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Abstract Side-channel attacks are a serious threat

against secret data involved in cryptographic calcula-

tions, as for instance pairing-based cryptography which

is a promising tool for the IoT. We focus our work

on Correlation Power Analysis (CPA) attack against

a pairing implementation. We improve a vertical side-

channel analysis attack and propose the first horizon-

tal attack against a pairing implementation. First, we

present a characterization of the multiplication that al-

lows us to reduce by a factor of ten the number of

side-channel traces required in order to perform a CPA

attack against an implementation of Ate pairing. Sec-

ondly, we successfully attack the same implementation

with only one trace by using the first horizontal attack

path against pairing-based cryptography.
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1 Introduction

The Internet of Things (IoT) is taking more and more

importance in our daily life. It corresponds to numerous

applications where the users’ privacy and confidential-

ity must be guaranteed. In this IoT context, a major is-

sue is the key generation. In a classical PKI model, the

number of keys grows exponentially with the number of

users [13]. Pairing-based cryptography provides elegant

solutions for the key management, through Identity-

based cryptography, and also allows very interesting

protocols such as short signature schemes or hierar-

chical encryption [14]. We study the resistance of a

pairing implementation against side-channel attacks in

the context of IoT, namely an implementation of an

Identity-based protocol on an embedded system. We try

to recover the secret decryption key used in an Identity-

based Encryption (IBE) scheme.

Side-channel attacks, which aim at recovering secret

data, are a serious threat against cryptographic embed-

ded devices. Indeed, in the case of embedded systems,

the attacker can easily gain physical access to the device

in order to perform this attacks [11,27,29].

Such attacks take advantage of physical informa-

tion leakage during a computation. On a given embed-

ded system, the leakage can be the execution time, the

power consumption or the electromagnetic emission [27,

34]. Side-channel attacks use the link between leaked

data and the processed values in order to retrieve in-

formation about the secret. Besides, we consider that

the device is fully under the control of the attacker who

can thus run the same computation with many known

inputs.

As IBE [7] systems are not immune to these threats,

the vulnerability of the pairing computations used in

IBE systems should be investigated. In this case, the
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decryption step is the target of the aforementioned side-

channel attacks.

A pairing is a bilinear map denoted e : G1 ×G2 →
GT , where G1, G2 and G3 are groups of prime order

r. In practice G1 and G2 are sub-groups of an elliptic

curve, G3 is a sub-group of a finite field. Let U be the

ciphertext, the decryption step during an IBE protocol

consists in evaluating e(s, U) where s ∈ G1 is the secret

key.

This critical operation was recently attacked through

Correlation Power Analysis (CPA) [6,21,38] where the

target was a modular multiplication calculation.

Studies on side-channel attacks share at least two

important features: the comparison of side-channel leak-

age models [8] and the detection of points of interest

related to the models [18]. The statistical tests that are

used in order to detect points of interest can also be

considered as a way of validating the leakage model.

Our approach gives rise to a parametrized attack.

Because of the large number of variables, we provide

a detailed characterization of how side-channel attacks

leak information about critical operations during pair-

ing computations. In order to illustrate the application

of our approach in the context of a cryptographic algo-

rithms, we targeted one of the modular multiplications

involved in the software implementation of an Ate pair-

ing, the secret to be recovered being one of the two

points involved in this pairing calculation.

Compared to the practical attacks against pairing

calculations published so far [6,38], our results, based

on real electromagnetic measurements from the chip of

an embedded 32-bit ARM core processor, require sig-
nificantly less computational time in order to retrieve

the secret value.

Our study proposes a generic method for attacking

pairing implementations and defines parameters to in-

crease a CPA’s efficiency (namely the number of mea-

surement curves needed). We use our method in or-

der to develop, as far as we know, the first horizontal

attack against a pairing implementation. Contrary to

a classical vertical CPA that exploits several measure-

ments at the same instant in time, a horizontal attack

only uses one measurement curve at several instants.

We illustrate the weakness of a pairing submitted to

an horizontal attack and provide counter-measures in

order to secure a pairing implementation. The hori-

zontal approach is based on the fact that critical op-

erations are performed several times during the same

execution of the Miller algorithm. Measurements are

selected at those moments to perform the attack. We

also present the first electromagnetic attack against a

protected pairing implementation.

The rest of the paper is organized as follows. Sec-

tion 2 describes the mathematical background for pair-

ings and an IBE pairing-based protocols. Section 3 con-

tains a state of the art of the side-channel attacks against

pairings. Section 4 describes improvements of the CPA

attack against an unprotected pairing implementation.

In Section 5 we provide an optimized side-channel at-

tack, horizontal attack, against pairings with only one

side-channel trace. Then, Section 6 shows different coun-

termeasures from the literature and a collision attack to

defeat one of them. Section 7 is devoted for a conclusion

and prospect.

2 Cryptographic pairings

This section is divided into three parts: first the defini-

tion of a pairing, then the definition of the Ate pairing

and the presentation of classical implementation tricks

for pairings. The last part is a description of an Identity-

based protocol: the Identity-based Encryption (IBE).

2.1 Elliptic curves and pairing definition

Let p be a large prime number. An elliptic curve E over

the finite field Fp is defined by the reduced Weierstrass

equation as follows:

E(Fp) =
{

(x, y) ∈ F2
p|y2 = x3 + ax+ b, for a, b ∈ Fp

}
∪{O},

(1)

where O is the point at infinity. The curve E should be

smooth. This condition is satisfied if the discriminant

∆(E) = −16(4a3 + 27b2) is not zero.

Elliptic curves E are used in cryptography because

we can define a group law on the set of its points. We

can perform the addition of two different points of E

and the doubling of a point of E.

For efficiency reasons, we can use a projective rep-

resentation of the points of an elliptic curve. Indeed,

a pairing computation is based on a scalar multipli-

cation over an elliptic curve. In affine coordinates, a

scalar multiplication involves several inversions, which

are expensive operations. We describe our attack us-

ing the Jacobian coordinates as they were proved to

allow the most efficient pairing computations [5]. Since

then, it appears that projective coordinates provide the

most efficient pairing implementations [1]. However, our

methods and descriptions can easily be applied to any

implementation of pairings using any system of coordi-

nates. Indeed, the main ingredient of the attack is the

interaction between secret data and public one during

a multiplication over Fp.



Improving side-channel attacks against pairing-based cryptography 3

Among the points belonging to a curve E, we will

work with points of order r (The order of a given point

P is the smallest integer o such that [o]P = O.). The set

of points of order r is denoted by E[r] = {P ∈ E|[r]P =

O}. In practice we work on E[r] with r a large prime

dividing the cardinal of E(Fp). We know that E[r] ⊂
E(Fpk), for k > 1, where k is the embedding degree, i.e.

the smallest integer such that r divides pk − 1.

