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An unknown input interval observer
for LPV systems under L2-gain and L∞-gain criteria

Nicolas Ellero a, David Gucik-Derigny a, David Henry a

aUniversity of Bordeaux, IMS-Lab, Automatic control group, 351 Cours de la libération, 33405, Talence, France

Abstract

This paper investigates the design of an unknown input interval observer, for linear parameter varying systems. The proposed
method provides a solution to the decoupling conditions under L2-gain and L∞-gain performance level. It is shown that the
design of the unknown input interval observer parameters can be formulated as a SDP problem. The major advantages with
regards to other solutions is that first, it does not require the explicit knowledge of a (time-varying) state transformation, for
the estimation error dynamics to satisfy the Meztler property. Rather, it is shown how such a property can be formulated as
a part of the SDP optimisation process; Second, decoupling and L2/L∞ constraints are formulated on the thickness of the
interval length in spite of half the interval length. The proposed methodology is illustrated on a numerical academic example.

Key words: Interval observer; monotone systems; unknown input observer; LPV systems ; H∞ performance.

1 Introduction

Several set membership/interval observer-based solu-
tions have been proposed in the literature to solve the
so-called "guaranteed" state estimation problem for
Linear Parameter Varying (LPV)/quasi-LPV systems
Efimov et al. (2012); Chebotarev et al. (2015); Wang
et al. (2015).The design of an interval observer is gen-
erally based on the monotone system theory Farina &
Rinaldi (2000) to get the cooperativity property of the
observation error dynamics. The difficulty to obtain
this property was relaxed for a large class of systems
using a time invariant state transformation Raissi et al.
(2012) and a time varying state transformation Mazenc
& Bernard (2011); Thabet et al. (2014). Another ap-
proach consists in applying a transformation to put the
system into a positive form before designing an inter-
val observer Cacace et al. (2015). However, it has been
proposed only for Linear Time Invariant (LTI) and Lin-
ear Time Variant (LTV) systems. A last approach has
been proposed based on Müller’s theorem and interval
analysis for nonlinear system Kieffer & Walter (2006);
Meslem & Ramdani (2011). This approach also exploits
the monotone property.
The main limitation of the previous mentionned ap-
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proaches is their ability to simultaneously satisfy the
conditions of the existence of the interval observer (es-
pecially cooperativity property) and a certain level
of a priori given performance like the interval length.
The work reported in Chebotarev et al. (2015) aims at
proposing a solution to this problem within the L1/L2
framework. Unfortunately, the problem of considering
the Meztler property as a part of the design process, is
not addressed. Furthermore, it should be pointed out
that the proposed approach is based on a LTI interval
observer (to deal with LPV systems) and this leads, ob-
viously, to conservative results. The work introduced in
Briat & Khammash (2016) proposes an interval observer
design method based on L∞ performance criterion, but
it is limited to LTI systems.
The contribution of this paper must be thought in this
context. The goal is to develop an interval observer for
a general class of LPV systems, under unknown input
decoupling, L2-gain and L∞-gain criteria (and then a
mixed L2/L∞-gain criterion), considering the coopera-
tivity property of the observation error dynamics as a
part of the design process. To this end, a new structure
of an interval observer is proposed. The major advan-
tages with regards to existing solutions is that it does
not require the explicit knowledge of a (time-varying)
state transformation, for the estimation error dynamics
to satisfy the Meztler property.

Notations: In this paper, we adopt the notations
that are commonly used in the robust control and
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interval communities: R and R+ := [0,∞) ⊂ R are
the set of real numbers and the set of nonnegative
real numbers, respectively. Rn is a n-dimensional
real space and Rn×m is the set of real n × m ma-
trices. I, 0 denote respectively the identity and the
null matrices of appropriate dimensions. For a matrix
A ∈ Rn×m, ≤,≥, <,> refer to component-wise. Denote
A+ = max(A, 0), A− = A+ − A, |A| = A+ + A− and[
A,A

]
=
{
A ∈ Rn×m | A ≤ A ≤ A

}
. The same nota-

tions are adopted for vectors. For a vector v ∈ Rn, the no-
tation v∗ refers to v∗ =

[
(v+)T (v−)T (v+)T (v−)T

]T
,

ṽ = v− v, v̂ = v− + v+. For a matrix A, A � 0 (A ≺ 0)
defines a strictly positive (negative) definite matrix. A†
refers to the Moore-Penrose inverse of a full column
matrix rank A and He{A} = A+AT . In large symmet-
ric matrix expressions, terms denoted ? refer to terms
induced by symmetry.

2 Preliminaries

This section is devoted to definitions and lemmas that
will be later used in the paper.

Definition 1 Farina & Rinaldi (2000) (Theorem 2
p.14). A square matrix is said to be Metzler if all its
off-diagonal elements are non-negative.

Definition 2 Poole & Boullion (1974) (Theorem 2.1
p.420). Let a square matrix W = [wi,j ] satisfying wij ≤
0, ∀i 6= j and wij > 0 ∀i = j then W is said to be a
M-matrix if W−1 exists and W−1 ≥ 0.

The following lemmas provide useful results for Metzler
matrices and cooperative systems.

Lemma 3 Consider a (known) parameter-dependent
matrix L(ρ) ∈ Rn×n where ρ ∈ Ψ ⊂ Rs, an invertible
M-matrix W ∈ Rn×n and a real scalar µ≥ 0. Then L(ρ)
is a Metzler matrix if WL(ρ) + µW ≥ 0,∀ρ ∈ Ψ.

PROOF. Since W is a M-matrix then W−1 ≥ 0. Mul-
tiplyingWL(ρ) + µW byW−1 leads to L(ρ) + µIn ≥ 0,
which terminates the proof. �.

Lemma 4 Farina & Rinaldi (2000) (Theorem 2 p.14).
Let a non-autonomous system given by ė(t) = Ae(t)+b(t)
where e ∈ Rn, the matrix A ∈ Rn×n is Metzler and
b(t) ∈ Rn ≥ 0, ∀t ≥ 0 . If e(0) ≥ 0 then e(t) ≥ 0, ∀t ≥ 0.
Such systems are called cooperative.

Definition 5 (L2-norm, L∞-norm) Let u : R+ →
Rn.The L2-norm of u (often called simply the 2-norm
of u(t)) is defined as ‖u‖2 :=

(∫∞
0 u(t)Tu(t)dt

)1/2. The
L∞-norm of u is defined as ‖u‖∞ := sup

t≥0

{(
u(t)Tu(t)

)1/2}.

The shorthand u ∈ L2 (u ∈ L∞) where L2 (L∞)
refers to the space of signals mapping R+ to Rn with
finite L2-norm (L∞-norm), is equivalent to ||u||2 < ∞
(||u||∞ <∞).

