→ σ 2 -→ (s 2 , [v 2]) -→ σ 3 -→ • • • Definition 17 (Progressive Run). A run r of R(T) of the form (s 0 , v 0) -→ σ 1 -→ (s 1 , v 1) -→ σ 2 -→ (s 2 , v 2) -→ σ 3 -→ • • • is called progressive if for each clock x ∈ C, there are infinitely many i ≥ 0 such that v i satisfies [(x = 0) ∧ (x > c x)] Remark 12. [r] is a progressive run of R(T) over s.

Proof. From the definition of the transition function of R(T) it follows that

[r] is a run of R(T).

Since time progresses without bound along any run r every clock is reset infinitely often or increases without bound.

Hence for all clocks x and infinitely many i

[v i] satisfies x = 0 ∧ x > c x .
Lemma 13. Any progressive sequence of real numbers τ i has a monotonically increasing subsequence.

Proof. Construct the subsequence by choosing τ 0 and τ j such that j is the minimum integer with τ i < τ j . This choice is always possible by the progress condition: for let t = τ i , the existence of j follows.

Reachability

We show here that the reachability problem is decidable and state the complexity result of Alur & Dill [START_REF] Alur | A theory of timed automata[END_REF]. Lemma 14. If r is a progressive run of the region automaton R(T) of a timed automaton T over σ, there exists a time sequence τ and a run r of T over (σ, τ) such that r = [r].

Proof. Let r = (s, ᾱ). Construct r = (s , ᾱ) and τ step by step.

Let

s 0 = s 0 , α 0 = α 0 , τ 0 = 0 and if (s i+1 , α i+1) = ∆ R ((s i , α i), σ i) then let δ(s i , σ i , {c 1 • • • c t }, con i) = s i+1
where the existence of τ i is ensured by Definition 15.

Note that the τ we are trying to construct must satisfy monotonicity and progress. Progress is ensured by Remark 12. Monotonicity follows by Lemma 13.

Lemma 15. Given a timed automaton T , there exists an automaton which accepts L(U ntime(T)) under the following acceptance criteria: there exists a run of the automaton such that some state from a distinguished collection of accepting states repeats infinitely often along the run. By Lemma 14 T accepts some (σ, τ) if and only if M accepts σ.

Below is a reformulation of Lemma 15.

Remark 16. If a timed language L is accepted by a timed automaton then U ntime(L) is accepted by an automaton under the acceptance criteria specified by Lemma 15.

Reachability is decidable by reduction to language emptiness. Theorem 5 (Alur & Dill). The reachability problem for timed automata is decidable.

Proof. Reachability is reducible to language emptiness as outlined in Remark 3. Let A be the automaton referred to in Lemma 15. Language emptiness for A can be decided from connectedness and the presence of a cycle in A that contains a distinguished state accessible from a start state.

Corollary 17. For a timed automaton T = (Σ, S, S 0 , A, δ, C) the emptiness of L(T) under a Büchi accepting condition can be checked in time O[(|S|+|E|).2 |CON|].

Proof. The region automaton can be constructed in time O[(|S| + |E|).2 |CON|]

as shown in [START_REF] Alur | A theory of timed automata[END_REF].

Chapter 3 Transducers

We propose to view machines as states and transitions. The outcome of computation is a run or its corresponding trace. The intended interpretation for these is that of encapsulation of behaviour and their lengths are restricted to finite natural numbers.

The formalisms introduced can be conceptualised as extensions of finite state automata in which nondeterminism is replaced or enhanced by a different type of choice. Essentially, a state machine comprises of a finite set of states, and transition specifications that determine machine transitions. The computation begins on a distinguished state then proceeds according to the specifications of a transition relation.

Probabilistic automata are used to model situations in which the key component is probabilistic uncertainty in the choice of the next state. The choice of the next transition is made according to probabilistic information. Timed automata are extensions of finite state automata that incorporate timing information. They are used to model systems in which the timing component is necessary. The choice of the next transition is made nondeterministically subject to timing information. Probabilistic timed automata are extending probabilistic automata and timed automata. Define E ∆ = ∆. A run ψ is a sequence of elements of E ∆ such that consecutive members are of the form (s, γ, s) and (s , γ , s). The corresponding trace φ is obtained by hiding the state information in ψ. Define ψ(j) = s j and φ(j) = γ j and e ψ (j), e φ (j) as (s j , γ j , s j+1) and (γ j). We picture ψ and the corresponding φ with

s γ -→ s γ -→ s γ -→ . . . and # γ -→ # γ -→ # γ -→ . .

. Definition 19.

A glimpse automaton is a skeleton automaton in which transitions are timed by the sequence G i .

Define E ∆ = {(s, γ, x, s) | x ∈ (g i), (s, γ, s) ∈ ∆}. A run ψ is a sequence of elements of E ∆ such that consecutive members are of the form (s, γ, x, s) and (s , γ , x , s) with x = x + g. The corresponding trace φ is obtained by hiding the state information in ψ. Picture ψ and the corresponding φ with

s γ -→ G 1 s γ -→ G 2 s γ -→ G 3 . . . and # γ -→ G 1 # γ -→ G 2 # γ -→ G 3 . . .
Define ψ(j) = s j and φ(j) = γ j and e ψ (j), e φ (j) as (s j , γ j , g j , s j+1), (γ j , g j).

