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MATRIX FACTORIZATION FOR MULTIVARIATE TIME SERIES
ANALYSIS

PIERRE ALQUIER* AND NICOLAS MARIE†

Abstract. Matrix factorization is a powerful data analysis tool. It has been
used in multivariate time series analysis, leading to the decomposition of the
series in a small set of latent factors. However, little is known on the statistical
performances of matrix factorization for time series. In this paper, we extend
the results known for matrix estimation in the i.i.d setting to time series.
Moreover, we prove that when the series exhibit some additional structure like
periodicity or smoothness, it is possible to improve on the classical rates of
convergence.
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1. Introduction

Matrix factorization is a very powerful tool in statistics and data analysis. It was
used as early as in the 70’s in econometrics in reduced-rank regression [27, 22, 29].
There, matrix factorization is mainly a tool to estimate a coefficient matrix under
a low-rank constraint. There was recently a renewed interest in matrix factoriza-
tion as a data analysis tool for huge datasets. Nonnegative matrix factorization
(NMF) was introduced by [35] as a tool to represent a huge number of objects
as linear combinations of elements of “parts” of objects. The method was indeed
applied to large facial image datasets and the dictionary indeed contained typical
parts of faces. Since then, various methods of matrix factorization were successfully
applied such various fields as collaborative filtering and recommender systems on
the Web [34, 51], document clustering [46], separation of sources in audio process-
ing [42], missing data imputation [26], quantum tomography [23, 25, 53, 7, 39],
medical image processing [21] topics extraction in texts [43] or transports data
analysis [12]. Very often, matrix factorization provides interpretable and accu-
rate representations of the data matrix as the product of two much smaller ma-
trices. The theoretical performances of matrix completion were studied in a se-
ries of papers by Candès with many co-authors [10, 11, 9]. Minimax rates for
matrix completion and more general matrix estimation problems were derived
in [32, 8, 30, 31, 41]. Bayesian estimators and aggregation procedures were studied
in [1, 47, 38, 2, 37, 4, 17, 36, 16, 15].

To apply matrix factorization techniques to multivariate time series is a very
natural idea. First, the low-rank structure induced by the factorization leads to
high correlations that are indeed observed in some applications (this structure is
actually at the core of cointegration models in econometrics [20, 28, 5]). Moreover,
the factorization provides a decomposition of each series in a dictionary which
member that can be interpreted as latent factors used for example in state-space
models, see e.g. Chapter 3 in [33]. For this reasons, matrix factorization was used
in multivariate time series analysis beyond econometrics: electricity consumptions
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forecasting [18, 40], failure detection in transports systems [48], collaborative filter-
ing [24], social media analysis [45] to name a few.

It is likely that the temporal structure in the data can be exploited to obtain
an accurate and sensible factorization: autocorrelation, smoothness, periodicity...
Indeed, while some authors use matrix factorization as a black box for data analysis,
others propose in a way or another to adapt the algorithm to the temporal structure
of the data [54, 45, 14, 24]. However, there is no theoretical guarantee that this leads
to better predictions or better rates of convergence. Moreover, the aforementionned
theoretical studies [10, 11, 9, 32, 8, 30, 31, 41] all assumed i.i.d noise, strongly
limiting their applicability to study algorithms designed for time series such as
in [54]. The objective of this paper is to address both issues.

Consider for example that one observes a d series (xi,t)
T
t=1 = X and assume that

X = M + ε where M is a rank k matrix and ε is some noise. In a first time,
assume that entries εi,t of ε are i.i.d with variance σ2. Theorem 3 in [32] implies
that there is an estimator M̂1 of M, such that 1

dT ‖M̂1 −M‖2F = O(σ2 k(d+T )
dT ), up

to log terms. Moreover, Theorem 5 in the same paper shows that this rate cannot
be improved. Here, we propose an estimator M̂ = ÛV̂, where Û is a d× k matrix
and V̂ is k × T . We study this estimator under the assumption that the rows εi,·
of ε are independent, centered, with covariance matrix Σε, allowing a temporal
dependence in the noise. We prove that 1

dT ‖M̂−M‖2F = O(‖Σε‖op
k(d+T )
dT ) where

‖Σε‖op is the operator norm of Σε. Note that in the i.i.d case Σε = σ2IT , we recover
the rate of [32] as ‖Σε‖op = σ2. However, our result is more general: we provide
examples where the noise is non i.i.d and we still have a control on ‖Σε‖op. For
example, when the noise is row-wise AR(1), that is εi,t+1 = ρεi,t + ηi,t where the
ηi,t are i.i.d with variance σ2 and |ρ| < 1, we have ‖Σε‖op 6 σ2 1+|ρ|

1−|ρ| . Moreover, our
estimator can be tuned to take into account a possible periodicity or smoothness of
the series. This is done by rewriting Ŵ = V̂Λ where Λ is a τ ×T matrix encoding
the temporal structure, and τ 6 T . In this case, we always improve on the rate
O(‖Σε‖op

k(d+T )
dT ).