Definition 6 (L2-gain, L∞-gain) Consider an LPV
system where x, u, y denote respectively its state, input
and output vectors respectively. Let us define the operator
Σρ such that y(t) = (Σρu)(t) for some parameter trajec-
tory ρ. For zeros initial state condition (i.e. x(0) = 0),

sup
ρ∈Ψ,||u||2=1

||Σρu||2 is the L2-gain of the LPV system,

where Ψ is the set of all possible parameter trajectories.
Similarly, sup

ρ∈Ψ,||u||∞=1
||Σρu||∞ defines the L∞-gain.

3 Problem statement

Consider the following class of LPV systems, driven by
unknown inputs w(t) ∈ Rm and d(t) ∈ Rq{

ẋ(t) =A(θ(t))x(t)+B(θ(t))w(t)+E(θ(t))d(t)
y(t) =C(θ(t))x(t)+D(θ(t))w(t)

(1a)
(1b)

Here, x(t) ∈ Rn and y(t) ∈ Rp denote state and mea-
sured output vectors, respectively. Both d(t) and w(t)
are unknown input signals. However, w(t) is assumed
to be bounded with known bounds w(t), w(t), whereas
there is no assumption on d(t). The scheduling parame-
ter vector θ(t) ∈ Θ ⊂ Rl and its time derivative θ̇(t) ∈ Γθ
are assumed to be bounded with a priori known values.

Assumption 7 It is assumed that θm(t) = [θ1(t) θ2(t)
· · · θs(t)] ∈ Θm, 0 ≤ s ≤ l, is measured through ρ(t) =
[ρ1(t) ρ2(t) · · · ρs(t)] ∈ Ψ where ρi(t) = λi(t)θi(t) +
δi(t) with λi 6= 0,δi are elements of λ ∈ ∆λ ⊂ Rs, δ ∈
∆δ ⊂ Rs. Each vector λ, δ are continuously differentiable
such that λ̇ ∈ Γλ ⊂ Rs, δ̇ ∈ Γδ ⊂ Rs. It is also assumed
that ρ and ρ̇ evolve in hyper-rectangles so that

V =
{

(α1, α2, · · · , αs) | αi ∈
{
ρi, ρi

}}
(2)

R =
{

(β1, β2, · · · , βs) | βi ∈
{
ρ̇i, ρ̇i

}}
(3)

Here, ρi, ρi, ρ̇i, ρ̇i are the (known) extremal values. The
domain of ρ̇ is denoted Γρ.

In order to improve the readability of the following de-
velopments, the time dependency of signals and param-
eters is omitted from now on. The following assumption
is made:

Assumption 8 E(θ) is assumed to be of full column
rank and rank(C(θ)E(θ)) = rank(E(θ)) = q, ∀θ ∈ Θ
with q ≤ p.

Note that assumption 8 can be done without loss of gen-
erality since, in (1a), d refers to the maxiumum unknwon
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inputs the interval unknown input observer can decou-
ple. That’s why it is a classical assumption in Unknown
Input Observer (UIO) theory, Darouach et al. (1994).

The objective is to design the unknown input interval
observer (UIIO) that admits the following structure

ż =L(ρ)z + (M(ρ) + L(ρ)N)y + η(r, r, w,w, ρ)
r = z +Ny + ϕ(w,w, ρ)
x =g (r, r, ρ)
ż =L(ρ)z + (M(ρ) + L(ρ)N)y + η(r, r, w,w, ρ)
r = z+Ny+ϕ(w,w, ρ)
x =g (r, r, ρ)

(4a)
(4b)
(4c)
(4d)
(4e)
(4f)

so that its dynamics is decoupled from the unknown
inputs d and the effect of w on the size of the total state
estimate envelop x̃ = x − x : x̃ ∈ Rn is minimized, in
the L2-gain and L∞-gain sense.
In Eqs. (4a)-(4f), η, η : R2n+2m+s → Rn, ϕ,ϕ :
R2m+s → Rn, g, g : R2n+s → Rn, L(ρ) ∈ Rn×n,
M(ρ), N ∈ Rn×p. z, z ∈ Rn are, respectively, the upper
and lower bounds of the state z ∈ Rn that we define as
a parameter dependent linear combination of x, so that:

z = R(θ)x s.t. R(θ)E(θ) = 0 (5)

Eq. (5) guarantees that z is decoupled from the unknown
inputs d, and so the envelope tight x̃ is.
By extending the results presented in Darouach et al.
(1994) to Eq. (5), it can be shown that Eq. (5) is ful-
filled, if and only if R(θ) = K(θ) (In − S(θ)C(θ)) where
S(θ) = E(θ)(C(θ)E(θ))† and where K(θ) ∈ Rn×n is an
arbitrary matrix. Note that the classical choice in the
UIO theory for K(θ) is K(θ) = In. Here, K(θ) is a de-
gree of freedom that will be exploited later.
Additionally, we enforce the following relation

x = Q(θ)r Q(θ) ∈ Rn×n (6)

so that r, r ∈ Rn, x, x ∈ Rn in (4b),(4e),(4c),(4f) are
respectively the upper and lower bounds of r and x.

Assumption 9 It is assumed that the matrices K(θ)
and N are known matrices such that Q(θ) in (6) is in-
vertible and satisfies Q(θ)−1 = R(θ) +NC(θ).

SinceC(θ) is of full row rank ∀θ ∈ Θ, it is always possible
to find a matrix N that compensates the rank deficiency
of S(θ) since it is guaranteed by assumption 2 that q ≤
p. Note that the particular case p = q is covered by
the definition of R(θ) since it corresponds to particular
parametrization of K(θ), see Darouach et al. (1994).

The objective is now to design the functions η,η,ϕ,ϕ,g,g
and the matrices K(θ), N , L(ρ),M(ρ) so that the effect
of w on the size of the total state estimate envelop x̃ is

minimized, in the L2-gain and L∞-gain sense, x̃ being
decoupled from d, thanks to (5). The following section
states the solution to this problem. Section 4.2 is devoted
to the derivation of necessary and sufficient conditions
for (4a)-(4f) to be an UIIO for the system (1a)-(1b). Sec-
tion 4.3.1 proposes a method to derive η,η,ϕ,ϕ,g,g in a
non conservative way by keeping the dependency of the
variables entering in η and ϕ. while section 4.3.2 pro-
posed a Semi Definite Programming (SDP) formulation
to optimally compute L(ρ),M(ρ). With regards toK(θ)
and N , guidelines are also provided in section 5.

4 Solution to the UIIO design problem

4.1 Preliminary results

The following lemma provides a constructive method
to design the lower and upper bounds of a product of
a vector by a parameter dependent matrix in the set-
membership context. The core element is that any ma-
trix can always be decomposed into two (non unique)
matrices which elements are positives.