Example 1. Two timed runs of the machine in Fig 3 .1 are Define E ∆ = {(s, γ, x, q, s) | x ∈ (g i), (s, γ, q, s) ∈ ∆}. A run ψ is a sequence of elements of E ∆ such that consecutive members are of the form (s, γ, x, q, s) and (s , γ , x , q , s) with x = x + g. The corresponding trace φ is obtained by hiding the state information in ψ. A run ψ and the corresponding trace φ are sequences of the form

s 1 γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 γ 3 -→ G 3 . . . and s 1 γ 2 -→ G 1 s 2 γ 3 -→ G 2 s 1 γ 3 -→ G 3 . . . s 1 start s 2 γ 1 , 1/2 γ 2 , 1/2 γ 3 , 1
s γ -→ G 1 s γ -→ G 2 s γ -→ G 3 . . . and # γ -→ G 1 # γ -→ G 2 # γ -→ G 3 . . . such that (s, γ, d(γ), s) ∈ ∆.
Define ψ(j) = s j , φ(j) = γ j and e ψ (j), e φ (j) (s j , γ j , g j , s j+1) and (γ j , g j) Example 2. Two equally-likely runs of the machine in Fig 3 .2 are

s 1 γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 γ 3 -→ G 3 . . . and s 1 γ 1 -→ G 1 s 2 γ 2 -→ G 2 s 1 γ 3 -→ G 3 . . . s 1 start s 2 γ 1 , c < 2 γ 2 , c = 2 γ 3 Figure 3.3: Timed Automaton

Timed automata

Timed automata may be thought of as extensions of glimpse automata that incorporate timing constraints that induce intervals in which transitions may occur. Define E ∆ = {(s, ι, r, con, γ, x, s) | x ∈ R, (s, ι, r, con, γ, s) ∈ ∆}. A run ψ is a sequence of elements of E ∆ such that consecutive members are of the form (s, ι, r, γ, x, s) and (s , ι , r , γ , x , s) such that x, x are consecutive members of a time sequence, with con ∈ CON(s, s), ι con, and

∀c[x -x = [ι(c) -ι (c)] × r(c)]]
The trace φ is obtained from ψ (s, ι, r)

γ -→ x 1 (s , ι , r) γ -→ x 2 (s , ι , r) γ -→ x 3 . . . and # γ -→ x 1 # γ -→ x 2 # γ -→ x 3 . . .
Define ψ(j) = s j , φ(j) = γ j and e ψ (j) and e φ (j) as (s j , ι j , r j , γ j , τ j , s j+1 , ι j+1 , r j+1) and (γ j , τ j) Example 3. A valid run of the machine in Fig 3 .3 is

s 1 γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 γ 3 -→ G 3 . . . s 1 start s 2 γ 1 , c < 3, 1/2 γ 2 , c < 3, 1/2 γ 3 , 1
∆ ⊆ S × I × 2 C × CON × Γ × D[S]
× S is the transition relation.

Define E ∆ = {(s, ι, r, γ, x, q, s) | x ∈ R, (s, ι, r, γ, q, s) ∈ ∆}. A run ψ is a sequence of elements of E ∆ such that consecutive members are of the form (s, ι, r, γ, x, q, s) and (s , ι , r , γ , x , q , s) such that x, x are consecutive members of a time sequence, with con ∈ CON(s, s), ι con, and

∀c[τ i+1 -τ i = [ι i+1 (c) -ι i (c)] × r i (c)]]
From ψ obtain φ by hiding internal state info.

(s, ι, r) γ -→ x 1 (s , ι , r) γ -→ x 2 (s , ι , r) γ -→ x 3 . . . and # γ -→ x 1 # γ -→ x 2 # γ -→ x 3 . . .
Define ψ(j) = s j , φ(j) = γ j and e ψ (j) and e φ (j) (s j , ι j , r j , γ j , τ j , s j+1 , ι j+1 , r j+1) and (γ j , υ j) Example 4. Valid runs of the machine in Fig 3 .4 are

s 1 γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 γ 2 -→ G 3 . . . and s 1 γ 2 -→ G 1 s 2 γ 2 -→ G 2 s 2 γ 2 -→ G 3 . . . γ, 1/4 γ , 1/4 γ , 1/4 γ , 1/4
s γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 γ 5 -→ G 3 . . . and s γ 3 -→ G 1 s 2 γ 5 -→ G 2 s 2 γ 5 -→ G 3 . . . s 1 start s 2 γ 1 , c < 3 γ 2 , 2 < c < 3, 1/2 γ 3 , 2 < c, 1/2 γ 4 , c = 3 γ 5 Figure 3.6: Probabilistic Timed Choice

Notation

The finite state, probabilistic, timed and probabilistic timed automata are FSM, PROB, TIMED, PROBTIMED

The runs and traces of a machine M are Ψ M and Φ M . Denote the sequences of states, actions and time instances in ψ and φ by S(ψ), Γ(ψ), T(ψ) and Γ(φ), T(φ). For ease of notation we sometimes use numbering for states

s i → i
To clarify the context in which we speak of runs or traces, we denote elements of E ∆ by e(s, s) and recall we use µ(s, s) and Γ(e(s, s)) interchangeably.

Assumptions

The lengths of runs and traces are given by

|ψ| = |Γ(ψ)| and |φ| = |Γ(φ)|
There exist many to one relations between runs and traces

ψ → φ if Γ(ψ) = Γ(φ) and T(ψ) = T(φ)
For brevity assume identifications of transitions and machine edges e ψ (j) → e(s, s) if S(e ψ (j)) = e(s, s)

e φ (j) → γ if Γ(φ(j)) = γ Lemma

Part II

Expressiveness

Chapter 4

Measures

We measure finite segments of runs, traces and sets of these. Recall that runs and traces are finite sequences, hence our measures apply to infinite sets of finite objects. The measures we place on runs and traces give a probabilistic account of the run or trace being brought to realization.