We obtain the following rates, for some constant C(β, L):

no structure τ -periodic case β-smooth case

order of 1
dT ‖M̂−M‖2F

‖Σε‖opk(d+T )
dT

‖Σε‖opk(d+τ)
dT

‖Σε‖opkd
dT +

(
‖Σε‖opk
dT

) 2β
2β+1

All the results are first stated under a known structure, that is, we assume that
we know the rank k, the period τ or the smoothness β of the series. We provide
at the end of the paper a model selection procedure that allows to obtain the same
rates of convergence without assuming this prior knowledge.

Finally, we should mention the nice paper [44] where the authors studied time-
evolving adjacency matrices for graphs with autoregressive features. However, the
rows of an adjacency matrix are not interpreted as time series, so the objective of
this work is quite different from ours.

The paper is organized as follows. In Section 2 we introduce the notations that
will be used in all the paper. In Subection 3.1 we study matrix factorization without
additional temporal structure. In Section 3.2, we study the estimator M̂ = ÛV̂Λ
in the general case, and show how it improves the rates of convergence for a well
chosen matrix Λ for periodic and/or smooth series. Finally, adaptation to unknown
rank, periodicity and/or smoothness is tackled in Section 4. The proofs are given
in Section 5.
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2. Setting of the problem and notation

Assume that we observe a multivariate series

X = (xi,t)(i,t)∈J1,dK×J1,T K.

where d ∈ N∗ and T ∈ N\{0, 1}. This multivariate series is modelled as a stochastic
process. We actually assume that

(1) X = M + ε,

where ε is a noise and M is a matrix of rank k ∈ J1, T K. Then, there exist
U ∈ Md,k(R) and W ∈ Mk,T (R) such that M = UW. We will refer to W
as the dictionary or as the latent series.

We also want to model more structure in M. This is done by rewritting W = VΛ,
where τ ∈ N \ {0}, V ∈ Mk,τ and Λ ∈ Mτ,T , where Λ is a known matrix. The
matrix Λ depends on the structure assumed on M.

Example 2.1 (Periodic series). Assume that T = pτ with p ∈ N∗ for the sake of
simplicity. To assume that the latent series in the dictionary W are τ -periodic is
exactly equivalent to writing W = VΛ where V ∈Mk,τ (R) and Λ = (Iτ | . . . |Iτ ) ∈
Mτ,T (R) is defined by blocks, Iτ being the indentity matrix inMτ,τ (R).

Example 2.2 (Smooth series). We can assume that the series in W are smooth.
For example, say that they belong a a Sobolev space with smoothness β, we have

Wi,t =

∞∑
n=0

Ui,nen

(
t

T

)
where (en)n∈N is the Fourier basis (the definition of a Sobolev space is reminded
is Section 3.2 below). Of course, there are infinitely many coefficients Ui,n and to
estimate them all is not feasible, however, for τ large enough, the approximation

Wi,t '
τ−1∑
n=0

Ui,nen

(
t

T

)
will be suitable, and can be rewritten as W = UΛ where Λi,t = ei(t/T ). More
details will be given in Section 3.2, where we actually cover more general basis of
functions.

So our complete model will finally be written as

(2) X = M + ε = UVΛ + ε,

where U ∈Md,k(R) and V ∈Mk,τ (R) are unknown, but τ 6 T and Λ ∈Mτ,T (C)
such that rank(Λ) = τ are known (note that the unstructured case corresponds to
τ = T and Λ = IT ).

Note that more constraint can be imposed on the estimator. For example, in
nonnegative matrix factorization [35], one imposes that all the entries in Û and Ŵ

are nonnegative. Here, we will more generally assume that ÛV̂ belongs to some
prescribed subset S ⊆Md,T (R).

In what follows, we will consider two norms onMd,T . For a matrix A, the Frobenius
norms is given by

‖A‖F = trace(AA∗)1/2.

and the operator norm by
‖A‖op = sup

‖x‖=1

‖Ax‖
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where ‖ · ‖ is the Euclidean norm on RT .

2.1. Estimation by empirical risk minimization. By multiplying both sides
in (2) by the pseudo-inverse Λ+ = Λ∗(ΛΛ∗)−1, we obtain the “simplified model”

X̃ = M̃ + ε̃

with X̃ = XΛ+, M̃ = UV and ε̃ = εΛ+. In this model, the estimation of M̃ can
be done by empirical risk minimization:

(3) ̂̃
MS ∈ arg min

A∈S
r̃(A)

where
r̃(A) = ‖A− X̃‖2F ; ∀A ∈Md,τ (R).