Lemma 10 Let a vector v ∈
[
v, v
]
⊂ Rn and some

matrices Xk(θ) ∈ Rm×n, θ ∈ Θ, k ∈ {a, b}, such that
X (θ) = Xa(θ)−Xb(θ). Then:
1) ∀θ ∈ Θ, assume that ∃Xk(θ) ∈

[
Xk,Xk

]
⊂ Rm×n

with Xk ≥ 0. Then, with X • =
[
Xa −Xa −Xb Xb

]
,

X • =
[
−Xb Xb Xa −Xa

]
, it follows

X •v∗ ≤ X (θ)v ≤ X •v∗ (7)

2) Assume that a subset of θ ∈ Θ is known through ρ ∈ Ψ,
0 < s ≤ l, suppose there exist Xk(θ) ∈

[
Xk(ρ),Xk(ρ)

]
with Xk(ρ) ≥ 0, it follows

X •(ρ)v∗ ≤ X (θ)v ≤ X •(ρ)v∗ (8)

PROOF. The proof for 1) is addressed. Given that
v ∈ [v, v] then 0≤ v+≤ v+≤ v+, 0≤ v−≤ v−≤ v−. Now
considering that 0 ≤ Xk ≤ Xk(θ) ≤ Xk then Xkv+ ≤
Xk(θ)v+ ≤ Xkv+ and Xkv− ≤ Xk(θ)v− ≤ Xkv−. Since
X (θ)v = (Xa(θ)−Xb(θ)) (v+ − v−), we deduce that
X •v∗ ≤ X (θ)v ≤ X •v∗. The proof for 2) is similar to
the proof for 1) by a slight adaptation considering the
parameter dependence on ρ. �

Note that, Lemma 10 generalizes Lemma 2 in Efi-
mov et al. (2012). Indeed, in the particular case where
Xa(θ) = X (θ)+, Xb(θ) = X (θ)− and X (θ) ∈

[
X ,X

]
then Lemma 2 in Efimov et al. (2012) is equivalent to
Lemma 10. It allows that the bounds structure of the

3



matrix part is not anymore unique and do not necessar-
ily depend on the non-linear operators (.)+ and (.)− for
the matrix X (θ).

The following notations are now adopted in the following

X (ρ) = Xa(ρ)−Xb(ρ) X (ρ) = Xa(ρ)−Xb(ρ)
X̃ (ρ) = X (ρ)−X (ρ) X̆ (ρ) = Xa(ρ) + Xb(ρ)

(9)

4.2 Necessary and sufficient conditions

The following theorem gives the existence conditions for
Eqs. (4a) -(4f) to be an UIIO for the system (1a)-(1b).

Theorem 11 Under the assumptions 8 and 9, the state
x involved in Eqs. (1a)-(1b) is bounded by x, x defined
by Eqs. (4c), (4f) i.e.

x(t) ∈ [x(t), x(t)] ∀t ≥ 0 (10)

iff the following conditions hold for the system (4a)-(4f):

(i) ∀ρ ∈ Ψ, there exists a matrix L(ρ) such that

L(ρ) is Metzler (11a)

(ii) ∀ρ ∈ Ψ, ∀θ ∈ Θ, ∀θ̇ ∈ Γθ, ∃ η, η, ϕ, ϕ, g, g so that
η(r, r, w,w, ρ) ≤ η(r, w, ρ, θ, θ̇) ≤ η(r, r, w,w, ρ) (11b)

ϕ(w,w, ρ) ≤ ϕ(w, θ) ≤ ϕ(w,w, ρ) (11c)
g(r, r, ρ) ≤ g(r, θ) ≤ g(r, r, ρ) (11d)

where η(r, w, ρ, θ, θ̇) = F (ρ, θ, θ̇)r +G(ρ, θ)w,
ϕ(w, θ) = H(θ)w, g(r, θ) = Q(θ)r,

with F (ρ, θ, θ̇) = T (ρ)Y (θ, θ̇) − L(ρ), G(ρ, θ) =
T (ρ)Z(θ), H(θ) = −ND(θ) and T (ρ) =

[
L(ρ)M(ρ) I

]
,

Y (θ, θ̇)=

 0
−C(θ)Q(θ)(

R(θ)A(θ) + Ṙ(θ)
)
Q(θ)

, Z(θ)=

−ND(θ)
−D(θ)
R(θ)B(θ)


(iii) the initial conditions for z, z are given by

z(0) ≤ R•(ρ(0))x(0)∗ z(0) ≥ R•(ρ(0))x(0)∗ (11e)

where the notations (·)•, (·)
•
are defined in lemma 10.

PROOF. Consider the two following observation errors

ez = z − z ez = z − z (12)

Computing the time derivative of ez, ez and considering
the decoupling condition (5) (i.e. R(θ)E(θ) = 0) then :

ėz = L(ρ)ez + η(r, r, w,w, ρ)− η(r, w, ρ, θ, θ̇) (13a)
ėz = L(ρ)ez + η(r, w, ρ, θ, θ̇)− η(r, r, w,w, ρ) (13b)

Under the condition (11b), the Metzler property (11a)
and the initial conditions (11e), it can be verified that
(13a)-(13b) fulfil the cooperativity property and then

ez(t), ez(t) ≥ 0 ∀t ≥ 0 (14)

Now, combining (5) and (12) , it is deduced that z, z are
equivalent to

z = ez +R(θ)x z = R(θ)x− ez (15)

Using (15) and (1b) to replace z, z, y into (4b),(4e) and
considering the inverse of (6) (i.e. r = (R(θ) +NC(θ))x)
then

r − r = ez + ϕ(w,w, ρ)− ϕ(w, θ) (16a)
r − r = ez + ϕ(w, θ)− ϕ(w,w, ρ) (16b)

Under the conditions (11c) and (14), it is deduced that
r(t) ∈ [r(t), r(t)] , ∀t ≥ 0. Finally, considering (6) and
recalling that g(r, θ) = Q(θ)r in (11d) leads to x(t) ∈
[x(t), x(t)] , ∀t ≥ 0 where the bounds are defined in
(4c),(4f), which concludes the proof. �

4.3 SDP formulation of L2/L∞-gain performance

By virtue of (16a)-(16b), the following equation yields

r̃ = z̃ + ϕ(w,w, ρ)− ϕ(w,w, ρ) (17)

where r̃ = r − r and z̃ = ez + ez. The following lemma
gives the solution to determine the functions g, g.

Lemma 12 Consider Q(θ) defined in (6) satisfying
Q(θ) = Qa(θ) − Qb(θ) such that, for k ∈ {a, b},
Qk(θ) ∈

[
Qk(ρ), Qk(ρ)

]
with Qk(ρ) ≥ 0, ∀ρ ∈ Ψ. Then,

for r ∈ [r, r], the inequality (11d) of Theorem 11 holds
with g(r, r, ρ) = Q

•(ρ)r∗ and g(r, r, ρ) = Q•(ρ)r∗.