Runs and traces are symbolic templates for certain kinds of machine behaviour. Since a run or trace are thus endowed with probabilities, it follows some types of behaviour are more probable than others, depending on the transition structure of the machine in question. Timing information is also taken into account when comparing runs or traces of machines belonging to these formalisms.

When applying measures to runs or traces we are not making complex topological elaborations, our measures assign a rational value to a segment of a run or trace and to sets of runs or traces.

We observe that the likeliness of a run or trace decrease proportionally to their length, such that the measure placed on the collection of runs of a given machine is finite, the empty sequence being added to this measure.

The measure we place on sets is very intuitive, being of an additive type.

The measures placed on runs and traces are a little more complicated, involving both probabilistic and time information.

Measuring runs

One obtains a measure on the runs of nonprobabilistic automata from a weighting w : S × S → [0, 1] assigning w(e(s, s)) to edges such that ∀s ∀s w(e(s, s)) = 1 and ∀s∀s ∀s , w(e(s, s)) = w(e(s, s))

In the case the automata is probabilistic the weighting is effectively replaced by the corresponding d s , i.e. w(e(s, s)) = d s (s) Let q be such a weight, or probability, and let x , x be two consecutive members of a time sequence. For a sequence of transitions the measure of a single transition in the sequence is of the form

q × x -x x = q × 1 x
The meaning of (xx)/x is the progress of time relative to the time x. This is multiplied by the transition probability, to obtain the measure of likeliness for the transition, that is, likeliness of transition being executed between x and x. Therefore, for any ψ the form of measure H(ψ) is

H(ψ) = ei∈ψ {w(e i) × 1 T(e i) }
Since a time sequence is strictly increasing, the value of H decreases relative to time. It is also worth mentioning that the scale of time is irrelevant in computing this measure and for any consecutive members τ i , τ i+1 of a time sequence

0 < τ i+1 -τ i τ i+1 = 1 τ i+1 < 1
We understand any choices of transition in non-probabilistic machines as equally likely. Therefore, assign w(e) to edges such that ∀i ∀j w(e(i, j)) = 1 and ∀i, j, k if there exist e(i, j), e(i, k) we let w(e(i, j)) = w(e(i, k)). For finite state machines and timed automata we assign w(e) to edges e and define

H(ψ) = ei∈ψ {w(e i) × 1 T(e i) }

Measuring traces

The measure of expressiveness we define for traces applies to the external, or observable, behaviour of automata, through the actions assigned to transitions that identify patterns of machine behaviour. We assign weights w to actions e(s, s

) ∈ Γ through w : Γ → [0, 1].
For non-probabilistic machines we let the weight of an action be

w(γ) = 1/|Γ|
For probabilistic machines the weight is a function of probability

w(γ) = d(γ)
Therefore, we define

H(φ) = ei∈φ {w(Γ(e i)) × 1 T(e i) }
Any computation begins by producing the empty trace

∴ H(∅) = 1
Any computation may be padded

∴ H(φ#) = H(φ) Lemma 23. |φ| ≤ |φ | implies H(φ) ≤ H(φ) Proof. If ψ = ∅, we have H(ψ) = H(ψ) = 1. Suppose ψ = ∅.
We consider the expansion for H. The term w(γ) is at most one. The following terms are less than one [T(e i) -T(e i -1)]/T(e i).

Lemma 24. For any trace φ, H(φ) = 0

Proof. Suppose the contrary. The form of H(ψ) is

t 1 × t 2 × . . . t k = 0
which implies some term t i in the product is zero.

Lemma 25. For any trace φ with |φ| = k, lim

k→∞ (H(φ)) = 0 Proof. For H(φ) of the form t 1 × t 2 × . . . t k , each term t i is less than 1, ∴ lim k→∞ {t 1 × t 2 × . . . t k } = 0
These measures are bounded and this result is used for defining measures on sets of traces.

Proposition 26. For any trace φ we have

0 < H(φ) ≤ 1
Proof. The upper bound is a consequence of Lemma 23, the lower bound is a consequence of Lemma 24 and Lemma 25.

Measuring sets

We introduce the measure L on sets of runs and traces of a given machine

L(Ψ) = ψ∈Ψ H(ψ) and L(Φ) = φ∈Φ H(φ)
Proposition 29 and Proposition 32 are used for expressiveness comparisons. The bounds are precise and their value is due to the empty sequence being measured by H. Note that one can produce simple machines and sets that attain the upper and lower bounds.

Lemma 27. For any pair of runs ψ, ψ there exists a run ψ such that ψ ψ and ψ ψ

Proof. Follows immediately since we may let ψ = ∅.

Essentially, the following statement is a weakening of Lemma 19.

Lemma 28. For any pair of runs ψ, ψ , if ψ ψ then H(ψ) ≥ H(ψ).

Proof. Follows from Lemma 19 since ψ ψ implies |ψ| ≤ |ψ | Proposition 29. Let Ψ be a set of runs of a machine, we have

1 ≤ L(Ψ) ≤ 2
Proof. We prove this by induction on the length of runs.

For sums S = x 1 + x 2 + . . . + x k where x i = H(ψ i) they have the form

S = H(ψ) × (x + x) with x = |ψk| r=|ψ |
w(e ψk (r)) and x = (x 1 + . . .

+ x k-1)/H(ψ)
since we may choose ψ to be the longest common initial segment of ψ i . We show that x + x ≤ 1. We have

x + x = |ψ 1 | j=|ψ |
w(e ψ 1 (j)) + . . .

+ |ψk| j=|ψ |
w(e ψk (j))

Runs may be extended indefinitely so we may assume

|ψ 1 | = |ψ 2 | = . . . = |ψ k | = k ∴ x + x = k j=|ψ |
w(e ψ 1 (j)) + . . .