Therefore, we can define the estimator M̂S =
̂̃
MSΛ of M.

In Section 3, we study the statistical performances of this estimator. The first
step is done in Subsection 3.1, where we derive upper bounds on∥∥∥∥̂̃MS − M̃

∥∥∥∥2

F

.

The corresponding upper bounds on∥∥∥M̂S −M
∥∥∥2

F

are derived in Subsection 3.2.

3. Oracle inequalities

Throughout this section, assume that ε fulfills the following..

Assumption 3.1. The rows of ε are independent and have the same T -dimensional
sub-Gaussian distribution, with second moment matrix Σε. Moreover, ε1,.Σ

−1/2
ε is

isotropic and has a finite sub-Gaussian norm

Kε := sup
‖x‖=1

sup
p∈[1,∞[

p−1/2E(|〈ε1,.Σ
−1/2
ε , x〉|p)1/p <∞.

In the sequel, we also consider K̃ε := K2
ε ∨ K4

ε.

We remind (see e.g Chapter 1 in [13]) that when X ∼ N (0, In),

(4) sup
‖x‖=1

sup
p∈[1,∞[

p−1/2E(|〈X,x〉|p)1/p = C

for some universal constant C > 0 (that is, C does not depend on n). Thus, for
Gaussian noise, Assumption 3.1 is satisfied and Kε = C does not depend on the
dimension T .

3.1. The case Λ = IT . In this subsection only, we assume that Λ = IT (and thus
τ = T ). So the simplified model is actually the original model X̃ = X, M̃ = M,

ε̃ = ε and ̂̃MS = M̂S .

Theorem 3.2. Under Assumption 3.1, for every λ ∈]0, 1[ and s ∈ R+,

1

dT

∥∥∥M̂S −M
∥∥∥2

F
6

1 + λ

1− λ
· min
A∈S

1

dT
‖A−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ T + s)

dT

with probability larger than 1− 2e−s.
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As a consequence, if we have indeed M ∈ S, then with large probability,

1

dT

∥∥∥M̂S −M
∥∥∥2

F
6

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ T + s)

dT
.

Thus, we recover the rate O(‖Σε‖op
k(d+T )
dT ) claimed in the introduction.

Remark 3.3. Since the bound relies on the constant ‖Σε‖op, let us provide its
value in some special cases:

(1) If cov(ε1,t, ε1,t′) = σ21{t=t′} then

‖Σε‖op = σ2.

More generally, when ε1,1, . . . , ε1,T are uncorrelated,

‖Σε‖op = max
t∈J1,T K

var(ε1,t).

(2) Let (ηt)t∈Z be a white noise of standard deviation σ > 0 and assume that
there exists θ ∈ R∗ such that ε1,t = ηt− θηt−1 for every t ∈ J1, T K. In other
words, (ε1,t)t=1,...,T is the restriction of a MA(1) process to J1, T K. So,

Σε = σ2


1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 0 . . . 0
...

. . .
...

0 . . . 0 1 + θ2 −θ
0 . . . 0 −θ 1 + θ2


and then

‖Σε‖op = σ2

[
1 + θ2 − 2θ min

`∈J1,T K
cos

(
`π

1 + T

)]
6 σ2(1 + θ)2.

(3) Let (ηt)t∈Z be a white noise of standard deviation σ > 0 and assume that
there is a ρ with |ρ| < 1 such that ε1,t = ρε1,t−1 + ηt. So (ε1,t)t=1,...,T is
the restriction of a AR(1) process to J1, T K. So,

Σε = σ2


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

...
. . .

...
ρT−2 . . . ρ 1 ρ
ρT−1 . . . ρ2 ρ 1

 = σ2

[
IT +

T−1∑
t=1

ρt
(
JtT + (J∗T )t

)]
.

where

JT =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . .
...

0 . . . 0 0 1
0 . . . 0 0 0

 .

As ‖JT ‖op = 1, we have

‖Σε‖op 6 σ
2

(
1 + 2

T∑
t=1

|ρ|t
)
6 σ2

(
1 +

2|ρ|
1− |ρ|

)
= σ2 1 + |ρ|

1− |ρ|
.
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3.2. The general case. Let us now come back to the general case. An application
of Theorem 3.2 to the “simplified model” (2.1) shows that for any λ ∈]0, 1[ and
s ∈ R+,

(5)
∥∥∥∥̂̃MS − M̃

∥∥∥∥2

F

6
1 + λ

1− λ
· min
A∈S

∥∥∥AΛ− M̃
∥∥∥2

F
+

4ck

λ(1− λ)
(d+ τ + s)K̃ε̃‖ΣεΛ+‖op

with probability larger than 1− 2e−s.