2.2 Ate pairing and implementation

For the description of our physical attacks against pair-

ing implementations, it is not necessary to provide all

the theoretical details about the Ate pairing and we re-

fer the reader to [19] for a complete presentation. We

only recall the definition of the Ate pairing. The sets G1

and G2 are sub-groups of order r of the elliptic curve

E(Fpk), with r a large prime divisor of #E(Fpk) the

cardinal of E(Fpk). The set GT is the multiplicative

sub-group of the group of r-th roots of unity in Fpk .

τr : G1 ×G2 → GT

(P,Q) 7→ (ft−1,Q(P ))
pk−1
r ,

(2)

where t = p+1−#E(Fp) is the trace of E. The function

ft−1,P is called the Miller function.

Efficient implementations of such pairing computa-

tion are achieved through the efficient Miller’s function

computation and the final exponentiation.

2.2.1 Miller’s algorithm

The goal is to build a function fm,Q which can be effi-

ciently computed for the integer m. To solve this prob-

lem, a recursive method was described by Miller in [31],

and is presented in Algorithm 1.

Algorithm 1: Miller’s algorithm [31]

Input : An elliptic curve E over Fp,
m = (mn−1 . . .m0)2, P ∈ G1 and
Q ∈ G2.

Output : fm,Q(P ).

1 f ← 1 ;
2 T ← Q ;
3 for i = n− 2 to 0 do
4 f ← f2 · lT,T (P ) (tangent at T );
5 T ← [2]T ;
6 if mi = 1 then
7 f ← f · lT,Q(P ) (line through T and Q);
8 T ← T + P ;

9 return f ;

Equations of line and tangent in Jacobian coordinates.

For efficiency reasons, the points can be represented

with mixed affine-Jacobian coordinates for the addition

and doubling of points in the elliptic curves. The equa-

tion of the line through T (in Jacobian coordinates) and

Q (in affine coordinates) evaluated at the point P (also

in affine), lT,Q(P ) is given by Equation 3.

lT,Q(P ) = (yPZ
3
T − YT )(xQZ

2
T −XT )

−(yQZ
3
T − YT )(xPZ

2
T −XT ).

(3)

The tangent equation at point T evaluated at P is

provided by Equation 4.

lT,T (P ) = 2YTZ
3
T yP − 2Y 2

T

−(3X2
T + aZ4

T )(xPZ
2
T −XT ).

(4)

Those equations provide the targets for our attack.

2.2.2 Final exponentiation

The final exponentiation to the power pk−1
r is generally

decomposed into three simpler exponentiations, when

k = 2δ:

pk − 1

r
=
(
pδ − 1

) pδ + 1

Φk(p)

Φk(p)

r
. (5)

where Φk refers to the k-th cyclotomic polynomial.

Computations of the final exponentiation are widely de-

scribed in [36]. In this paper we focus only on Miller’s

algorithm, because the weakness of a pairing implemen-

tation against side-channel attacks are localized in this

step. Indeed, the secret is directly used during the Miller

algorithm. We do not use the final exponentiation in our

attack path in consequence of what we do not give any

details about its implementation.

2.3 Identity-based Encryption

An Identity-based Encryption (IBE) scheme can be used

to implement a widely known issue in public key cryp-

tography: the key exchange protocol [37]. A Public-Key

Infrastructure (PKI) based on IBE is scalable when

compared to classical schemes using certificates, be-

cause precisely it does not require any certification [12].

The drawback is that the trusted authority must really

be trusted and will not spy on the exchanges between

Alice and Bob. For instance, the trusted authority can

be the bank when Alice is a smart card and Bob a pay-

ment terminal.
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In an IBE scheme, the public key is the user’s iden-

tity. The associated private key is generated by the Pri-

vate Key Generator (PKG) [7]. All Identity-based pro-

tocols share one common feature: at a given time there

is a computation of a pairing where one of the param-

eter is secret.

As illustration, we summarize the Boneh-Franklin

IBE scheme [7] which is composed of four steps:

1. Set-up;

2. Extraction;

3. Encryption;

4. Decryption.

During the Set-up step, the PKG generates the pub-

lic parameters for the pairing:

{r, n,G1,G2,GT , e, P, PPUB , H1, H2},

where H1 and H2 are two hash functions.

The extraction algorithm provides the user’s private

key denoted by dB (computed using the identity of Bob

and securely transmitted to him by the PKG).

During the encryption step, Alice only uses the pub-

lic key of Bob. She sends him U ∈ G1. Bob’s private

key is involved during the decryption step in the pair-

ing computation. Bob computes the pairing e(U, dB).

Using this notation, the secret is the second input of

the pairing. We will later discuss the influence of the

secret position on the success of the attack.

The life cycle of the key When a Side-channel attack is

performed, it is usually assumed that the secret is used
more than once. We will consider this hypothesis for the

classical CPA attack. However, in other scenarios1, the

key is used only once or a smaller number of times, so

that the horizontal attack path becomes the only pos-

sibility for the attacker. We will show that horizontal

CPA attacks are possible against a pairing implemen-

tation, even if the key is used only once.

3 Side-channel attacks against unprotected

pairings implementations

In a pairing-based cryptographic protocol, the secret is

one of the two points in the pairing’s inputs. Attacks

against the implementations of the pairing algorithms

were first revealed by Page and Vercauteren [32].

1 For instance if the secret involved in the pairing compu-
tation is a session key.

3.1 State of the art

Side-channel attacks against cryptographic algorithms

have been widely studied for more than two decades [27].

Public-key cryptosystems such as RSA or ECC were

demonstrated to be vulnerable when submitted to SPA

and different variants of DPA. The objective is to reveal

the secret exponent (RSA) or the secret scalar (ECC)

used in a signature or decoding cryptosystem [10].

Several publications describe side-channel attacks

against pairings over characteristics 2 or 3 fields. These

studies are simply mentioned for reference, given that

our implementation relies on large prime fields as de-

scribed in Section 3.3. Page et al. [32] describe the prin-

ciple of some physical attacks (passive side-channel and

active attacks by injections of faults) on a pairing algo-

rithm. They target the Duursma-Lee’s [15] algorithm,

which is used to calculate the Tate pairing on an el-

liptic curve over a finite field of characteristic 3. The

manipulation of the data during the Duursma-Lee al-

gorithm involves the product of a secret element with a

value derived from the known input point of the pairing.

The authors propose a SPA-like attack against modular

multiplication algorithms which are implemented with

the shift-and-add method. Furthermore, they describe

a SPA attack which aims at getting the secret bit by

bit. Kim et al. [25] propose temporal attacks, SPA and

DPA to target the arithmetic operations which are in-

volved in a pairing over curves in characteristic 2. In

the context of the Eta pairing on binary fields, the tar-

geted operation is a(b + r), where a and b are derived

from the secret, and r is derived from the known input.

The authors conclude that, in theory, the DPA bit by

bit proposed by Page et al. [32] could again recover the

secret point used in the pairing computation. Pan and

Marnane [33] propose a practical CPA attack based on

a Hamming distance model against the Eta pairing over

fields of characteristic 2 based on supersingular curves.