+ k j=|ψ |
w(e ψk (j))

Induction on k shows x + x ≤ 1. If k = 1, w(e ψ 1) + . . . w(e ψk) < 1 since for any transitions e ψi and e ψj we have source(e ψi) = source(e ψj).

Suppose the statement holds for some k and consider k + 1

w(e ψ 1 (k + 1))

k j=|ψ |
w(e ψ 1 (j)) + . . . + w(e ψk (k + 1))

k j=|ψ |
w(e ψk (j))

For each term in this sum we have w(e ψr (k + 1))

k j=|ψ |
w(e ψr (j))

< k j=|ψ |
w(e ψr (j)) ≤ 1

The empty run ∅ adds 1 to the measure L.

We derive the same result for traces.

Remark 30. For any pair of traces φ, φ there exists a trace φ such that φ φ and φ φ ,

Essentially, the following statement is a weakening of Lemma 23.

Lemma 31. For any pair of traces φ, φ , if φ φ then H(φ) ≥ H(φ).

Proof. Follows from Lemma 23 since φ φ implies |φ| ≤ |φ | Proposition 32. Let Φ be a set of traces of a machine, we have

1 ≤ L(Φ) ≤ 2
Proof. We prove this by induction on the length of traces.

For sums S = x 1 + x 2 + . . . + x k where x i = H(φ i) they have the form

S = H(φ) × (x + x) with x = |φk| r=|φ | w(φ k (r)) and x = (x 1 + . . . + x k-1)/H(φ)
since we may choose φ to be the longest common initial segment of φ i . We show that x + x ≤ 1. We have

x + x = |φ 1 | j=|φ | w(φ 1 (j)) + . . . + |φk| j=|φ | w(φ k (j))
Traces may be extended indefinitely so we may assume

|φ 1 | = |φ 2 | = . . . = |φ k | = k ∴ x + x = k j=|φ | w(φ 1 (j)) + . . . + k j=|φ | w(φ k (j))
Induction on k shows x + x ≤ 1. If k = 1 we have from definition

w(e φ 1) + . . . w(e φk) ≤ 1 ∵ e φ 1 = . . . = e φk Suppose the statement holds for some k consider k + 1

w(φ 1 (k + 1)) k j=|φ | w(φ 1 (j)) + . . . + w(φ k (k + 1)) k j=|φ | w(φ k (j))
For each term in this sum we have

w(φ r (k + 1)) k j=|φ | w(φ r (j)) < k j=|φ | w(φ r (j)) ≤ 1
The empty trace ∅ adds 1 to the measure L.

Chapter 5

Relations

We introduce relations of homomorphic and run expressiveness and trace expressiveness, which make a substantial part of our contribution. We establish these relations between the classes of automata considered From a timed automaton a finite state machine can be constructed by choosing the transition relation according to the construction of its region automaton. Conversely, a timed automaton can sometimes be constructed by ignoring timing information.

From a probabilistic automaton a finite state machine can be constructed that expresses the probabilistic automaton by choosing assigning weights to machine edges. The converse result holds sometimes.

From a timed automaton a probabilistic timed automaton can be constructed that expresses the timed automaton by assigning weights to machine edges. The converse result may sometimes be established.

From a probabilistic automaton a probabilistic timed automaton can be constructed expressing the probabilistic automaton through the choice of weights for the machine edges. The converse result may sometimes be established.

Homomorphisms

Two runs are understood as homomorphic if one can be obtained from the other by applying certain transformations. By this we mean the sequence of states and actions of the first run must have a correspondent in the second. The correspondences between states and actions are in a sense weak, as they require any well defined map. We consider runs homomorphic and write The following result establishes an identification between the classes of automata considered in the previous chapter. such that (s, r, con, γ, s) ∈ ∆ where C = ∅, r = ∅ and con = ∅ if and only if (s, γ, s) ∈ ∆. T expresses S since it is obtained from S by ignoring timing. The states and actions of the two machines may be put in a simple correspondence. Now let T ∈ TIMED and let S be its region automaton. The homomorphism is (s, reg) → s. Alur and Dill prove that (s , reg) is reachable from (s, reg) in S for some reg, reg if and only if s is reachable from s in T. Assign weights to machine edges inductively. If s is reachable from s in T through transition = (s, r, con, γ, s) and there exist k regions reg 1 , reg 2 . . . reg k such that (s , reg i) are states of S, then assign the weight q = w/k, where w is the weight of e. Suppose there is a sequence of j -1 machine edges between s and s , then assign to each machine edge j between s and any next state s the weight q = w/m where w is the weight of the corresponding machine edge in T and m is, as in the base case, the multiplicity of regions that satisfy the constraint on the j'th machine edge. Let (τ i) be a time sequence measuring a run of T. The corresponding time sequence timing S is (τ i /g). The measure assigned to a run of T is the same as the measure of the run obtained under this map For the other direction, suppose we have P ∈ PROB and obtain S ∈ FSM as follows. Let k be a g.c.d. for the probabilities on the machine edges of P and for any machine edge (s, d(s, s), γ, s) of P define j machine edges of S of the form (s, γ, s i) with j = d(s, s)/k

ψ hom ψ if H(ψ) = H(
s 1 start s 2 s 3 s 4 γ 1 , c < 2 γ 2 , c < 3 γ 3 , c < 3 γ 4 , c < 4 γ 5 , < c s 1 start s 2 s 3 γ 1 , c < 3 γ 2 , c < 4 γ 3 , < c s 1 start s 2 γ 1 , c < 3 γ 2 , < c s 1 start γ 1 , 0 < c
H(ψ) = |ψ | × H(ψ) = |ψ |

Isomorphisms

Runs and traces are understood as isomorphic if one can be obtained from the other by applying transformations with an isomorphic character. The correspondences are stronger as they require relabellings.