In order to obtain the desired bound on ‖M̂S −M‖2F , we must now understand the
behaviour of ‖ΣεΛ+‖op and K̃ε̃.

Lemma 3.4. For any matrix C ∈MT,τ (C),

‖Σε1,.C‖op 6 ‖Σε‖op‖C∗C‖op.

The situation regarding K̃ε̃ = K2
ε̃ ∨ K4

ε̃ is different, we are not aware of a general
simple upper bound on Kε̃ = KεΛ+ in terms of Kε and Λ+. Still, there are two
cases where we actually have Kε̃ = Kε. Indeed, in the Gaussian case, Kε̃ = Kε = C,
see (4) above. For non Gaussian noise, we have the following result.

Lemma 3.5. Assume that there is c(τ, T ) > 0 such that ΛΛ∗ = c(τ, T )Iτ . If
Σε = σ2IT with σ > 0, then Kε̃ = Kε.

Note that the assumption on Λ is fullfilled by the examples covered in Subsec-
tions 3.3 and (3.4).

The previous discussion legitimates the following assumption.

Assumption 3.6. Kε̃ 6 Kε.

Finally, note that∥∥∥M̂S −M
∥∥∥2

F
=

∥∥∥∥(
̂̃
MS − M̃)Λ

∥∥∥∥2

F

6

∥∥∥∥̂̃MS − M̃

∥∥∥∥2

F

‖ΛΛ∗‖op

and in the same way∥∥∥A− M̃
∥∥∥2

F
=
∥∥(AΛ−M)Λ+

∥∥2

F
6 ‖AΛ−M‖2F ‖ΛΛ+‖(ΛΛ∗)−1‖op.

By Inequality (5) together with Lemmas 3.4 and 3.5, we obtain the following result.

Corollary 3.7. Fix λ ∈]0, 1[ and s ∈ R+. Under Assumption 3.1 and Assumption
3.6,

1

dT

∥∥∥M̂S −M
∥∥∥2

F
6

1 + λ

1− λ
· min
A∈S

1

dT
‖AΛ−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT

with probability larger than 1− 2e−s.

Corollary 3.7 provides an oracle inequality: it says that our estimator provides the
optimal tradeoff between a variance term in ‖Σε‖opk(d+ τ)/(dT ), and a bias term.
The bias term is the distance of M to its best approximation by a matrix of the
form AΛ. In order to explicit the rates of convergence, assumptions can be made
to upper-bound the bias term. We now apply Corollary 3.7 in the case of periodic
time series, and then in the case of smooth time series. In each case, we explicit
the bias term and the rate of convergence.
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3.3. Application: periodic time series. In the case of τ -periodic time series,
remind that we assumed for simplicity that there is an integer p such that τp = T
and we defined

Λ = (Iτ | . . . |Iτ ) ∈Mτ,T (R).

Then
ΛΛ∗ =

T

τ
Iτ ⇒ ‖ΛΛ∗‖op =

T

τ
and ‖(ΛΛ∗)−1‖op =

τ

T
.

Therefore, by Corollary 3.7, for every λ ∈]0, 1[ and s ∈ R+, under Assumptions 3.1
and 3.6,

1

dT

∥∥∥M̂S −M
∥∥∥2

F
6

1 + λ

1− λ
· min
A∈S

1

dT
‖AΛ−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT

with probability larger than 1− 2e−s. Now, define

S = {A ∈Mn,T (R): rank(A) 6 k and ∀i,∀t,Ai,t+τ = Ai,t}

and assume that M ∈ S. Then,
1

dT

∥∥∥M̂S −M
∥∥∥2

F
= O

(
‖Σε‖op

k(d+ τ)

dT

)
which is indeed an improvement with respect to the rate obtained without taking
the periodicity into account, that is O(‖Σε‖op

k(d+T )
dT ).

3.4. Application: time series with smooth trend. Assume we are given a
dictionary of functions (en)|n|6N for some finite N ∈ N. This dictionary can for
example be a finite subset of a basis of an Hilbert space (en)n∈Z, like the Fourier
basis or a wavelet basis.

Define

ΛN =

(
en

(
t

T

))
(n,t)∈J−N,NK×J1,T K

.

Note that ΛN is a τ × T matrix where τ = 2N + 1.

Assume that
ΛNΛ∗N = T Iτ .

This implies that ‖(ΛNΛ∗N )−1‖op = 1/T and ‖ΛNΛ∗N‖op = T . This can be the
case for a well-chosen basis, otherwise, we can apply the Gram-Schmidt to the
dictionary of functions.