One of the first articles describing side-channel at-

tacks against pairings of large characteristic field was

proposed by Whelan et al. [39]. They describe a CPA

targeting the arithmetic operations to recover the se-

cret. For the calculation part of their CPA, they pro-

pose the following plan: calculations of the correlations

between the hypothetical outputs of the arithmetic op-

eration x×k for all the possible keys k and the leakage

traces. For every key assumption, there is a correlation

curve. The candidate key is the one providing the curve

with the highest peak. In the same paper, the authors

discuss the use of the words length (8, 16, 32 or 64) to

represent multiprecision numbers. Indeed, they detail

the computations of partial correlations which can be

used by a CPA to target a part of the word. Especially,
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if the target is a 32-bit architecture, the enumeration

of sub-keys should be made on 232 elements, which is

considered as unreasonable today. So, it is necessary

to target a part of these 32 bits, for example the least

significant bytes, and thus to work with partial corre-

lations. El Mrabet et al. [16] propose a simulation of

the attack against the Miller algorithm of the pairing

over the field F251. The equation of the tangent is tar-

geted because it contains a modular multiplication of

a coordinate derived from a public input point by a

deterministic value derived from the secret point.

Ghosh et al. [17] detail a DPA against the mod-

ular subtraction in a Tate pairing implemented on a

Barreto-Naehrig [3] elliptic curve. Blömer et al. [6] de-

scribe side-channel attacks against the modular addi-

tions and multiplications of elements in large prime

characteristics. Just as El Mrabet et al. [16], they show

that these attacks are possible even if the secret point

is used as the first argument of the pairing compu-

tation. The authors illustrate their results on simula-

tions. Indeed, they use simulation traces with a Ham-

ming weigh model perturbated by a Gaussian noise.

Unterluggauer and Wenger [38] publish the first practi-

cal attack against a pairing in large prime characteristic

fields. They use a CPA-like approach, as previously de-

scribed by Whelan et al. [39]. The authors target the

modular operations during an Ate pairing in order to

first find the secret 16 least significant bits and then the

16 most significant bits. They work on a 32-bit architec-

ture and take advantage of the processor working with a

16-bit multiplier. Their configuration require more than

1500 traces to find the secret point. In 2016 the impor-

tance of implementing countermeasures is supported by

the results of Jauvart et al. [21], where attacks are pre-

sented in a real world environment. Indeed, Ate pairings

implemented on ARM Cortex-M3 have been broken ef-

ficiently with CPA attacks with approximatively 150

traces.

3.2 Details on classical attacks

We describe the attack principle against Miller’s algo-

rithm implemented with the Jacobian coordinates.

3.2.1 Case 1: Q is known and P is secret

The numerator of the tangent equation is 2YTZ
3
T yP −

2Y 2
T − (3X2

T + aZ4
T )(xPZ

2
T − XT ). The coordinates of

the secret point P are involved in 2YTZ
3
T yP and xPZ

2
T .

These coordinates are attacked by a CPA against the

modular multiplication. The coordinates of the point

T = (XT : YT : ZT ) are known because they are initial-

ized with those of the known point Q.

3.2.2 Case 2: P is known and Q is secret

In this case, the targeted equation is the same, we con-

sider them at the first iteration of the Miller algorithm.

Then, the coordinates of the point T are exactly the

coordinates of the point Q, i.e. T = (xQ : yQ : 1).

Then the targeted tangent equation is 2YT yP − 2Y 2
T −

(3X2
T + a)(xP − XT ). The attacker is able to perform

an attack against the modular multiplication YT yP in

order to find YT = yP . He then uses the equation of the

elliptic curve to find xQ. He finds several candidates

x1, x2, x3, because of the degree of the equation to be

solved, he can test them until he finds the same result

of the pairing together with the secret xQ.

3.3 Target description

In order to implement some attacks in a real world en-

vironment, we use a real embedded device as target.

Pairing implementation under tests. We use our own

software implementation of the Ate pairing over Barreto-

Naehrig curves [3]. For such curves we recall that the

parameters are p, r and the trace t defined with :
p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1.

(6)

We choose to use x = 0x3FC0100000000000 given in

hexadecimal form. The elliptic curve is E : y2 = x3 + 5.

The tower field extension uses to build the field Fp12 is:

Fp2 ' Fp[u]/(u2 − β),

Fp6 ' Fp2 [v]/(v3 − u),

Fp12 ' Fp6 [w]/(w2 − v),

(7)

where β = −5 is a non quadratic residue in Fp, with u a

non cubic residue in Fp2 and v a non quadratic residue

in Fp6 .

The representation of the points is performed via

the following system coordinates:

– P ∈ E (Fp) is in affine coordinates.

– Q′ ∈ E2

(
Fp2
)

is in affine coordinates.

– T ∈ E2

(
Fp2
)

is in Jacobian coordinates..

The computations for the doubling and addition of points

over the elliptic curve are then performed with the tan-

gent and line evaluation method, in what is called mixed

coordinates.
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Device under test. The target is a 32-bit microcontroller,

implemented in 130 nm CMOS technology. This basic

integrated circuit has no physical protections against

Side-channela ttacks. This is an ARM Cortex-M3. The

processor is clocked at 24 MHz. The sampling frequency

of the oscilloscope is 4 giga samples per second. We

target the modular multiplications. One multiplication

takes 5 ms, then it is sampled over 20 million points.

Remark concerning recent attacks against the discrete

logarithm problem. First, the curves implemented over

binary and ternary fields are definitively to be avoided

for cryptographic uses [23]. We have to use large prime

characteristics. Recent constraints are published in [24,

28] and new curve parameters are recommended. In a

few words, the size of the parameters (256 bits for p and

r and our case) must be expanded to 460-bits at least [2]

for BN curves. For the 128-bit security level, the curves

providing the most efficient implementation seem to be

the KSS16 family. Nevertheless, the algorithm imple-

mentation structure remains identical to our implemen-

tation. Mainly, the targeted operation for side-channel

attacks, the modular multiplication, can still be com-

puted with the CIOS multiprecision multiplication of

Montgomery [26]. Even if another modular multiplica-

tion is implemented, our attack path remains successful.

As a consequence, even if the parameters we use are no

longer up to date, the success of our attack will be the

same using new parameters.

3.4 Attacking the modular multiplication

The targeted modular multiplication a × b mod p

is the CIOS multiprecision multiplication of Mont-

gomery [26]. It is often chosen for cryptographic ap-

plications, and finally, this choice does not affect the

attack strategy. It is necessary to identify the operation

which involves both a and b. In the case of the CIOS

method, we have the calculation (uv)← cj + ajbi + u.

The choice of the algorithm for the modular multi-

plication (SOS,CIOS,FIOS,FIPS,CIHS [26]) does not

change the target; it is still the multiplication of two

machine words ajbi. The calculation of the intermedi-

ate variables, for example cj and u must be adapted.