PROOF. Direct application of lemma 10 on (6).
With lemma 12, (4c) and (4f), it can be verified that the
following equation yields,

x̃ = Q̆(ρ)r̃ + Q̃(ρ)r̂ (18)

where the notations Q̆(ρ), Q̃(ρ) are defined in (9).
Then, using (13a)-(13b), it follows that the time deriva-
tive of z̃ = ez + ez is given by

˙̃z = L(ρ)z̃ + η(r, r, w,w, ρ)− η(r, r, w,w, ρ) (19)

Finally, injecting (17) into (18) and combining the result
with (19), it follows that:{ ˙̃z = L(ρ)z̃ + η(r, r, w,w, ρ)− η(r, r, w,w, ρ)
x̃ = Q̆(ρ)

(
z̃ + ϕ(w,w, ρ)− ϕ(w,w, ρ)

)
+Q̃(ρ)r̂

(20a)
(20b)
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Thus, the problem turns out to be the determination of
η, η,ϕ,ϕ. Note that it is always possible to derive bounds
for η and ϕ ignoring the coupling of the variables they
depend on, but it seems obvious that it may lead to a
conservative solution and thus may increase the tight of
the interval x̃. Towards this end, it is preferred here to
keep the dependency of variables entering in η and ϕ.

4.3.1 Determination of η, η, ϕ, ϕ

The determination of η, η, ϕ, ϕ is based on an adaptation
of Lemma 10 applied on η, ϕ. Its application on each
element of η, ϕ is based on the following decompositions:

F (ρ, θ, θ̇) = Fa(ρ, θ, θ̇)− Fb(ρ, θ, θ̇) (21)
G(ρ, θ) = Ga(ρ, θ)−Gb(ρ, θ) (22)
H(ρ, θ) = Ha(ρ, θ)−Hb(ρ, θ) (23)

Following the materials discussed in lemma 10, the ma-
trices Fk(ρ, θ, θ̇), Gk(ρ, θ), Hk(ρ, θ), k ∈ {a, b}, must be
defined so that each component of the lower bound is
positive. Possible candidates for these matrices can be
proposed as follows: Consider the decomposition

T (ρ) = Ta(ρ)− Tb(ρ) (24)

with Ta(ρ)=
[
La(ρ) Ma(ρ) I

]
, Tb(ρ)=

[
Lb(ρ) Mb(ρ) 0

]
.

such that La(ρ), Lb(ρ),Ma(ρ),Mb(ρ) ≥ 0, ∀ρ ∈ Ψ.

• With regards to the matrix F (ρ, θ, θ̇), the following
form for Fa(ρ, θ, θ̇) and Fb(ρ, θ, θ̇) is retained

Fa(ρ, θ, θ̇) = Lb(ρ) + (Ta(ρ)− Tb(ρ))Y (θ, θ̇)
Fb(ρ, θ, θ̇) = Fb(ρ) = La(ρ),

(25)

where Y (θ, θ̇) satisfies the decomposition Y (θ, θ̇) =
Ya(θ, θ̇)− Yb(θ, θ̇) such that, for k ∈ {a, b}, Yk(ρ, θ, θ̇) ∈[
Yk(ρ), Yk(ρ)

]
with Yk(ρ) ≥ 0, ∀ρ ∈ Ψ, ∀θ̇ ∈ Γθ and the

constraint Lb(ρ)+Ta(ρ)Y (ρ)−Tb(ρ)Y (ρ) ≥ 0 holds, for
all ρ ∈ Ψ. The notations Y (ρ), Y (ρ) are defined in (9).

•With regards to the matrix G(ρ, θ), the following form
for Ga(ρ, θ) and Gb(ρ, θ) is retained

Ga(ρ, θ) = Ta(ρ)Za(θ) + Tb(ρ)Zb(θ)
Gb(ρ, θ) = Ta(ρ)Zb(θ) + Tb(ρ)Za(θ)

(26)

where the matrices Za(θ), Zb(θ) are given by the decom-
position Z(θ) = Za(θ)− Zb(θ) such that, for k ∈ {a, b},
Zk(θ) ∈

[
Zk(ρ), Zk(ρ)

]
with Zk(ρ) ≥ 0 for all ρ ∈ Ψ.

• Finally, with regards to H(θ), the following conditions

for Hk(θ), k ∈ {a, b} are considered

Hk(θ) ∈
[
Hk(ρ), Hk(ρ)

]
with Hk(ρ) ≥ 0,∀ρ ∈ Ψ (27)

The following lemma provides the solution to the design
of η, η, ϕ, ϕ.

Lemma 13 Let us consider the matrices Fk(ρ, θ, θ̇),
Gk(ρ, θ), Hk(ρ, θ), k ∈ {a, b} defined by Eqs. (25), (26),
(27). Then, for r ∈ [r, r], the inequality (11b) and (11c)
of Theorem 11 holds with

η(r, r, τ) = F
•(ρ)r∗ +G

•(ρ)w∗ (28)
η(r, r, τ) = F •(ρ)r∗ +G•(ρ)w∗ (29)

ϕ(τ) =H
•(ρ)w∗ (30)

ϕ(τ) =H•(ρ)w∗ (31)

where Fa(ρ) = Lb(ρ) + Ta(ρ)Y (ρ) − Tb(ρ)Y (ρ),
Fa(ρ) = Lb(ρ) + Ta(ρ)Y (ρ) − Tb(ρ)Y (ρ), Fb(ρ) =
Fb(ρ) = La(ρ), Ga(ρ) = Ta(ρ)Za(ρ) + Tb(ρ)Zb(ρ),
Ga(ρ) = Ta(ρ)Za(ρ)+Tb(ρ)Zb(ρ),Gb(ρ) = Ta(ρ)Zb(ρ)+
Tb(ρ)Za(ρ), Gb(ρ) = Ta(ρ)Zb(ρ) + Tb(ρ)Za(ρ).

