Stavros Tripakis

A simple way to explain undecidability

come

A simple way to explain undecidability

Introduction

The undecidability of the halting problem for Turing machines is a cornerstone result in computer science [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. Many students are exposed to rigorous proofs of this result in textbooks on computability theory, such as [START_REF] Lewis | Elements of the Theory of Computation[END_REF][START_REF] Sipser | Introduction to the theory of computation[END_REF]. These proofs rely on knowing what a Turing machine is and how it operates. This is of course necessary for a rigorous exposition of the undecidability result.

Here's a way to explain undecidability without having to explain Turing machines. This is by no means a rigorous proof, but I have found it a useful way to introduce students to the undecidability concept.

Undecidability without Turing machines

The argument is as follows. Suppose there exists a program, call it terminator, which can decide termination of other programs. terminator takes as input a program P and an input x and returns YES if P terminates on x, and NO if P does not terminate on x. terminator always terminates and gives a YES or NO answer. Now build a new program Q as follows:

Q(P) := if (TERMINATOR(P,P) = YES) then loop forever else return YES.

Q takes as input a program P and runs terminator on P , with the input x also set to P . If terminator returns YES, then Q goes into an infinite loop. Otherwise, Q returns YES (the actual returned value is in fact not important).

Assuming that program terminator exists, Q is also a valid program (which calls terminator as a subroutine). So Q can be given as an input to itself, and we can ask: does Q(Q) terminate? There are two cases:

• Either terminator(Q, Q) returns YES, which means that Q(Q)
terminates. But in that case, Q takes the then branch and loops forever, which means it does not terminate!

• Or terminator(Q, Q) returns NO, which means that Q(Q) does not terminate. But in that case, Q takes the else branch and returns a value, which means that it does terminate!

In both cases, we reach a contradiction. Therefore, terminator cannot exist. This "proof" is both simple and short: it fits in one page of a small note pad, as the picture above shows.