We recall the CIOS method in Algorithm 2. We use

the following notations: W is related to the architec-

ture size, W = 232 bits in our case. A long integer is

represented by N words, in the case of 256-bits integer,

we have 256 = 32︸︷︷︸
W

× 8︸︷︷︸
N

.

Algorithm 2: Montgomery Modular Multipli-

cation CIOS [26]

Input : The modulus p = (pN−1 . . . p0)W
coprime to W, R =WN , p′ such that
RR−1 − pp′ = 1 and two integers
a = (aN−1 . . . a0)W and
b = (bN−1 . . . b0)W .

Output : The integer c = (cN−1 . . . c0)W such that
c =

(
abR−1

)
mod p.

1 c← 0 ;
2 for i = 0 to N − 1 do
3 u← 0 ;
4 for j = 0 to N − 1 do
5 (uv)← cj + ajbi + u ;
6 cj ← v ;

7 (uv)← cN + u ;
8 cN ← v ;
9 cN+1 ← u ;

10 m← c0p′0 mod W ;
11 (uv)← c0 +mp0 ;
12 for j = 1 to N − 1 do
13 (uv)← cj +mpj + u ;
14 cj−1 ← v ;

15 (uv)← cN + u ;
16 cN−1 ← v ;
17 cN ← cN+1 + u ;

18 if (cN−1 . . . c0)W < p then
19 c← (cN−1 . . . c0)W ;
20 else
21 c← (cN−1 . . . c0)W − p ;

22 return c ;

3.5 Attacks against 32-bit multiplications

There are two distinct cases to be studied:

– Either b is known and a is secret.

– or a is known and b is secret.

Case 1: b is known and a is secret. The first iteration

of the CIOS algorithm corresponds to the indexation

i = j = 0. The targeted instruction is (uv)← a0b0, the

multiplication of two machine words is already attacked

in [6,16,38,39]. It is a CPA where the target is the re-

sult of the multiplication of machine words. The predic-

tions of the multiplication between the inputs (one seen

as a secret key, the other as a known data) are corre-

lated with the measurements traces. The attack allows

to recover a0. The targeted word is now a1, it is ma-

nipulated for i = 0 and j = 1, the targeted instructions

(uv) ← a1b0 + u, where u is the carry of the previous

operation, i.e. (uv)← a0b0, thus u is known. It is then

possible to use a CPA in order to find a1. Other words

of a = (an−1 . . . a0)232 are recovered in the same way.

We have to consider the carry as the information leak-

age is due to access to memories and more particularly

the write-back on the memory.
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Case 2: a is known and b is secret. This case targets

the words bi, it requires a more thorough study of the

algorithm because the index i is the one of the main

loop. The first iteration (i = j = 0) produces the oper-

ation (uv)← a0b0, which allows to find b0 as previously

described. In order to identify the carry u through the

iterations, we denote it by u00.

The target is the word b1. It is involved in the in-

struction (uv) ← c0 + a0b1. The word a0 is known, we

are still left to see if we can predict c0.

This word c0 comes from the instruction cj−1 ← v of

the CIOS algorithm for i = 0 and j = 1. At first, there

is the calculation (uv)← c1 +mp1 + u, afterwards, the

instruction c0 ← v. Then we have to verify that the

words c1,m and u are known (p1 is obviously known

since it depends on the modulo p). The Table 1 shows

the dependence between the intermediate variables and

how we reach in c1,m and u.

Table 1: Origins of the intermediate variables to calcu-

late c0

Variables

Origins

Operations
Intermediate variables

Known Unknown

c1 a1b0 + u00 a1, b0, u00 −
u c0 +mp0 − c0,m

m c0p′0 mod 232 p′0 c0

c0 a0b0 a0, b0 −

4 Reducing the number of traces for CPA

against pairings

The state of the art presented below shows how the

classical attacks can be used to recover the secret input

of a pairing function. However few practical validations

of these attacks have been performed up to now. In this

section we present the most effective known attack [21]

and describe the advanced techniques we use to make

it powerful. Our method improves the efficiency of the

attack as concerns the number of traces (factor 10) and

the necessary resources.

4.1 Attack scheme

In order to recover the 32 bit of a secret operand κ

involved in multiplications x(i) × κ for known κ, we

proceed with a divide-and-conquer strategy.

In a first part, we describe the attack path on a word

of size 2z. We first attack the z least significant bits, and

then the z most significant bits. Figure 1 illustrates this

principle. The method is the following:

1. We enumerate the 2z key hypotheses on z bits (this

set is denoted by K0) and apply a CPA attack: for

each hypothesis, we compute the intermediate vari-

able (for each plaintext) and the correlation between

each predicted intermediate variable and the side-

channel observation. We keep the α best key hy-

potheses which maximize the correlation. The set

of hypotheses is denoted by K1 = {κ1,1, . . . , κ1,α}.
2. We enumerate the 2z most significant bits from

κ1,i ∈ K1 hypothesis, and we apply a CPA. For each

i = 1, . . . , α, we compute the 2z key hypotheses:

κ2,i,j = (j7, . . . , j0)2︸ ︷︷ ︸
j=0,...,2z−1 radix 2

‖κ1,i.

The hypotheses of Li = {κ2,i,0, . . . , κ2,i,2z−1} are

on 2z bits: for each of them, we compute the cor-

relation with the measured traces. Thereafter, for

i = 1, . . . , α we hold the α best key candidates and

store them in L′i.
3. The key in ∪αi=1L′i with the best correlation is the

key candidate for the 2z secret bits.

Fig. 1: Attack scheme on 2z bits

4.2 Practical attacks

First, we compute a CPA-based characterization on 32

bits. Then, we compare two Hamming weight leakage

models on 8 bits, and we finish by the CPA attack with

the best models against the 32 secret bits. The choice

of the model on 8 bits was determined by an exhaustive

research. We also tried z = 4, 6, 12 but the attack were

not successful.

4.2.1 CPA characterization on 32 bits

For this characterization step, some key hypotheses are

randomly chosen on 32 bits, knowing that the secret
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key is among them. To predict an intermediate step we

compute φ(κ, x) the Hamming weight of x and κ, where

x is the plaintext and κ is the key hypothesis, the result

is a 32-bit integer.
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Fig. 2: Characterisation CPA on 32 bits

Among the different key hypotheses, the correct se-

cret key has the highest correlation. Figure 2 shows the

correlation of the good key in bold, it is clearly higher

than the other ones.

4.2.2 Hamming weight models

In practice, since it is not possible to enumerate the 232

key hypotheses, we start with the z = 8 least significant

bits. Then, κ is on z bits, the plaintext can be taken on

32 bits, so the product result is either on z bits or on

2z bits as shown in Figure 3.