PROOF. First, note that the bounds of Fk(·), Gk(·),
Hk(·), k ∈ {a, b} satisfy the conditions of lemma 10.
Then, applying lemma 10 on the parts F (ρ, θ, θ̇)r,
G(ρ, θ)w and H(θ)w, see the inequalities (11b) and
(11c) respectively, leads to (28)-(29) and (30)-(31). �

4.3.2 Sufficient LMIs for L(ρ),M(ρ)

Using the above derived expressions of η, η, ϕ, ϕ, (20a)-
(20b) can be rewritten as equations depending linearly
onL(ρ),M(ρ). To proceed, and similarly to (18), we have

η(r, r, τ)− η(r, r, τ) = F̆ (ρ)r̃ + (Ta(ρ) + Tb(ρ)) Ỹ (ρ)r̂
+ (Ta(ρ) + Tb(ρ)) Z̆(ρ)w̃ + (Ta(ρ) + Tb(ρ)) Z̃(ρ)ŵ

(32)
ϕ(τ)− ϕ(τ) = H̆(ρ)w̃ + H̃(ρ)ŵ (33)

with the notations (̃·), (̆·) defined in (9) and where τ =
[wT wT ρT ].
Injecting (32)-(33) into the system (20a)-(20b) with r̃
defined in (17), it follows that

˙̃z = A(ρ)z̃ + f(z̃) + F̆ (ρ)
(
H̆(ρ)w̃ + H̃(ρ)ŵ

)
+ (Ta(ρ) + Tb(ρ))

(
Z̆(ρ)w̃ + Z̃(ρ)ŵ

)
x̃ = Q̆(ρ)z̃ + g(z̃) + Q̆(ρ)

(
H̆(ρ)w̃ + H̃(ρ)ŵ

)
z̃(0) = R

•(ρ(0))x(0)∗ −R•(ρ(0))x(0)∗

(34a)

(34b)

(34c)

where f(z̃) = (Ta(ρ) + Tb(ρ)) Ỹ (ρ)r̂(z, z), g(z̃) =
Q̃(ρ)r̂(z, z) and A(ρ) = L(ρ) + F̆ (ρ).
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The problem remains now to design L(ρ) and M(ρ) so
that the effect of the envelop size w̃ = w−w and themag-
nitude ŵ on the length of the total envelop x̃ = x− x is
minimized, in the L2-gain and/or in the L∞-gain sense.
The used method is based on the cooperative property to
demonstrate that both the state z̃ and the output x̃ of the
system (34a)-(34c) can be bounded by the state and the
output of a fictitious stable (pure) LPV system, sched-
uled by the parameter vector ρ and driven by an aug-
mented vector that contains w̃ and ŵ. Then, by proving
that the L2-gain (L∞-gain) of the fictitious LPV system
is an upper bound for the L2-gain (L∞-gain) of the sys-
tem (34a)-(34c), it follows that the system (34a)-(34c)
is stable with a finite L2-gain (L∞-gain) performance.
For that purpose, the proposed theory uses the slack
matrix method initially proposed in Bara et al. (2001)
with a parameter-dependent Lyapunov matrix through
the concept of Affine Quadratic Stability (AQS).
To proceed, we first derive the following lemma that pro-
vides a procedure to get the decomposition K(θ, θ̇) =
Ka(θ, θ̇) − Kb(θ, θ̇) for the matrix K ∈ {Q,Y, Z,H} de-
fined in lemmas 12 and 13.

Lemma 14 Considering that a part of the vector θ, de-
noted as θm ∈ Rs is measured through ρ ∈ Rs (see sec-
tion 3) and for i = {1, · · · , s}, let some functions ni such
that hi = ρi

λi
− ni ≥ 0, ∀ρi ∈ Ψi. For K(θ, θ̇) such that

K(θ, θ̇) = K0(θ, θ̇) +
s∑
i=1

θiKi(θ, θ̇) (35)

then, under assumption 7 i.e θi = ρi−δi

λi
, the decomposi-

tion K(θ, θ̇) = Ka(θ, θ̇)−Kb(θ, θ̇) is ensured for (35) by
adopting, for k ∈ {a, b},

Kk(θ, θ̇) = Kk0(θ, θ̇) +
s∑
i=1

hiKki(θ, θ̇) (36)

where Ka0(θ, θ̇) = Σ(θ, θ̇)+, Kai(θ, θ̇) = Ki(θ, θ̇)+,
Kb0(θ, θ̇) = Σ(θ, θ̇)−, Kbi(θ, θ̇) = Ki(θ, θ̇)−, with
Σ(θ, θ̇) = K0(θ, θ̇) +

s∑
i=1

εiKi(θ, θ̇) and hi = ρi

λi
− ni,

εi = ni − δi

λi
. For Kj(θ, θ̇) ∈

[
Kj ,Kj

]
⊂ Rm×n,

j ∈ {0, · · · , s}, upper and lower bounds of Kk(θ, θ̇) are[
Ka(ρ) Ka(ρ)
Kb(ρ) Kb(ρ)

]
=
[

Σ+ Σ+

Σ− Σ−

]
+

s∑
i=1

hi

[
Ki+ Ki

+

Ki
− Ki−

]
(37)

where Σ = K0 +
s∑
i=1
Ki•ε∗i , Σ = K0 +

s∑
i=1
Ki
•
ε∗i .

PROOF. It is obvious that (35) is equivalent to the
form K(θ, θ̇) = Ka(θ, θ̇)−Kb(θ, θ̇) where, for k ∈ {a, b},
the matrices Kk(θ, θ̇) are defined by Eq. (36). Designing
term by term the bounds of Eq. (36) leads to (37) and
Kk(ρ) ≥ 0, ∀ρ ∈ Ψ. �

Note that the construction of the bounds Kj , Kj for
j ∈ {0, · · · , s} is possible sinceK(θ) and N are assumed
to be a priori known, see assumption 9.

The following theorems, i.e. theorem 15 and theorem 17,
give the solutions to the L∞-gain and L2-gain perfor-
mance problems, respectively.

Theorem 15 Consider the assumptions 7-9 and the fol-
lowing LPV model

ν̇ = A(ρ)ν + B(ρ)ψ
ξ = C(ρ)ν +D(ρ)ψ
ν(0) ≥ z̃(0).

(38a)
(38b)
(38c)

where ν, ξ ∈ Rn, ψ =
[
w̃T ŵT |r|T

]T
and the matrices

C(ρ) = Q̆(ρ), D(ρ) =
[
Q̆(ρ)H̆(ρ) Q̆(ρ)H̃(ρ) Q̃(ρ)

]
,

A(ρ) = L(ρ) + F̆ (ρ), B(ρ) = (Ta(ρ) + Tb(ρ)) Ω(ρ) +
F̆ (ρ)Φ(ρ) with Ω(ρ) =

[
Z̆(ρ) Z̃(ρ) Ỹ (ρ)

]
,

Φ(ρ) =
[
H̆(ρ) H̃(ρ) 0n,n

]
, and the notations (̃·), (̆·) are

defined in (9). Consider also matrices Pj = PTj ∈ Rn×n

and Ij =
[
Laj Lbj Maj Mbj

]
where Laj ,Lbj ∈ Rn×n,

Maj,Mbj ∈ Rn×p, for j ∈ {0, · · · , s}, such that

P (α) = P0 + α1P1 + · · ·+ αsPs� 0,∀α ∈ V (39)
I (α) = I0 + α1I1 + · · ·+ αsIs > 0,∀α ∈ V (40)

and matrices Eii = ETii � 0, Fii =FTii � 0, Hii> 0 so that

E(α) = α2
1E11 + · · ·+ α2

sEss � 0,∀α ∈ V (41)
F(α) = α2

1F11 + · · ·+ α2
sFss � 0,∀α ∈ V (42)

H(α) = α2
1H11 + · · ·+ α2

sHss > 0,∀α ∈ V . (43)

If there exist some real scalars µ ≥ 0, γ1, γ2, γ3, γ4 >
0 and a M-matrix W ∈ Rn×n such that the following
constraints hold:

(i) ∀(α, β) ∈ V ×R,

Υ(α, β, γ1, γ2)+E(α) ≺ 0 (44)
Ξ(α, γ3, γ4) + F(α) ≺ 0 (45)

− (La(α)− Lb(α))− µW < 0 (46)
−
(
Lb(α) + Ta(α)Y (α)− Tb(α)Y (α)

)
+H(α) < 0 (47)

with Υ(α, β, γ1, γ2) =
−He{W} ? ? ?