Run expressiveness

We consider runs isomorphic and write ψ ∼ = ψ if H(ψ) = H(ψ) and exist ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ) ς a relabelling, ϑ a relabelling, and for all i ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i)) = Γ(ψ (i))

Definition 26. Ψ ∼ = Ψ if there exists a bijection α : Ψ → Ψ such that ψ ∼ = α(ψ) with L(Ψ) = L(Ψ) Definition 27. M ∼ = run M if Ψ M ∼ = Ψ M .
Definition 28. S iso S if for every machine M ∈ S there exists M ∈ S such that M ∼ = run M . Write S iso S if the inclusion is strict.

Strict expressiveness is reflexive.

Lemma 38. S iso S Proof. Define α : Ψ S → Ψ S by ψ → ψ.
Strict expressiveness is transitive.

Lemma 39. S iso S and S iso S implies S iso S Proof. Let α : Ψ S → Ψ S and α : Ψ S → Ψ S Define α = α • α.

The following result establishes a separation between these classes of automata.

Theorem 7. We observe the following run inclusions To see the inclusion is strict, consider the machine T in Fig 5 .3 and suppose there exists a machine S expressing it. Take the T run ψ pictured as

-FSM iso PROB -FSM iso TIMED -PROB iso PROBTIMED -TIMED iso PROBTIMED
(ψ) = L(ψ) in the runs ψ = s 3/4 -→ G 1 s 1 3/4 -→ G 2 s 1 and ψ = ς(s) 1/2 -→ G 1 ς(s 1) 1/2 -→ G 2 ς(s 1) since H(ψ) = 9/
s γ 1 -→ G 1 s 1 γ 1 -→ G 2 s 1 γ 1 -→ G 3 . . . γ 1 -→ G r-1 s 1 γ 2 -→
Gr s 2 with r = 2/g Suppose there exists an isomorphic run ψ of S. In such a case, there exist relabellings ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ) with ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i))) = Γ(ψ (i)) and, in particular, there exist in ψ r many consecutive ϑ(γ 1) transitions into state ς(s 1) before making the r + 1th transition, ϑ(γ 2) into ς(s 2). However, machine S may only have two states, and Lemma 18 provides the contradiction. To see the inclusion is strict, probabilistic information is redundant. Consider the machine A in Fig 5 .3 and suppose there exists a machine P expressing it. Take the A run ψ pictured as

s 1 start s 2 c < 2, γ 1 c = 2, γ 2 c < 3, γ 3 c = 3, [c], γ 4
s γ 1 -→ G 1 s 1 γ 1 -→ G 2 s 1 γ 1 -→ G 3 . . . γ 1 -→ G r-1 s 1 γ 2 -→
Gr s 2 with r = 2/g Suppose there exists an isomorphic run ψ of P. In such a case, there exist relabellings ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ) with ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i))) = Γ(ψ (i)) and, in particular, there exist in ψ r many consecutive ϑ(γ 1) transitions into state ς(s 1) before making the r + 1th transition, ϑ(γ 2) into ς(s 2). However, machine P may only have two states, and Lemma 18 provides the contradiction. Γ,C,d,∆) such that (s, r, con, γ, d(s, s)), s ∈ ∆ if and only if (s, r, con, γ, s) ∈ ∆ and for all s ∈ S s ∈S d(s , s) = 1 and for all s ∈ S and all s ∈ S we let d(s, s) = d(s, s). We can see the runs of the two machines can be put in a one to one correspondence.

To see the inclusion is strict, we only need to focus on probabilistic information. Therefore, consider the two transitions in Fig 5 .2. Suppose there exists a machine T that expresses this A, we have

L(ψ) = L(ψ) in the runs ψ = s 3/4 -→ G 1 s 1 3/4 -→ G 2 s 1 and ψ = ς(s) 1/2 -→ G 1 ς(s 1) 1/2 -→ G 2 ς(s 1) since H(ψ) = 9/32
and H(ψ) = 1/8.

-→ G 1 s 1 3/4 -→ G 2 s 1 and ψ = ς(s) 1/2 -→ G 1 ς(s 1) 1/2 -→ G 2 ς(s 1) since H(ψ) = 9/32
and H(ψ) = 1/8. Suppose for a contradiction TIMED iso PROB, in such a case let T ∈ TIMED have the transition structure pictured in Fig 5 .3, and there must exist P ∈ PROB that expresses T, and as before we take a T run ψ pictured as

s γ 1 -→ G 1 s 1 γ 1 -→ G 2 s 1 γ 1 -→ G 3 . . . γ 1 -→ G r-1 s 1 γ 2 -→
Gr s 2 with r = 2/g Suppose there exists an isomorphic run ψ of P, so there exist relabellings ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ) with ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i))) = Γ(ψ (i)) and, in particular, there exist in ψ r many consecutive ϑ(γ 1) transitions into state ς(s 1) before making the r + 1th transition, ϑ(γ 2) into ς(s 2). However, machine P may only have two states, and Lemma 18 provides the contradiction.

reg 1 , reg 2 . . . reg k such that (s , reg i) are states of S, then assign the weight q = w/k, where w is the weight of γ in e.

Now suppose there is a sequence of j-1 machine edges between s and s , then assign to each machine edge j between s and any next state s the weight q = w/m where w is the weight of the corresponding machine edge in T and m is, as in the base case, the multiplicity of regions that satisfy the constraint on the j machine edge. The measure assigned to a trace of T is the same as the measure of the trace obtained under this isomorphism.

We have

H(φ) = |φ | × H(φ) = |φ | × H(φ)/

Bisimilarity

We compare each of the three expressiveness relations identified with the relations of similarity and bisimilarity.