Fig. 3: Leakage models

We estimate both leakage models previously intro-

duced by means of the t-test. This statistical test was

introduced for the detection of points of interest by

Gierlichs et al. [18] under the name of SOST (Sum Of

Squared pairwise T-differences). For that purpose, we

use the previous measurements. The key κ is fixed and

the messages are changed. We fix z = 8 bits. For each

trace, the calculation of φ(κ, x) returns a set. In the

end, the size of every set is denoted ηφ,i, i = 1, . . . , Nφ.

In the case of the first model there are Nφ1
= 9 sets

(9 possible Hamming weights for 8 bits). And for the

second model Nφ2 = 17. For each set, the average mφi

and the variance σ2
φi

are computed. The SOST is then

obtained using Equation 8:

SOSTφ =

Nφ∑
i,j=1

 mφ,i −mφ,j√
σ2
φ,i

ηφ,i
+

σ2
φ,j

ηφ,j


2

for i ≥ j. (8)

The results of the t-test for both models are pro-

vided in Figure 4.
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Fig. 4: T-test for both Hamming weight models

For this figure, a zoom is made on the part contain-

ing the leakage. The leakage is further highlighted when

the second model is used: the peak is more narrower and

also higher.

4.2.3 Practical results

We have to analyze the number α of key candidates

after each intermediate attack. Unterluggauer and Wen-

ger [38] only tested the values α = 5 and α = 10, which

did not show any differences. However, we demonstrate

that for a fixed number of traces used for the attack,

the success rate increases with α [21]. In Figure 5, for

example, for a database of 80 traces, with α ≥ 40 the

success rate of the attack is above 90%. For 170 traces,

the attack has a success rate of 100% as soon as α ≥ 28.

The attack against an operand of the multiplication

of machine words is efficient whatever the position of
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Fig. 5: Attacks results for some values of α

the secret. With the results of Section 3.5 we are able to

attack a modular multiplication, in particular when it is

implemented in CIOS. Since the attack against pairing

targets the modular multiplication, this attack is able

to effectively recover the secret pairing input point.

Table 2 shows the differences when recovering a 32-

bits word. ”Time” denotes the number of enumerated

keys and ”Memory” is the number of keys which are

temporarily stored.

Table 2: Attacks comparisons: resources and required

traces

[38] Our

Time 219 216

Memory 219 216

Number of trace 1500 150

5 Horizontal attack against pairings

As presented in Section 3, a classical side-channel attack

exploits several traces at the same time. The points of

interest are the window corresponding to the targeted

operation processed by the integrated circuit. The hor-

izontal approach is the following: a critical operation

is performed several times within the same execution

of the algorithm. The targeted window is repeated, the

traces are then selected at these times in order to make

a CPA-like attack (for instance) [4,9].

The structure of the Miller algorithm is asymmet-

ric in P and Q. More precisely, the temporary point T ,

which is allocated to the value of Q at the beginning of

Miller’s algorithm, is going to evolve during the itera-

tions. The study of this structure allows us to identify

a weakness.

This is the first horizontal side-channel attack against

a pairing implementation.

5.1 Weakness in the Miller algorithm

The computation of the tangent equation, in mixed

affine-Jacobian coordinates (Equation 4), involves a mul-

tiplication between xP and Z2
T . An execution of the

Miller algorithm comprises n− 1 iterations, thus n− 1

calculations of tangent, and thus n− 1 multiplications

xP × Z2
T with a fixed xP and different ZT .

In case the point P is the secret, each execution of

a pairing allows to observe n− 1 multiplications which

involve xP and a known integer. The attack becomes a

classic CPA with n− 1 traces.

This weakness only appears when the point P is

secret (notation for an Ate pairing e(P,Q)).

If the secret is the point Q, this point is modified

at each step of the Miller algorithm. The only opera-

tions involving the coordinates of Q occurs during the

addition step. Roughly, the number of addition steps is

half the number of doubling steps. We will first describe

the horizontal attack in the most favorable set-up, i.e.

when P is secret. We will later discuss the case where

Q is secret.

5.2 Practical validation of the horizontal attack

Our target is an Ate pairing, whose structure is similar
to the Tate pairing. It is an optimized version, which

uses twice less iterations for the Miller loop. The num-

ber of iterations is 126 for the used Barreto-Naehrig

curves [3], we thus obtain 126 traces of Montgomery’s

modular multiplications a× b mod p with b being the

secret.

As illustrated in Figure 5 we can see that a small

number of traces is sufficient for a successful attack.

Namely the number of traces can easily been chosen

under 126.

The attack context is the second case of Section 3.5.

We choose a small value for α in the first place: α = 8.

This small value is among the ones which requires the

smallest resources to make the attack successful. As the

attack with α = 8 allows to find the secret b, it is thus

useless to make other attacks with α > 8.

Figures 6 to 9 show the results of the attacks for

the secret word b0 of b = (bN−1 . . . b0)232 . More pre-

cisely, Figure 6 gives the results of the correlations af-
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ter the first sub-attacks. The bold thick curves repre-

sent the correlations for the correct secret sub-key on

8 bits (b0,7 . . . b0,0)2: it is among the best hypotheses.

Figure 7 represents the correlations after the second

sub-attacks. Then the following attack is exposed in

Figure 8. Finally the last sub-attacks are represented

by Figure 9.

Fig. 6: Correlations for key candidates for the byte 1

Fig. 7: Correlations for key candidates for the byte 2

Fig. 8: Correlations for key candidates for the byte 3

Fig. 9: Correlations for key candidates for the byte 4

In the last sub-attack (Figure 9) the bold thick curve

has the highest amplitude, this provides the correspond-

ing key hypothesis returned by the attack. Thus the

attack allows us to recover the secret word b0. The re-

sults are similar during the attack against the other

words bN−1, . . . , b1. Our horizontal attack recovers the

entire secret key using only one Ate pairing execution.

5.3 Discussion

In the presented attack carried in a real target we re-

cover the secret integer (256 bits) with just one Ate-

pairing execution. This is due to the use of our hor-

izontal attack. This attack exploits the Miller loop’s

structure composed of 126 iterations. In the case of an

Optimal-Ate pairing, the number of iterations is lower

(which makes the algorithm more efficient). Let us see

whether this optimization prevents our horizontal at-

tack. The Optimal-Ate pairing over BN curves with

the same security parameters gives a loop of at least
log2(r)
ϕ(k) = 256

4 = 64 iterations, where ϕ is the Euler to-

tient function. Doing a CPA with only 64 traces is more

difficult.