Υ2,1(α)T Υ2,2(α, γ2) ? ?

Υ3,1(α)T 0 Υ3,3(α, β, γ1) ?

WT 0 0 −P (α)

,Υ2,1(α) =

[
(Ta(α) + Tb(α)) Ω(α) J (α)

]
, Υ3,1(α) = P (α) +
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La(α) − Lb(α) + J (α), J (α) = Lb(α) + Ta(α)Y (α) −
Tb(α)Y (α) + La(α), Ta(α) =

[
La(α)Ma(α)W

]
,

Tb(α) =
[
Lb(α)Mb(α) 0

]
, Υ2,2(α, γ2) =

[
−γ2I ?

Φ(α) −I

]
,

Υ3,3(α, β, γ1) = (γ1−1)P (α)+P (β)−P0, Ξ(α, γ3, γ4) =
−γ3P (α) ? ?

0 −γ4I ?

C(α) D(α) −I

.
(ii) for i ∈ {1, · · · , s},

Υii + Eii � 0 (48)
Ξii + Fii ≺ 0 (49)

−
(
TaiY i − TbiY i

)
+Hii > 0 (50)

where Υii =


0 ? ? ?

(Υii)2,1
T 0 ? ?

Jii 0 0 ?

0 0 0 0

, Ξ(α) =


0 ? ?

0 0 ?

0 Dii 0

,
(Υii)2,1 =

[
(Tai + Tbi) Ωi Jii

]
, Jii = TaiY i − TbiY i,

Ωi =
[
Z̆i Z̃i Ỹi

]
, Tai =

[
Lai Mai 0

]
, Tbi =

[
Lbi Mbi 0

]
,

Dii =
[
Q̆iH̆i Q̆iH̃i 0

]
, where K̃i, K̆i, Ki , Ki for

K ∈ {Q,Y, Z,H} deduced from the decompositions[
K̃(ρ) K̆(ρ)
K(ρ) K(ρ)

]
=
[
K̃0 K̆0

K0 K0

]
+

s∑
i=1

ρi

[
K̃i K̆i
Ki Ki

]
.

Then, with the UIIO matrices L(ρ) = La(ρ)−Lb(ρ) and
M(ρ) = Ma(ρ)−Mb(ρ) defined according to[

Lk(ρ) Mk(ρ)
]

= W−1
[
Lk(ρ) Mk(ρ)

]
k ∈ {a, b}

(51)
the system (34a)-(34c) is stable with its asymptotic L∞-
gain performance level, less to γL∞ =

√
γ3γ2
γ1

+ γ4.

PROOF. The proof is organized into two main steps:

a) First, it is shown that the LPV model (38a)-(38c)
is stable ∀ρ ∈ Ψ and ∀ρ̇ ∈ Γρ with asymptotic L∞-
gain less or equal to γL∞ (sufficient condition).

b) Second, it is shown that this is a sufficient condi-
tion for the system (34a)-(34c) to be stable with an
asymptotic L∞-gain performance level less to γL∞ .

Step a): Let us first consider E(α) = 0,F(α) = 0, Eii = 0
and Fii = 0 in Eqs. (44), (45), (48) and (49). This will
be justified later, see remark 16. Since in theorem 15,
Lk(ρ) = WLk(ρ) andMk(ρ) = WMk(ρ) for k ∈ {a, b}
are LMI variables, it follows that the set of constraints
(39)-(50) implies ∀ρ ∈ Ψ, ∀ρ̇ ∈ Γρ (see Gahinet et al.

(1996))

Υ(ρ, ρ̇) ≺ 0 (52)
Ξ(ρ) ≺ 0 (53)

W (La(ρ)− Lb(ρ)) + µW > 0 (54)

W
[
La(ρ) Lb(ρ) Ma(ρ) Mb(ρ)

]
> 0 (55)

W
(
Lb(ρ) + Ta(ρ)Y (ρ)− Tb(ρ)Y (ρ)

)
−H(ρ) > 0 (56)

Since W−1 ≥ 0, Eqs. (54)-(55) ensure that L(ρ) is Met-
zler and that L(ρ), M(ρ) satisfy (24). Eq. (56) guaran-
tees the decomposition (25) and the conditions (52)-(53)
guarantee L∞-gain performance for (38a)-(38c).
Now, consider the condition (52). Since by definition,
Υ2,1(ρ) = WG(ρ) and Υ3,1(ρ) = P (ρ) + WA(ρ) with
G(ρ) =

[
(Ta(ρ) + Tb(ρ)) Ω(ρ) F̆ (ρ)

]
then applying the

Schur complement to (52) leads to

Λ(ρ, ρ̇) +Q(ρ)TWTI + ITWQ(ρ) ≺ 0 (57)

where I =
[
I 0
]
Q(ρ) =

[
−I G(ρ) A(ρ) I

]
and

Λ(ρ, ρ̇) =


0 ? ? ?

0 Υ2,2(ρ) ? ?

P (ρ) 0 Υ3,3(ρ, ρ̇) ?

0 0 0 −P (ρ)

. By virtue

of the projection lemma, (57) has a solution for some
matrix W if and only if

NQ(ρ)TΛ(ρ)NQ(ρ) ≺ 0 NI(ρ)TΛ(ρ)NI(ρ) ≺ 0 (58)

where the null-spaces NQ(ρ) and NI(ρ) are given by

NQ(ρ) =

A(ρ)T 0 I 0
G(ρ)T I 0 0

I 0 0 I


T

, NI(ρ) =

0 I 0 0
0 0 I 0
0 0 0 I


T

.

Applying the Schur complement on the left inequality of
(58) leads to

A (ρ, ρ̇) + B(ρ) ≺ 0 (59)

A (ρ, ρ̇) =
[
He{P (ρ)A(ρ)}+ Ṗ (ρ) + γ1P (ρ) ?