Example 3.8. (Fourier’s basis) Consider the Fourier basis (en)n∈Z defined by

en(x) = e2iπnx ; ∀n ∈ Z, ∀x ∈ R.

On the one hand, for every n ∈ J−N,NK and t ∈ J1, T K, |en(t/T )| = 1. On the
other hand, for every m,n ∈ J−N,NK such that m 6= n,

T∑
t=1

en

(
t

T

)
em

(
t

T

)
=

T∑
t=1

e2iπ(n−m)t/T

=
e2iπ(n−m)/T (1− e2iπ(n−m))

1− e2iπ(n−m)/T
= 0.

Therefore, by Corollary 3.7, for every λ ∈]0, 1[ and s ∈ R+, under Assumptions 3.1
and 3.6,

(6)
∥∥∥M̂S −M

∥∥∥2

F
6

1 + λ

1− λ
·min
A∈S
‖AΛN −M‖2F+

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ (2N + 1) + s)

dT
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with probability larger than 1− 2e−s. We will now show the consequences of these
results when the rows of M are smooth in the sense that they belong to a given
Sobolev ellipsoid. In this case, we will not have a A such that ‖AΛ−M‖2F = 0, but
this quantity will be small and can be controlled as a function of N . We introduce
a few definitions.

Definition 3.9. The Sobolev ellipsoid W (β, L) is the set of functions f : [0, 1]→ R
such that f is β − 1 times differentiable, f (β−1) is absolutely continuous and∫ 1

0

f (β)(x)dx 6 L2.

From now, we assume that en(x) = e2iπnx is the Fourier basis. It is well-known
from Chapter 1 in [50] that any f ∈W (β, L) and x ∈ [0, 1],

f(x) =

∞∑
n=−∞

cn(f)en(x)

and that there is a (known) constant C(β, L) > 0 such that

(7)
1

T

T∑
t=1

f ( t

T

)
−
∑
n6|N |

cnen

(
t

T

)2

6 C(β, L)N−2β .

Definition 3.10. We define S(k, β, L) ⊂ Md,T (R) as the set of matrices M such
that M = UW, U ∈Mk,T (R), W ∈Md,k(R) and

(1) For any i ∈ J1, dK, ‖Ui,·‖2 6 1,
(2) For any ` ∈ J1, kK and t ∈ J1, T K, W`,t = f`

(
t
T

)
for some f` ∈W (β, L).

Denote VN,W = (cn(f`))`6k,|n|6N .

Then (7) implies

1

dT
‖M−UVN,WΛN‖2F 6 C(β, L)N−2β .

Pluging this into (6) gives

1

dT

∥∥∥M̂S(k,β,L) −M
∥∥∥2

F
6

1 + λ

1− λ
· C(β, L)N−2β +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT
.

If β is known, an adequate optimization with respect to N gives the following result.

Corollary 3.11. Assume that M ∈ S(k, β, L). Under Assumptions 3.1 and 3.6,
the choice N = b(dTC(β, L)/(‖Σε‖opk))1/(2β+1)c ensures

1

dT

∥∥∥M̂S(k,β,L) −M
∥∥∥2

F
6 C

[
‖Σε‖op

kd+ s

dT
+ C(β, L)

1
2β+1

(
‖Σε‖op

k

dT

) 2β
2β+1

]
with probability larger than 1 − 2e−s, where C > 0 is some constant depending on
λ, c and Kε.

However, in practice, β is not known - nor the rank k. This problem is tackled in
the next section.

4. Model selection

Assume that we have many possible matrices Λτ , for τ ∈ T ⊂ {1, . . . , T} and
for each τ , many possible Sτ,k for different possible ranks k ∈ K ⊂ {1, . . . , d ∧ T}.



MATRIX FACTORIZATION FOR MULTIVARIATE TIME SERIES ANALYSIS 9

Consider s ∈ R+ and the penalized estimator M̂s = M̂S
τ̂s,k̂s

with

(τ̂s, k̂s) ∈ arg min
(τ,k)∈T ×K

{∥∥∥M̂Sτ,k −X
∥∥∥2

F
+ pens+τ+k(τ, k)

}
,

where
pens(τ, k) =

2ck

λ
(d+ τ + s)K̃ε‖Σε‖op.

Theorem 4.1. Under Assumptions 3.1 and 3.6, for every λ ∈]0, 1[,

1

dT

∥∥∥M̂Sτ̂s,k̂s
−M

∥∥∥2

F
6 min

(τ, k) ∈ T × K
A ∈ Sτ,k

{(
1 + λ

1− λ

)2
1

dT
‖AΛτ −M‖2F

+
16cK̃ε‖Σε‖op
λ(1− λ)2

· k(d+ τ + s)

dT

}
.

with probability larger than 1− 2e−s.