However, recent attacks on the discrete logarithm [24,

28] indicate that the lengths of the parameters need to

be increased. Then, for BN curves, the bitlength of r is

now 460 bits instead of 256. The number of iterations

in the Miller algorithm to compute the Optimal-Ate

pairing is then 460
4 = 115. By putting this value in Fig-

ure 5 we see that our CPA attack when P is secret, for

α = 64, gives a success rate of 97% for 110 traces. This

suggests that it is always possible to make such an hor-

izontal attack. According to the analysis made by the

authors in [24], for a 128-bit security level, the curve

providing the most efficient implementation should be

the KSS16 family. The optimal Ate over this family is

performed in 77 iterations. It appears from Figure 5

that with 77 iterations of the Miller algorithm, the suc-

cess rate of our attack is at most 90%. As a consequence,
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in order to be sure to recover the correct key, the easy

way would be to perform a horizontal attack using 2

measurement curves. Alternatively, we can try to ob-

tain partial results for the key, and use a brute force

approach for the remaining 20 bits.

If the secret is the point Q, we only have φ(λ) slots

for performing the CPA attack, where λ represents the

number of iterations during the Miller algorithm and φ

the Hamming weight function. If the key is ephemeral

and used η times, the attack would be successful if η×λ
is greater than 110.

6 Attack against protected implementation

We saw in Sections 4 and 5 that unprotected pairings do

not resist to side-channel attacks. First, we illustrated

how to reduce the number of traces needed to success-

fully complete an attack, and then we showed the ef-

ficiency of a horizontal attack scheme. It is therefore

more important than ever to protect such implementa-

tions. We recall existing countermeasures and demon-

strate that some of them are not effective. We present

here the first real attack by electromagnetic observa-

tions against a protected pairing implementation.

6.1 Guide of existing countermeasures

W can find in the literature two categories of counter-

measures for pairing implementations: external or in-

ternal ones.

6.1.1 External countermeasures

The first countermeasure is proposed by the authors

of the first attack. Page and Vercauteren [32] suggest

to exploit the bilinearity property of the pairings. If a

and b are integers coprime to r, then e([a]P, [b]Q)1/ab =

e(P,Q). The countermeasure uses this randomization

so that the attacker loses the knowledge of the coor-

dinates of the public point. The calculation of e(P,Q)

is replaced by Algorithm 3. We shall name this coun-

termeasure ”multiplicative masking”. We can omit the

exponentiation at the power 1/(ab) if we choose a and

b such that ab = 1 mod (r).

The second countermeasure of Page and Vercauteren [32]

consists in using an additive mask. For example, if Q is

the secret, then the point P will be masked as follows:

e(P,Q) = e(P + R,Q)e(R,Q)−1 or e(P,Q) = e(P +

R,Q)e(−R,Q) for a random point R ∈ G1 \ {O,−P}.
Algorithm 4 describes the principle of this countermea-

sure by additive masking.

Algorithm 3: First countermeasure of Page et

al. [32]

Input : P ∈ G1 et Q ∈ G2.
Output : e(P,Q).

1 a and b are two integers such that ab = 1 mod r ;
2 P ′ ← [a]P ; Q′ ← [b]Q ;
3 h← e(P ′, Q′) ;
4 return h ;

Algorithm 4: Second countermeasure of Page

et al. [32]

Input : The secret point Q ∈ G2 and P ∈ G1.
Output: e(P,Q).

1 R ∈ G1 \ {O} is randomly chosen ;
2 P ′ ← P +R ;
3 h1 ← e(P ′, Q) ;
4 h2 ← e(−R,Q) ;
5 h← h1h2 ;
6 return h ;

6.1.2 Internal countermeasures

Kim et al. [25] proposed the use of the third counter-

measure of Coron [10]. Indeed, the aim is to take ad-

vantage of the representation of points in projective co-

ordinates. Let us assume that the Miller algorithm is

implemented in projective coordinates. Instruction 2 of

Algorithm 1 initializes the point T with the coordinates

of P as follows:

XT ← xP ; YT ← yP and ZT ← 1. (9)

This initialization is replaced by:

i. λ is randomly choosen in F?p;
ii. XT ← λxP ; YT ← λyP and ZT ← λ.

(10)

In this cas, the output of the pairing calculation

is equal to the output without randomization, because

the final exponentiation maps all the elements of F?p
to 1, which applies to the mask λ. This countermea-

sure, based on the randomization of the coordinates,

is less expensive: it requires only two additional mul-

tiplications in Fp. The protection method proposed by

Scott [35] is rather similar because it is based on the

idea that it is possible to multiply by an element of Fp
without adjustment on the input. It suggests masking

the sensitive calculations, that is the multiplications be-

tween a known and a secret operand, by applying the

multiplicative randomization by λ ∈ F?p.
This countermeasure is applied to randomize the

public point P . This operation of randomization ap-

pears during the initialization of the temporary point
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T with P . A weakness appears at this moment. In Ja-

cobian representation, the coordinates of a given point

are not unique, indeed they satisfy the equation

(x, y) =
(
XZ2 : Y Z3 : Z

)
,∀Z 6= 0. (11)

The principle of the countermeasure is to make the

affectation of T with one λ ∈ F?p different at each exe-

cution. The resulting Miller algorithm with this coun-

termeasure is described by Algorithm 5.

Algorithm 5: Miller algorithm with randomi-

sation of mixed coordinate affine-jacobian (Q

is secret)

Input : An elliptic curve E : y2 = x3 + ax+ b
over Fp, m = (mn−1 . . .m0)2,
P ∈ E

(
Fpk

)
[m] et Q ∈ E

(
Fpk

)
.

Output : fm,P (Q) with
div(fm,P ) = m(P )− (mP )− (m− 1)(O).

1 f ← 1 ;
2 λ ∈ F?p is randomly chosen ;

3 T = (XT : YT : ZT ) with
XT ← xPλ2; YT ← yPλ3; ZT ← λ ;

4 for i = n− 2 to 0 do
5 H ← 4XTY 2

T ; I ← 3X2
T + aZ4

T ;
6 XT ← −2H + I2;
7 YT ← −8Y 2

T + I(H −XT );
8 ZT ← 2YTZT ; // Updating T (Doubling)

9 lT,T (Q)← 2YTZ3
T yQ − 2Y 2

T − I(xQZ2
T −XT ) ;

// Tangent evaluation

10 f ← f2lT,T (Q) ;
11 if mi = 1 then
12 A← yPZ3

T − YT ; B ← xPZ2
T −XT ;

13 XT ← A2 −B2(XT + xPZ2
T ) ;

14 YT ← B2(A(XT −XTZ2
T )−BYT ) ;

15 ZT ← ZTB ;
16 ; // Updating T (Addition)

17 lT,P (Q)← B(Z3
T yQ − YT )−A(Z2

T xQ −XT )
; // Line evaluation

18 f ← flT,P (Q) ;

19 return f ;

6.2 Provided protection with state of art

countermeasures

The target of a vertical CPA attack is the modular mul-

tiplications between coordinates depending on the se-

cret Q and known integers. In Algorithm 5, the opera-

tions which involve xQ and yQ are the following:

– 2YTZ
3
T yQ = h(T )×yQ, where h depends only on T .

– xQ × Z2
T .

– Z3
T × yQ.

– Z2
T × xQ.