BTP (ρ) −γ2I

]

B(ρ) =
[
P (ρ)F̆ (ρ)F̆ (ρ)TP (ρ)T 0

0 Φ(ρ)TΦ(ρ)

]
Since B(ρ) is strictly positive definite, it follows that
A (ρ, ρ̇) ≺ 0 (sufficient condition). Since A (ρ, ρ̇) is at-
tached to the Lyapunov function V (ρ, ν) = νTP (ρ)ν
characterized by V̇ (ρ, ν) + γ1V (ρ, ν)− γ2ψ

Tψ < 0, it is
deduced that V̇ (ρ, ν) < −γ1V (ρ, ν) + γ2‖ψ‖2∞. Then

V (ρ(t), ν(t)) < V (ρ(0), ν(0))e−γ1t + γ2
γ1
‖ψ‖2∞ (60)

Noting that (53) is equivalent to ξT ξ + γ3V (ρ, ν) −
γ4ψ

Tψ < 0, then ξT ξ < γ3V (ρ, ν) + γ4‖ψ‖2∞, which
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leads with (60) to

ξ(t)T ξ(t) < γ2
L∞
‖ψ‖2∞ + γ3V (ρ(0), ν(0))e−γ1t (61)

which is the characterisation of the L∞-gain for the LPV
system (38a)-(38c). It follows that the LPVmodel (38a)-
(38c) is stable ∀ρ ∈ Ψ and ∀ρ̇ ∈ Γρ with asymptotic
L∞-gain performance less or equal to γL∞ .
Now coming back to the right inequality of (58), since it
is nothing else than an additional constraint to the L∞-
gain inequality, it follows that LMIs (39)-(50) provides
only a sufficient condition. Unfortunately, there still ex-
ists a coupling between the parameter-dependent matri-
ces P (ρ) and La(ρ), Lb(ρ), Ma(ρ), Mb(ρ).To overcome
this drawback, the slack matrix technique is applied to
(59), leading to (52).

Remark 16 As it is outlined in (Gahinet et al., 1996),
it is possible to reduce the conservatism of (52)-(53) by
somewhat relaxing the multiconvexity requirement (48)-
(49). This is the role of the matrices E(α), F(α), Eii
and Fii in Eqs. (44)-(45) and (48)-(49). The resulting
inequalities are generally less conservative since (52)-
(53) corresponds to E1 = ... = Es = 0 and F1 = ... =
Fs = 0. However, this improvement is at the expense
of a higher computational overhead, since the number of
optimization variables increases.
Step b): We first demonstrate that

0 ≤ x̃(t) ≤ ξ(t) ∀t ≥ 0 (62)

Under (54) and Lemma 3, the condition (i) of Theorem
11 holds. SinceW is a M-matrix, we haveW−1 ≥ 0, then
Eqs. (55)-(56) ensure the existence conditions of Lemma
13. Combining the expressions of η, η, ϕ, ϕ given in
Lemma 13 and the initial conditions (34c), it is deduced
that Theorem 11 holds. A direct consequence is 0 ≤ x̃(t),
∀t ≥ 0. So the left part of the inequality of (62) is proved.
Now, let us consider the right part of (62). Subtracting
(34a)-(34c) and (38a)-(38c), leads to

ν̇ − ˙̃z = A(ρ) (ν − z̃) + F̃ (ρ) (|r| − r̂)
ξ − x̃ = Q̆(ρ) (ν − z̃) + Q̃(ρ) (|r| − r̂)
ν(0)− z̃(0) ≥ 0

(63a)
(63b)
(63c)

where |r| = r+ + r−, r̂ = r− + r+, A(ρ) = L(ρ) + F̆ (ρ).
Indeed, for the vector r ∈ [r, r], we have 0 ≤ r+ ≤ r+,
0 ≤ r− ≤ r− and, by definition, F̃ (ρ) ≥ 0, ∀ρ ∈ Ψ, it
is obvious that F̃ (ρ)(|r| − r̂) ≥ 0. Since L(ρ) is Metzler
and F̆ (ρ) ≥ 0, ∀ρ ∈ Ψ then A(ρ) is Metzler. Then with
(63c) and by virtue of the cooperative system theory,
it follows that ν − z̃ ≥ 0, ∀t ≥ 0. Since by definition
Q̆(ρ) ≥ 0,Q̃(ρ) ≥ 0, ∀ρ ∈ Ψ, it follows that (63b) is
positive, and then x̃(t) ≤ ξ(t), ∀t ≥ 0.

Combining the aforementioned results, i.e. 0 ≤ x̃(t) ≤
ξ(t), ∀t ≥ 0 and ‖ξ‖∞ ≤ γL∞‖ψ‖∞ ∀ρ ∈Ψ, ∀ρ̇ ∈ Γρ, it

follows that γL∞ is an upper bound of the asymptotic
L∞-gain performance level of the system (34a)-(34c).
Furthermore, since 0 ≤ z̃(t) ≤ ν(t), ∀t ≥ 0 where 0 ≤
z̃(t) is proven by applying the cooperative system theory
on (34a) and since it has been proven in the previous
step that ν(t) is stable, (34a)-(34c) is stable. �

The following theorem gives the solution for the L2-gain
performance problem.

Theorem 17 Consider the assumptions 7-9, the LPV
model (38a)-(38c), the inequalities (39)-(40), (43) and
matrices Gii =GTii � 0, so that

G(α) = α2
1G11 + · · ·+ α2

sGss � 0,∀α ∈ V (64)

If there exist scalars µ ≥ 0, γ > 0 and a M-matrix W ∈
Rn×n such that the following constraints hold:
(i) ∀(α, β) ∈ V ×R, let consider the inequalities (46)-
(47) in Theorem 15 and

Π(α, β, γ) + G(α) ≺ 0 (65)

where Π(α, β, γ) =
[

Υ(α, β, 0, γ) ?

Π2,1(α) −I

]
with Υ defined in

(44) and Π2,1(α) =
[
0 D(α) 0 C(α) 0

]
(ii) for i ∈ {1, · · · , s}, let consider the inequality (50)
and

Πii + Gii � 0 (66)

where Πii =
[

Υii ?

(Πii)2,1 0

]
, (Πii)2,1 =

[
0 Dii 0

]
with Υii,

Dii defined in (48), (49).

Then, with the UIIO matrices L(ρ) = La(ρ)−Lb(ρ) and
M(ρ) = Ma(ρ) −Mb(ρ) with Lk(ρ),Mk(ρ) k ∈ {a, b}
defined by (51), the system (34a)-(34c) is stable with its
L2-gain performance level, less or equal to γL2 = √γ.
PROOF. The proof is similar to the previous one. �

Theorems 15 and 17 being posed as SDP problems, it is
straightforward to combine them into a mixed problem,
by using a weighted convex optimization formulation.