A simulation is a binary relation between automata associating machines which behave in the same way in the sense that one system simulates the other.

A bisimulation is a binary relation between state transition systems, associating systems that behave in the same way in the sense that one system simulates the other and vice versa.

We find that homomorphic expressiveness is a simulation and isomorphic expressiveness is a bisimulation, and the converses do not hold. We also find that trace expressiveness and bisimilarities coincide.

Simulations and bisimulations

Intuitively, a machine simulates another if it can match all of its moves.

Definition 32 (Simulation). Let M and M be two machines with sets of states S and S and sets of transitions E ∆ and E ∆ and sets of actions Γ and Γ respectively. We say M simulates M , and write M M if there exists a binary relation R ⊆ S × S and a map α : Γ → Γ , such that for every pair of elements (p, q) ∈ R, for all γ ∈ Γ, and for all p ∈ S if there exists a transition e between p and p in E ∆ with Γ(e) = γ, then there is a q ∈ S such that there exists a transition e between q and q in E ∆ with α(Γ(e)) = Γ(e) and (p , q) ∈ R, and w(Γ(e)) = w(Γ(e)).

Intuitively two systems are bisimilar if they match each others moves.

Definition 33 (Bisimulation). Let M and M be two machines. We say there exists a bisimilarity between M and M , and write M ∼ M , if M M and M M.

Homomorphic expressiveness

Homomorphic expressiveness is a simulation. such that for all i ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i))) = Γ(ψ (i))

Then we let R ⊆ S × S be defined by R = ς and we let α : Γ → Γ be defined by α = ϑ and we see that M M . Let R(s 1 , s 1), R(s 2 , s 2), and let ϑ(γ 1) = γ 1 , ϑ(γ 2) = γ 1 , and ϑ(γ 3) = γ 2 . We produce two runs of the two machines that are not homomorphic:

ψ = s 1 γ 1 -→ G 1 s 1 γ 2 -→ G 2 s 2 and ψ = s 1 γ 1 -→ G 1 s 2 γ 2 -→ G 2 s 2
We note that in this example for M in Figure 6.2 and M in Figure 6.1 we have M hom M and M M. Then we let R ⊆ S × S be defined by R = ς and we let α : Γ → Γ be defined by α = ϑ and we see that M M . Similarly we let R ⊆ S × S be defined by R = ς -1 and we let α : Γ → Γ be defined by α = ϑ -1 and we see that M M. S (e) = (s , ŝ) and ϑ(Γ(e)) = Γ(e), and we can see that M ∼ M . Now suppose M ∼ M , there exists a binary relation R ⊆ S × S and a map α : Γ → Γ , such that for every pair of elements (p, q) ∈ R, for all γ ∈ Γ, and for all p ∈ S if there exists a transition e between p and p in E ∆ with Γ(e) = γ, then there is a q ∈ S such that there exists a transition e between q and q in E ∆ with α(Γ(e)) = Γ(e) and (p , q) ∈ R. For any edge e we let ϑ(Γ(e)) = α(Γ(e)).

Isomorphic expressiveness

Part III Conclusive Remarks

CHAPTER 7. OUR RESULTS Subsequently, probabilistic versions were introduced to all of these models, and we note that Rabin [START_REF] Michael O Rabin | Probabilistic automata[END_REF] was the first to extend the result in [START_REF] Chomsky | Three models for the description of language[END_REF] to probabilistic models. Essentially, Rabin showed that the language of a Probabilistic Automaton properly contains the language of REG.

Regular REG.

Prob. Regular STOC.

However, the nature of true randomness is not entirely understood [START_REF] Downey | Algorithmic randomness and complexity[END_REF][START_REF] Nies | Computability and randomness[END_REF]. In addition to this, von Neumann is known for drawing attention to the important distinction between random and pseudo-random [START_REF] Von | Various techniques used in connection with random digits[END_REF] Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. For there is no such thing as a random number, there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method Our isomorphic expressiveness, applied to a form of transducers, imply the following hierarchy Transducer FSM Probabilistic Transducer PROB Timed Transducer TIMED Probabilistic Timed Transducer PROBTIMED Therefore, in the isomorphic case PROB properly contains FSM in the sense of [START_REF] Michael O Rabin | Probabilistic automata[END_REF], TIMED properly contains FSM and PROBTIMED properly contains TIMED and PROBTIMED. The expressiveness hierarchy thus sketched in this work is of use, a machine expressing another machine, or machines being incomparable showing that certain types of behaviours can be extended or suppressed according to the problem one needs to solve.

Chapter 8 Conclusion

Our results show effectively that the expressiveness of these timed, probabilistic and stochastic models may be compared.

Our isomorphism relation performs a separation between all of the models considered, which implies these types of machines compute in a different fashion.

Homomorphic expressiveness shows that, even though machines may compute accessing different internal resources, they may still be solving the same type of problems.

Trace expressiveness has an altogether different flavour and captures the idea behind the black box testing methodology. This type of expressiveness makes less use of the internal configurations of a machine.

We considered automata to be characterized by runs and traces. The measures we placed on these are sensitive to timing and probability and give an account of their distributions. Expressiveness is compared when there exist particular types of correspondences between runs or traces.

We observed an expressiveness separation between those formalisms through isomorphic expressiveness and an identification of these through homomorphic and trace expressiveness.

CHAPTER 8. CONCLUSION

It is granted that quantum randomness does not go well with this theory of automata, since a quantum state is not the same as a state in classical automata theory.

Therefore our conception of randomness, and its consequence, the probability theory used in this work, is classical. Developments can possibly be made in this direction.