All these multiplications are made between coor-

dinates of Q and for random (unpredictable) integers.

Indeed, the coordinates of T are not known and the

CPA cannot be applied any more to find the secret Q

because the predictions on the intermediate variables

are no longer possible. Indeed, λ ∈ F?p takes a random

value in {1, . . . , p − 1} thus λ2 has p−1
2 possible val-

ues, which implies that XT ← xTλ
2 is an unpredictable

value among a set of cardinal p−12 . The values of XT , YT
and ZT being unpredictable, it is not possible any more

to predict the internal states of the algorithm, and thus

to achieve the CPA.

6.3 Aimed target

In the scenario of the IBE, the decryption of the ci-

phertext {U, V } by Bob involves the step K = e(U, dB)

where dB is the secret key of Bob. If Bob loses the de-

vice where e(U, dB) is executed, then an attacker can

control the input U which is manipulated. The flaw that

we present here comes from paper [22] which describes

in details the technical aspects.

The calculation K = e(U, dB) is computed with the

Miller algorithm, where the countermeasure using co-

ordinates randomization is used as presented in Algo-

rithm 5.

Let us linger over the randomization operations and

the calculation of the tangent in the first iteration. The

randomization of the known point P is made in line 3,

which involves the operation XT ← xPλ
2. In the com-

putation of the tangent in the first iteration, the calcu-

lation xQZ
2
T is performed with ZT = λ. Both executed

operations are multiplications between a known coordi-

nate (xP ) with a mask λ′ = λ2, then a secret coordinate

(xQ) with the same mask. In the following the notation

λ replaces λ′ for more readability.

As a consequence, if xP = xQ then the same cal-

culation is executed twice. If the side-channel allows to

identify such a situation thanks to a technique of colli-

sion detection, the attacker is able to recover the secret

xQ. This value is the same as the coordinate xP , which

is known.

If the values of xP and xQ are equal (or partially

equal) then the measured EM/power traces are simi-

lar. The data xP and xQ are multiprecision integers,

for example 8 words of 32 bits. Thus it is impossible to

test 2256 values for xP . However, the device computes

the modular multiplication by handling the words indi-

vidually and in a deterministic way. For example, Mont-

gomery’s modular multiplication occurs at a precise in-

stant in time, to do the multiplication x0λ0 (here we

denote x = xP to ease the reading). Even with this re-



Improving side-channel attacks against pairing-based cryptography 13

mark, the attack would consist in making an exhaustive

search on 32 bits. As for the CPA, the attack against 32

bits is made byte by byte. That’s why the words x0 and

k0 are said to be partially equal if they have their least

significant bytes identical (k corresponds to the secret

coordinate, that is xQ).

The remaining part of this section is devoted to the

detection of similarities between two words x0 and k0
during their manipulation in a multiplication with the

same unknown integer λ.

6.4 Attack schemes against a protected

implementation

In order to exploit the above attack, the naive ap-

proach for correlation computations can be considered.

Let c(i,j) denotes the correlation coefficient between

traces C
(i,j)
x and C

(i,j)
k , corresponding respectively to

the operations x
(i)
0 λ

(j)
0 and k0λ

(j)
0 . With this tool, a

sketch of the attack is given by Algorithm 6, where

N is the number of repetitions which the attacker can

make with the same message x
(i)
0 . After having kept

N measurements, the cross correlation coefficients are

calculated, then averaged. Concretely, taking the aver-

age of the correlations rather than the traces is useful

to give a value of the real similarity between the oper-

ations x
(i)
0 λ

(j)
0 and k0λ

(j)
0 without taking into account

the effect of the mask.

Algorithm 6: Naive attack scheme

Input : The plaintexts x
(i)
0 , a positive integer N .

Output : A key candidate k̂ for the 8 least
significant bits of k.

1 c←M1,255(0) ;
2 for i = 0 to 255 do
3 for j = 0 to N do

4 C
(i,j)
x ← trace of the operation x

(i)
0 λ

(j)
0 ;

5 C
(i,j)
k ← trace of the operation k0λ

(j)
0 ;

6 c(i,j) ← ρ
(
C

(i,j)
x , C

(i,j)
k

)
;

7 c(i)← 1
N

∑
j c

(i,j) ;

8 k̂ ← arg max |c| ;

9 return k̂ ;

In [22] the authors show that the naive correlation

search scheme does not result in a successful attack.

6.4.1 Brief description of vertical detection

In the horizontal approach, traces are compared two by

two with a coefficient of similarity before being aver-

aged. The vertical approach consists in comparing the

database directly, i.e. without computing the average of

the correlation coefficients. For that purpose, a tempo-

ral point taken in traces is denoted by
{
C

(i,j)
x

}
j
, these

data are put in a vector of dimension N . Then, we also

indicate a point in traces
{
C

(i,j)
k

}
j
, these data are also

put in a vector. Finally, the correlation coefficients for

these two vectors are calculated. Figure 10 illustrates

this principle.

Fig. 10: Illustration of the vertical collision detection

The attacker is then able to create an output corre-

lation for each of the 256 key hypotheses as illustrated

by Equation 12:

ci = ρ



C

(i,1)
x,minterest

...

C
(i,N)
x,minterest

 ,


C

(i,1)
k,m
...

C
(i,N)
k,m


 ,∀m ∈ I, (12)

for i = 0 . . . 255. The attack ends by sending back

the key candidate which maximizes the correlations,

that is k̂ ← arg max
i

|ci|.

6.4.2 Attack result against pairings

Figure 11 shows the correlations ci for a vertical corre-

lation collision detection attack by using N = 400 rep-

etitions. The thickest curve corresponds to the correct

sub-key hypothesis. We see on Figure 11 that the at-

tack allows to distinguish the good sub-key hypothesis.

Indeed, the bold thick curve, corresponding to the good

sub-key hypothesis (on 8 bits) has a higher correlation

than the other hypotheses.

Because the attack works with N = 400 repetitions

(i.e. 400 × 256 = 102400 total number of traces), we

modify this parameter in order to see the evolution of

the rank for the good sub-key. ForN ∈ {100, 110, . . . , 400},
Figure 12a shows this evolution.

From N = 350, the attack allows to distinguish the

good sub-key (the least significant byte of k0).
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Fig. 11: Correlations related to a vertical correlation

collision detection attack

When the least significant bits are recovered, the

same attack can be applied to the next byte. Collision

detection has thus been made easier, Figure 12b shows

the evolution of the rank of the good key according

to the number N of repetitions. It is enough to take

approximately N = 250 to be able to find the 8 targeted

bits.

(a) Byte 1 (b) Byte 2

Fig. 12: Evolution of the rank of the good key for the

attack with vertical correlation: byte 1 and 2

We follow the same approach for the successive bytes.

This procedure gives even better results for byte #3.

More precisely, Figure 13a shows that with N = 200

traces, the attack allows to find the correct key byte2.