5 Academic example

Consider the following model with the same notations
than used in the previous sections:

A(θ) =

θ3 − 2 −0.5 0
θ4 θ1 − 1 −0.2
0.1 0 θ2 − 2

, C(θ) =
[
1 0 0
0 1 + θ1 0

]
,

B(θ) =

 0 1 0.2
θ1−0.1 0 0

2 θ2 0

, E(θ) =

θ3 + 2
0
θ1

, D=
[
0 1 0
0 0 1

]
.
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The parameter vector θ and its rate of variations θ̇ are
unknown but assumed to be bounded by the sets

θ1
θ2
θ3
θ4

 ∈

−0.15, 0.15
−0.25, 0.25
−0.15, 0.15

0.2, 0.8

 ,

θ̇1
θ̇2
θ̇3
θ̇4

 ∈

−0.30, 0.30
−0.25, 0.25
−0.75, 0.75

0, 0

 .
The parameters θ1 and θ2 are respectively mea-
sured through ρ1 = θ1 + δ1 , ρ2 = θ2 + δ2 where
δ1 ∈

[
−0.03, 0.03

]
and δ2 ∈

[
−0.03, 0.03

]
are bounded

noises such that δ̇1 ∈
[
−103, 103

]
, δ̇2 ∈

[
−103, 103

]
.

It follows that ρ and ρ̇ satisfy
[
ρ1
ρ2

]
∈

[
−0.18, 0.18
−0.28, 0.28

]
,[

ρ̇1
ρ̇2

]
∈

[
−1000.30, 1000.30
−1000.25, 1000.25

]
. Hence, assumption 7 is

satisfied.
Following the method described in the previous sec-
tions, K(θ) and N must be chosen adequately in order
to derive a not too conservative solution for the UIIO.
For K(θ), it is proposed to retain a parameter inde-
pendent matrix so that K(θ) = κIn with κ 6= 0. Then

a valid definition for N is N = K(θ)S = κ

 1 0
0 0

0.081 0


where S is the upper bound of the matrix S(θ), see (5).
As rank(C(θ)E(θ)) = rank(E(θ)) = 1, ∀θ ∈ Θ then
assumption 8 holds, which leads to

R(θ) = κ

 0 0 0
0 1 0

− θ1
θ3+2 0 1

 , X(θ) = κ

 1 0 0
0 1 0

0.081− θ1
θ3+2 0 1

 .
κ being non null, it is obvious that X(θ) is invertible
∀θ ∈ Θ and thus, that assumption 9 holds.
The next step is to designA(ρ),B(ρ), C(ρ),D(ρ) involved
in (38a)-(38c) using the method proposed in Lemma 14
with ni = −ρi, i ∈ {1, 2} for all matrices. Furthermore,
and as it is usually done in theL2-gain setting, the design
problem is weighted by introducing a constant weighting
function Wψ = diag(wψi

), i = 1, ..., 2m + n so that
ψ = Wψbψ where bψ is a fictitious vector. The scalars
wψi

, i = 1, ..., 2m + n are introduced to manage the
robustness level of each channel, separately. Noting that
γ, γ2, γ4 enters linearly in (39)-(50), (64)-(66), we can
address the following optimization problem

min γn = γ + γ2 + γ4 s.t. (39)-(50), (64)-(66)

Since (39)-(50), (64)-(66) depend nonlinearly on κ, γ1,
γ3 and the LMI variables, this optimization problem is
not convex. A simple remedy consists of a grid of κ, γ1,

γ3 with a sufficiently dense grid and to minimize γn at
each griding point. Here, by setting γ1 = 0.7, γ3 = 1, the
result, presented in figure 1, is a κ − γopt graph where
it can be observed the value(s) of κ that lead(s) to a
minimal value of γn (γn ≈ 65.7 for κ ≈ ±1.4).
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Fig. 1. κ− γ graph

With κ ≈ 1.4, we obtain γL∞ = 7.15, γL2 = 5.81 and
the matrices Lk(ρ), Mk(ρ), k ∈ {a, b} follow from (51).
The functions η, η, ϕ, ϕ are then deduced from lemma
13, which leads to the complete definition of the UIIO.

Simulation results : Simulations are next performed
to appreciate the performance of the designed UIIO. The
time behaviour of the parameters are chosen according
to θ1(t) = 0.15sin(2t + π

2 ), θ2(t) = 0.25sin(t + π
4 ),

θ3(t) = 0.15sin(5t+ π
3 ) and θ4 = 0.5. The unknown in-

put d(t) is fixed to d(t) = 2cos(2t) and the vector w(t) is
chosen to be composed of the signal w1(t) = −2sin( t2 )
and two noises w2(t), w3(t) bounded by known values
w2 = w3 = 0.1, w2 = w3 = −0.1. The results of the sim-
ulations are presented in figures 2-4. As expected, x(t)
and x(t) are lower and upper bounds of x(t)∀t ≥ 0 and
the distance x−x converges with a reasonable transient
behaviour. Finally, a tight interval can be observed,
thanks to the L2/L∞-gain performance.
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1

2
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time (in seconds)
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x1(t)

x1(t)

Fig. 2. Interval estimation of the state x1

Note that it can be observed a high frequency behaviour
on x1(t)/x1(t) that does not exist on xk(t)/xk(t), k =
2, 3. This is due to the disturbance w(t) and its second
componentw2(t) to bemore precise. This can be appreci-
ated by looking at the principal gains of the transfers be-
tween the different component of the exogenous input w
and the estimated upper/lower bounds xk/xk, i = 1, 2, 3,
for frozen parameters θ(t). These plots are not presented
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Fig. 3. Interval estimation of the state x2
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Fig. 4. Interval estimation of the state x3

here due to page limitation, but they reveal that the high
frequency content of w2(t) is not filtered on x1(t)/x1(t),
whereas it is on xk(t)/xk(t), k = 2, 3.

6 Conclusion and future works

This paper investigated the design of an unknown input
interval observer, for linear parameter varying systems,
to robustly estimate the state of linear parameter vary-
ing systems, in a guaranteed way under L2 and L∞-gain
performance. A SDP formulation is derived to design all
the observer parameters. The major advantages with re-
gards to existing theories for interval observer design is
that it does not require the explicit knowledge of a (time-
varying) state transformation, for the estimation error
dynamics to satisfy the Meztler property. Furthermore
the unknwon input decoupling and L2/L∞ constraints
are formulated on the thickness of the interval length in
spite of half the interval length.
Finally, we would like to conclude by a remark about
the conservativeness of the affine parameter dependency
of the Lyapunov matrix and the matrices Lk,Mk, k ∈
{a, b} of theorems 15 and 17. This choice can be relaxed
by using the Sum-of-Square (SoS) theory Parrilo (2000).
The SoS theory enables to use a general polynomial
structure for these matrices and thus offers the potential
to derive a solution in the general case but there exist
some practical limitations such as the a priori choice of
the degree and the structure of the polynomials. Never-
theless, its investigation is under current topic.
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