An important development is analysis of the present measures and relations from the perspective of Computability and Computational Complexity. Yet another interesting extension of our work would be an adaptation of the notions presented here to the transfinite.

 . 1.2 An outline . 1.3 A literature review . 2.2 Bisimilarity . 2.3 Timed automata . 2.4 Restriction to integers . 2.5 The region automaton . 2.6 Reachability . 3 Transducers 3.1 Finite state machines . 3.2 Probabilistic automata . 3.3 Timed automata . 3.4 Probabilistic timed automata iii Chapter 1

Figure 1 . 1 :

 11 Figure 1.1: Collision avoidance: using a deterministic protocol

Figure 1 . 3 :

 13 Figure 1.3: Collision avoidance: using a time-randomised protocol

Figure 1

 1 Figure 1.4: timed protocol

Figure 1

 1 Figure 1.6: a probabilistic timed protocol

 and a set Γ of actions to distinguish and identify edges, elements of S × S. Let (S, s, Γ) be the State/Action triple consisting of -a finite set of states S, with a distinguished s ∈ S, and -a set of actions Γ that label injectively elements of S × S µ : S × S → Γ Probability We use distributions d s , assigning rational values to elements s ∈ S. d s is such that d s (s) ∈ [0, 1] and s ∈S d s (s) = 1 We use notation D[S] for the family {d s | s ∈ S}. Also write loosely d(γ) to mean d s (s) in the context of µ(s, s) = γ. Timing We use strictly increasing and progressive real-valued sequences

 Define a clock region as an equivalence class, [v], of ∼. Remark 8. Each T has finitely many regions. Proof. Each clock variable x ∈ C is bounded above by finite c x . Remark 9. Let v ∼ v . For any clock constraint c, v satisfies c if and only if v satisfies c.

Proof.

 Let the candidate automaton be M = R(T) and let the distinguished collection of states be A m = {(s, α) | α |= (m = 0) ∧ (m > c m)}. In other words, α either resets the clock or assigns a value exceeding the upperbound constant.

 37

 Figure 3.1: Skeleton automaton

Figure

 Figure 3.2: Probabilistic Automaton

Definition 21 .

 21 Timed automata are quintuples T = (S, s, Γ, C, ∆) such that (S, s, Γ) is the state/action triple, C = {c 1 , c 2 , . . . c m } is the set of clocks, and ∆ ⊆ S × I × 2 C × CON × Γ × S is the transition relation.

Figure

 Figure 3.4: Probabilistic Timed Automaton

FigureExample 6 .

 6 Figure 3.5: Probabilistic Choice

 18 (Pigeonhole Principle). Let S and S be two finite sets. The following equivalences hold -|S| = |S | if and only if there exists a bijection α : S → S , -If |S| > |S | then maps between the two sets are not one-to-one, i.e. for any α : S → S there exist t, t ∈ S such that α(t) = α(t), -If |S | > |S| then maps between the two sets are not onto, i.e. for any α : S → S there exists t ∈ S such that for any t ∈ S α(t) = t.

 ψ) and there exist ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ) such that for all i ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i))) = Γ(ψ (i)) Definition 23. Ψ, Ψ are expressively homomorphic, Ψ hom Ψ , if there exists a bijection α : Ψ → Ψ such that ψ hom α(ψ) and L(Ψ) = L(Ψ) Definition 24. Machine M expresses M , M hom M , if Ψ M hom Ψ M . Definition 25. S hom S , if for every M ∈ S there exists M ∈ S such that M hom M . Write S ≡ hom S if S hom S and S hom S . Homomorphic expressiveness preorders machines. In Fig 5.1 there exists a bottom-up refinement of the machines displayed, starting with the simplest machine and ending with a more complex machine. Lemma 33. S hom S Proof. Let α : Ψ → Ψ be defined by α(ψ) = ψ. Lemma 34. S hom S and S hom S implies S hom S Proof. Suppose α : Ψ → Ψ and α : Ψ → Ψ . Define α = α • α.

Figure 5

 5 Figure 5.1: A Hierarchy of Timed Machines

 × H(ψ)/|ψ | Proposition 36. FSM ≡ hom PROB Proof. Let S ∈ FSM and construct P ∈ PROB S = (S, s, Γ, ∆) and P = (S, s, Γ, d, ∆) such that (s, γ, d(γ), s) ∈ ∆ if and only if (s, γ, s) ∈ ∆ and for any state s ∈ S let k be the number of edges going out of s. We put d(s, s) = 1/k if there exists a transition between s and s . For the other direction, suppose we have P ∈ PROB and obtain S ∈ FSM as follows. Let k be a g.c.d. for the probabilities on the machine edges of P and for any machine edge (s, γ, d(γ), s) of P define j machine edges of S of the form (s, γ, s i) with j = d(e(s, s))/k Proposition 37. TIMED ≡ hom PROBTIMED Proof. Let T ∈ TIMED and construct A ∈ PROBTIMED T = (S, s, Γ, C, ∆) and A = (S, s, Γ, C, d, ∆) such that (s, r, con, γ, s , d(s, s)) ∈ ∆ if and only if (s, r, con, γ, s) ∈ ∆ and for all s ∈ S s ∈S d(s , s) = 1.

 32 and H(ψ) = 1/8. Proposition 41. FSM iso TIMED Proof. Let S ∈ FSM and construct T ∈ TIMED with P = (S, s, Γ, d, ∆) and A = (S, s, Γ, C, d , ∆) such that (s, r, con, γ, s) ∈ ∆ if and only if (s, γ, s) ∈ ∆ with r = ∅ and con = ∅.

Figure 5

 5 Figure 5.3: Timed Transitions

Proposition 43 .