Remark 4.2. The reader might feel uncomfortable with the fact that the model
selection procedure leads to k̂s and τ̂s that depend on the prescribed confidence level
s. Note that if k = k0 is known, that is K = {k0}, then it is clear from the definition
that τ̂s actually does not depend on s.

As an application, assume that M ∈ S(k, β, L) where k is known, but β is unknown.
Then the model selection procedure is feasible as it does not depend on β, and it
satisfies exactly the same rate as M̂S(k,β,L) in Corollary 3.11.
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5. Proofs

5.1. Additional notations. Let us first introduce a few additional notations.

First, for the sake of shortness, we introduce the estimation risk R and the em-
pirical risk r. These notations also make clear the fact that our estimator can be
seen as an empirical risk minimizer.

R(A) = ‖A−M‖2F and r(A) = ‖A−X‖2F ; ∀A ∈Md,T (R).

Let ∆(S) = {A−B ; A,B ∈ S}.

For any A ∈Md,T (C), the spectral radius of A is given by

ρ(A) := max{|λ| ; λ ∈ sp(A)}.

Note that ‖A‖2op = ρ(AA∗) = ρ(A∗A).

For any subset K ofMd,T (C),

rk(K) = max{rank(A) ; A ∈ K}

and
K1 = {A ∈ K : ‖A‖F 6 1}.

5.2. Some lemmas. Let us now state the key lemmas for the proof of our results.
The first one will be used to estimate how far from the minimizer of R is the
minimizer of r.



12 PIERRE ALQUIER* AND NICOLAS MARIE†

Lemma 5.1. For any A ∈Md,T (R),

R(A)− r(A) + ‖ε‖2F = 2〈ε,A−M〉F .

Moreover, for every λ ∈]0, 1[,

(8) R(A) 6
r(A)− ‖ε‖2F

1− λ
+

1

λ(1− λ)

〈
ε,

A−M

‖A−M‖F

〉2

F

and

(9) r(A)− ‖ε‖2F 6 (1 + λ)R(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

.

Proof. Consider A ∈Md,T (R). First of all,

R(A)− r(A) = ‖A−X‖2F − ‖A−M‖2F
= 〈X−M, 2A−X−M〉2F
= −‖ε‖2F + 2〈ε,A−M〉F .

Then, for any λ ∈]0, 1[,

(10) R(A)− r(A) + ‖ε‖2F = 2
√
λR(A)

〈
ε,

A−M√
λ · ‖A−M‖F

〉
F

.

On the one hand, by Equation (10) together with the classic inequality 2ab 6 a2+b2

for every a, b ∈ R,

R(A)− r(A) + ‖ε‖2F 6 λR(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

.

So, Inequality (8) it true.

On the other hand, by Equation (10) together with the classic inequality −2ab 6
a2 + b2 for every a, b ∈ R,

r(A)−R(A)− ‖ε‖2F 6 λR(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

.

So, Inequality (9) it true. �

In the proof of the theorems, A will be replaced by an estimator of M that will
be data dependent. Thus, it is now crucial to obtain uniform bounds on the scalar
product in Lemma 5.1. In machine learning theory, concentration inequalities are
the standard tools to derive such a uniform bound, see [6] for a comprehensive
introduction to concentration inequalities for independent observations, and their
applications to statistics. Some inequalities for time series can be found for ex-
ample in [19], and were applied to machine learning in [3]. Here, we require more
specifically a concentration inequality on random matrices. Such inequalities can
be found in [49, 52]. We will actually use the following result (Theorem 5.39 and
Remark 5.40.2 from [52]). As the proof can be found in [52], we don’t reproduce it
here.

Proposition 5.2. Under Assumption 3.1, there exists a deterministic constant
m > 1, not depending on ε, d and T , such that for every s ∈ R+,∥∥∥∥1

d
ε∗ε− Σε

∥∥∥∥
op
6 mmax


√
T

d
+

√
s

d
;

(√
T

d
+

√
s

d

)2
 K̃ε‖Σε‖op

with probability larger than 1− 2e−s, where K̃ε := K2
ε ∨ K4

ε.
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We are now in position to provide a uniform bound on the scalar product in
Lemma 5.1.

Lemma 5.3. Under Assumption 3.1, there exists a constant c > 1, not depending
on ε, d and T , such that for every s ∈ R+ and K ⊂Md,T (R),

sup
A∈K1

〈ε,A〉2F 6 c · rk(K1)(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s.

Proof. Consider a subset K of Md,T (R) and s ∈ R+. Let σ1(ε) > · · · > σd(ε) be
the singular values of ε. On the one hand, consider a matrix A ∈ K1 with singular
values σ1(A) > · · · > σrk(K1)(A). By Cauchy-Schwarz’s inequality:

|〈ε,A〉F | 6
rk(K1)∑
i=1

σi(ε)σi(A)

6

∣∣∣∣∣∣
rk(K1)∑
i=1

σi(ε)
2

∣∣∣∣∣∣
1/2

‖A‖F 6 rk(K1)1/2σ1(ε).

Then,

(11) sup
A∈K1

〈ε,A〉2F 6 rk(K1)σ1(ε)2.

On the other hand, consider

ω ∈


∥∥∥∥1

d
ε∗ε− Σε

∥∥∥∥
op
6 mmax


√
T

d
+

√
s

d
;

(√
T

d
+

√
s

d

)2
 K̃ε‖Σε‖op

 .

Then, ∣∣∣∣1dσ1(ε(ω))2 − ‖Σε‖op
∣∣∣∣ =

∣∣∣∣1d‖ε(ω)‖2op − ‖Σε‖op
∣∣∣∣

=

∣∣∣∣1d‖ε(ω)∗ε(ω)‖op − ‖Σε‖op
∣∣∣∣

6

∥∥∥∥1

d
ε(ω)∗ε(ω)− Σε

∥∥∥∥
op

6 m

(√
T

d
+

√
s

d
+

2T

d
+

2s

d

)
K̃ε‖Σε‖op.

In particular,

σ1(ε(ω))2 6 m(
√
Td+

√
sd+ 2T + 2s+ d)K̃ε‖Σε‖op

6 m

(
2d+

5

2
T +

5

2
s

)
K̃ε‖Σε‖op

6 c (d+ T + s) K̃ε‖Σε‖op(12)

with c = 5m/2. Therefore, by Inequalities (11) and (12) together with Proposition
5.2,

sup
A∈K1

〈ε,A〉2F 6 c · rk(K1)(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s. �
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5.3. Proof of Theorem 3.2. Consider λ ∈]0, 1[ and s ∈ R+. By applying the
Inequalities (8) and (9) of Lemma 5.1 successively:

R(M̂S) 6
r(M̂S)− ‖ε‖2F

1− λ
+

1

λ(1− λ)

〈
ε,

M̂S −M

‖M̂S −M‖F

〉2

F

6
1 + λ

1− λ
· min
A∈S

R(A) +
2

λ(1− λ)
sup

A∈∆(S)1
〈ε,A〉2F .

By Lemma 5.3:

R(M̂S) 6
1 + λ

1− λ
· min
A∈S

R(A) +
4ck

λ(1− λ)
(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s.

5.4. Proof of Lemma 3.4. First of all,

Σε1,.C = E(C∗ε∗1,.ε1,.C) = C∗E(ε∗1,.ε1,.)C = C∗ΣεC.

Then, since the matrix ΣεC is Hermitian,

‖Σε1,.C‖op = sup
x∈Cτ\{0}

‖C∗ΣεCx‖
‖x‖

= sup
x∈Cτ\{0}

x∗C∗ΣεCx

‖x‖2

= sup
x∈Cτ\{0}

x∗C∗ΣεCx

‖Cx‖2
× ‖Cx‖

2

‖x‖2

6

(
sup

y∈CT \{0}

y∗Σεy

‖y‖2

)(
sup

x∈Cτ\{0}

‖Cx‖2

‖x‖2

)
= ‖Σε‖op‖C∗C‖op.

5.5. Proof of Lemma 3.5. Since ε̃ = εΛ+, Σε = σ2IT and ΛΛ∗ = c(τ, T )Iτ ,

Σ
−1/2
ε̃ = ((Λ+)∗ΣεΛ

+)−1/2

= σ−1((Λ+)∗Λ+)−1/2

= σ−1(ΛΛ∗)1/2

= σ−1c(τ, T )1/2Iτ .

Then, for any x with ‖x‖ = 1,

〈ε̃1,.Σ
−1/2
ε̃ , x〉 = σ−1c(τ, T )−1/2〈ε1,.Λ

∗, x〉

= c(τ, T )−1/2‖xΛ‖ ·
〈
ε1,.Σ

−1/2
ε ,

xΛ

‖xΛ‖

〉
.

Moreover,
‖xΛ‖2 = xΛΛ∗x∗ = c(τ, T )xx∗ = c(τ, T ).