 43 TIMED iso PROBTIMED Proof. Let T ∈ TIMED and construct A ∈ PROBTIMED T = (S, s, Γ, C, ∆) and A = (S, s,

Theorem 8 .

 8 We observe that PROB and TIMED are disjoint -PROB iso TIMED, and -TIMED iso PROB Proof. Suppose for a contradiction PROB iso TIMED, in such a case let P ∈ PROB have the transition structure pictured in Fig 5.2, and there must exist T ∈ TIMED that expresses this P, and as before we have L(ψ) = L(ψ) in the runs ψ = s 3/4

 |φ | Proposition 49. TIMED ≡ trace PROBTIMED Proof. Let T ∈ TIMED and construct A ∈ PROBTIMED with T = (S, s, Γ, C, ∆) and A = (S, s, Γ, C, d, ∆) with (s, r, con, γ, d(γ), s) ∈ ∆ if and only if (s, r, con, γ, s) ∈ ∆ For the other direction, suppose we have P ∈ PROB and obtain S ∈ FSM as follows. Let k be a g.c.d. for the probabilities on the machine edges of P and for (s, γ, d(γ), s) of P define j machine edges of S of the form (s, γ, s) with j = d(γ)/k Chapter 6

Theorem 10 .

 10 M hom M implies M M . Proof. First suppose M hom M . Then for ψ ∈ Ψ M , ψ ∈ Ψ M we have H(ψ) = H(ψ) and there exist ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ)

Figure 6

 6 Figure 6.1: Glimpse automaton 1s 1 start s 2 γ 1

Theorem 12 .

 12 If M ∼ = M then M ∼ M . Proof. Suppose M ∼ = M therefore H(ψ) = H(ψ) and exist ς : S(ψ) → S(ψ) and ϑ : Γ(ψ) → Γ(ψ)ς a relabelling, ϑ a relabelling, and for all i ς(S(ψ(i))) = S(ψ (i)) and ϑ(Γ(ψ(i)) = Γ(ψ (i))

Theorem 13 .

 13 There exist machines M and M with M ∼ M such that M ∼ = M . Proof. The examples are the machines in Figure 6.1 and Figure 6.2.6.4 Trace expressivenessTrace expressiveness induces a bisimilarity relation and any bisimilarity induces a trace expressiveness relation.Theorem 14. M ∼ = trace M if and only if M ∼ M . Proof. Suppose M ∼ = trace M for φ ∈ Φ M and φ ∈ Φ M we have H(φ) = H(φ)and there exists ϑ : Γ(φ) → Γ(φ)and for all i we have ϑ(Γ(φ(i))) = Γ(φ (i)). Obtain R ⊆ S × S by letting R(s, s) if there exist edges e, e in M and M respectively with S(e) = (s, ŝ),

 FSM iso PROB Proof. Let S ∈ FSM and construct P ∈ PROB with S = (S, s, Γ, ∆) and P = We can see that the runs of the two machines can be put in a one to one correspondence.To see the inclusion is strict, consider the machine P in Fig 5.2. Suppose there exists a machine S that expresses P, we have L

	start	s 1	0.25	s 2
		0.75		
	Figure 5.2: Two Probabilistic Transitions	
	Proposition 40.			

(S, s, Γ, d, ∆) such that (s, γ, d(γ), s) ∈ ∆ if (s, γ, s) ∈ ∆.

Part I Deterministic, Timed, Probabilistic Phenomena

For probabilistic automata and probabilistic timed automata define Proof. Suppose the contrary. In such a case, the form of H(ψ) is

which implies some term t i in the product is zero.

Lemma 21. For any run ψ with |ψ| = k, lim k→∞ (H(ψ)) = 0

Proof. For H(ψ) of the form t 1 × t 2 × . . . t k , each term t i is less than 1

The following result shows the measures H are well behaved and we use this for defining measures on sets of runs.

Proposition 22. For any run ψ we have

Proof. The upper bound is a consequence of Lemma 19, the lower bound is a consequence of Lemma 20 and Lemma 21.

Trace expressiveness

We consider traces isomorphic and write φ ∼ = φ if H(φ) = H(φ) and there exists ϑ :

and for all i we have ϑ(Γ(φ(i))) = Γ(φ (i))

Definition 31. S trace S if for every M ∈ S there exists M ∈ S such that M ∼ = run M . Write S ≡ trace S if S trace S and S trace S .

Trace expressiveness partitions sets of machines. Now let T ∈ TIMED and let S be its region automaton, which is a finite state machine as shown in [START_REF] Alur | A theory of timed automata[END_REF], with states having the form (s, reg) where s is a state of T and reg is a clock region. Let γ → γ if e(s, s) = γ and e((s, reg), (s , reg)) = γ Assign weights to actions of S inductively. If s is reachable from s in T through one machine edge e = (s, r, con, γ, s) and there exist k regions Chapter 7

Our results

We analyze a notion of machine equivalence, and describe our contribution within this context. We refer to the Chomsky Hierarchy [START_REF] Chomsky | Three models for the description of language[END_REF] and to Rabin's result [START_REF] Michael O Rabin | Probabilistic automata[END_REF] generalizing a part of this hierarchy. There exist four levels of this, from simple to somewhat complicated, these are We say REG. is simple since it is a grammar of a simple language, the language recognized by a deterministic finite state automaton. On the other hand, we say R.E. is complicated since it is the grammar of languages recognized by Turing Machines, hence undecidable, to be precise Σ 1 in the sense of [START_REF] Irwing | Recursively Enumerable Sets and Degrees, A study of computable functions and computably generated sets[END_REF].

In between, C.F. is somewhat simple, requiring a context free grammar, while C.S. is not simple, requiring a context sensitive grammar.