Therefore,

Kε̃ = sup
‖x‖=1

sup
p∈[1,∞[

p−1/2E(|〈ε̃1,.Σ
−1/2
ε̃ , x〉|p)1/p

= c(τ, T )−1/2

× sup
‖x‖=1

{
‖xΛ‖ sup

p∈[1,∞[

p−1/2E
(∣∣∣∣〈ε1,.Σ

−1/2
ε ,

xΛ

‖xΛ‖

〉∣∣∣∣p)1/p
}

= Kε

and finally, K̃ε̃ = K̃ε.
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5.6. Proof of Theorem 4.1. For short, let us denote

M̂s := M̂S
τ̂s,k̂s

.

Consider λ ∈]0, 1[. On the one hand, by applying the Inequalities (8) and (9) of
Lemma 5.1 successively:

R(M̂s) 6
r(M̂s)− ‖ε‖2F

1− λ
+

1

λ(1− λ)

〈
ε,

M̂s −M

‖M̂s −M‖F

〉2

F

=
1

1− λ
· min

(τ,k)∈T ×K
{r(M̂τ,k) + pens+τ+k(τ, k)− ‖ε‖2F }

+
1

1− λ

−pens+τ+k(τ̂s, k̂s) +
1

λ

〈
ε,

M̂s −M

‖M̂s −M‖F

〉2

F


6

1

1− λ
· min

(τ,k)∈T ×K
{(1 + λ)R(M̂τ,k) + pens+τ+k(τ, k) + ψε(M̂τ,k)}(13)

+
1

1− λ
(−pens+τ+k(τ̂s, k̂s) + ψε(M̂s)),

where

ψε(A) =
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

; ∀A ∈Md,T (R).

On the other hand, consider (τ, k) ∈ T × K. Since ε̃ = εΛ+
τ ,

ψε(M̂τ,k) =
1

λ

〈
ε,

(
̂̃
Mτ,k − M̃)Λτ

‖M̂τ,k −M‖F

〉2

F

=
1

λ

〈
εΛ+

τ ΛτΛ
∗
τ ,

̂̃
Mτ,k − M̃

‖M̂τ,k −M‖F

〉2

F

6
1

λ
· sup
A∈∆(Sτ,k)1

〈ε̃,AΛ∗τ 〉2F 6
1

λ
‖Λ∗τ‖2op · rk(∆(Sτ,k)1) · σ1(ε̃)2.

As in the proof of Proposition 5.3, by Lemma 5.2 and since

‖ΣεΛ+
τ
‖op‖Λ∗τ‖2op 6 ‖Σε‖op‖(ΛτΛ

∗
τ )−1‖opρ(ΛτΛ

∗
τ ) = ‖Σε‖op,

with probability larger than 1− 2e−u,

ψε(M̂τ,k) 6
2ck

λ
(d+ τ + u)K̃ε‖Σε‖op = penu(τ, k).

Take u = s+ τ + k, we obtain that with probability at least 1− 2e−s−τ−k,

ψε(M̂τ,k) 6
2ck

λ
(d+ τ + (s+ 2τ + 2k))K̃ε‖Σε‖op = pens+τ+k(τ, k).

Then, by a union bound,

P(∀k, ∀τ : ψε(M̂Sτ,k) 6 pens+2τ+2k(τ, k)) > 1− 2
∑

(τ,k)∈T ×K

e−s−τ−k

> 1− 2e−s

∑
τ≥1

e−τ

∑
k≥1

e−k


> 1− 2e−s.

Together with Inequality (13), this gives, with probability at least 1− 2e−s,

(14) R(M̂s) 6
1

1− λ
· min

(τ,k)∈T ×K

{
(1 + λ)R(M̂τ,k) + 2pens+τ+k(τ, k)

}
.
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Finally, follow the proof of Corollary 3.7 to obtain, on the same event with proba-
bility at least 1− 2e−s, for any τ and k,

R(M̂Sτ,k) 6
1 + λ

1− λ
· min
A∈Sτ,k

‖AΛτ −M‖2F +
2

1− λ
pens+τ+k(τ, k).

Plugging this into (14) gives, with probability at least 1− 2e−s,

R(M̂s) 6 min
(τ,k)∈T ×K

{(
1 + λ

1− λ

)2

min
A∈Sτ,k

‖AΛτ −M‖2F +
4

(1− λ)2
pens+τ+k(τ, k)

}
.

Finally, note that k 6 d so

pens+τ+k(τ, k) =
2ck

λ
(d+ τ + (s+ τ + k))K̃ε‖Σε‖op

6
4ck

λ
(d+ τ + s)K̃ε‖Σε‖op

and so, with probability at least 1− 2e−s,

R(M̂s) 6 min
(τ,k)∈T ×K

{(
1 + λ

1− λ

)2

min
A∈Sτ,k

‖AΛτ −M‖2F +
16ck

λ(1− λ)2
(d+ τ + s)K̃ε‖Σε‖op

}
.

This ends the proof.
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