Finally, when the target is the last byte, Figure 13b

shows that N = 200 is enough to identify 8 bits of the

secret.

In view of the results given in Figures 12 and 13,

the number of curves needed to find a 32-bit word is:

Ek0 ' 28

 400︸︷︷︸
Byte 1

+ 250︸︷︷︸
Byte 2

+ 200︸︷︷︸
Byte 3

+ 200︸︷︷︸
Byte 4

 ' 2, 7×105.

(13)

2 We improve the efficiency of the attack when compared
to [22] where 300 curves were necessary to perform the attack

(a) Byte 3 (b) Byte 4

Fig. 13: Evolution of the rank of the good key for the

attack with vertical correlation: byte 3 and 4

Given that there are 7 other 32-bit words to be

found, the total number of traces is:

Ek ' 8× 28(400 + 250 + 200 + 200) ' 2, 2× 106. (14)

6.5 Some ideas for extra protections

The scheme for this attack does not depend on the con-

figuration for the secret point, whether it is P or Q. The

only aspect which comes into play is the choice of the

pairing, and more exactly from the choice of the groups

G1 and G2.

6.5.1 Order of points P and Q

With a thoughtful choice of the parameters order, the

secret integer can be 12 times more difficult to recover.

More precisely, a point P in G1 = E(Fp)[r] has three

coordinates (in Jacobian representation) which are sim-

ply integers on |p|2 bits, while the point Q, in G2 ⊂
E
(
Fp12

)
[r], has three coordinates which are elements

of Fp12 (or Fp2 in the case of the use of a twisted curve).

Thus, if Q ∈ G2 is secret, and if we target at first

xQ ∈ Fp12 , then it is necessary to perform the attack 12

times in order to find the 12 integers of Fp that describe

xQ.

Besides, the point Q is made of 12× |p|2 bits, while

P is contains 2× |p|2 bits. As a consequence, there are

6 times more bits to be found if Q is the secret rather

than P .

6.5.2 Points representations

So far, we have seen that to choose Q as the secret

is better from the defender point of view. Let us now

analyze the point representations.

The structure of the Miller algorithm is such that

points P and Q have an asymmetric role. Instead of

only randomizing the public point, as proposed in the

literature for cost reasons, it becomes interesting to
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study the scenario in which the randomization is used

on both points. To counter the effect of the collision

attack, both masks have to be different.

Algorithm 7: Randomisation of both point P

and Q with two different masks

Input : An elliptic curve E : y2 = x3 + ax+ b
over Fp, points P ∈ E

(
Fpk

)
[r] and

Q ∈ E
(
Fpk

)
.

Output : Randomised Jacobian coordinates of P
and Q.

1 λ1 ∈ F?p is randomly chosen ;

2 P = (XT : YT : ZT ) with
XP ← xPλ2

1; YP ← yPλ3
1; ZP ← λ1 ;

3 λ2 ∈ F?p is randomly chosen ;

4 Q = (XQ : YQ : ZQ) with
XQ ← xQλ2

2; YQ ← yQλ3
2; ZQ ← λ2 ;

5 return P and Q ;

Now that both points are randomized (Algorithm 7),

the coordinates system is not mixed any more. In this

case, the projective representation allows to perform the

operations with a minimal cost. When the representa-

tion of the points changes, it is necessary to re-compute

the cost of mandatory operations (point addition, point

doubling, line and tangent evaluation). The various pos-

sible combinations are studied and compared in the the-

sis [20]. In the Miller algorithm, on one hand we have

the tangent line computation and the point doubling,

and on the other hand the line evaluation and the ad-

dition of two points on the elliptic curve. These pairs

of operations are actually very similar and can be com-

puted together to avoid redundant operations.

In this section we are interested in representations

that can be randomized, that is, projective and Jaco-

bian for the three points P , T and Q. According to the

comparative study in the thesis [20], the least expensive

is the full-projective representation. These operations

are detailed in Equations 15 and 16 with denominator

elimination.

The doubling point T combined with the tangent

evaluation lT,T (Q) becomes:

D = 3X2
T + aZ2

T

F = YTZT

G = FYTXT

H = D2 − 8G

X[2]T = 2FH

Y[2]T = D(4G−H)− 8(YTF )2

Z[2]T = 8F 3

lT,T (Q) = 2F (ZTYQ − YTZQ)−D(XQZT −XTZQ).

(15)

The combined computation of T + P and the line

evaluation lT,P (Q) become:

A = YTZP − YPZT
B = XTZP −XPZT

C = A2ZTZP −B3 − 2B2XPZT

XT+P = BC

YT+P = A(B2XTZP − C)− YTZPB3

ZT+P = B3ZTZP

lT,P (Q) = B(ZTYQ − ZQYT )−A(ZTXQ − ZQXT ).

(16)

The threat is now transferred to the randomization

operation itself, it must be implemented in a secure

way. The distribution of the mask is assumed to be

uniform, that is λ ∈ F?p is randomly chosen, which spells

P (Λ = λ) = 1
p−1 , where Λ denotes the discrete random

variable.

We have already seen that xQλ takes a random (un-

predictable) value in a set of p − 1 elements. In other

words, the secret is not manipulated any more. The only

remaining target is actually the randomization step.

7 Conclusion and perspectives

In this paper, we recall some basic definitions about

pairing-based cryptography in order to illustrate the

fact that identity-based cryptography can be vulnerable

to Side-channel attacks.

We first present pairings and their application to

innovative cryptographic protocols, such as Identity-

based Encryption. We provide the equations for lines

and tangents to efficiently compute pairings by using

Jacobian coordinates. The Identity-based Encryption

by Boneh-Franklin [7] is our case study to present some

side-channel attacks against pairings implementation.

Our attacks can be successful for any pairing-based pro-

tocol involving a secret as input of the pairing.

Among the state of the art of the side-channel at-

tacks, there are only a small number of practical vali-

dations. We describe a classical attack scheme against

the pairing and perform the attack on an ARM Cortex-

M3. The modular multiplication is the target because

it involves an operation between known and unknown

integers. Our work shows a slight difference between the

attack paths, depending on the fact that the secret is

the first or the second operand of the pairing. Besides,

we are interested in the optimization of such attack.

We show the characterization of the multiplication be-

tween two machine words. Some practical results show

the efficiency of such an attack path. We also study the

feasibility of a more advanced attack than a CPA. We

drastically reduce the number of necessary traces and
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also decrease the memory required for the attack. We

perform the first horizontal CPA attack against an Ate

pairing. We open the discussion on the consequences of

our attack for state of the art secure implementations

of PBC. According to [2], for the 128 bits security

level, the KSS16 curves should provide the most effi-

cient pairing implementations. Our horizontal attacks

would then require 2 traces with 2 different inputs and

the same secret key in order to be successful. We leave

as future works the extension of our attacks for dedi-

cated modules in embedded devices designed for higher

sizes: 128, 256, 512, 1024 and 2048 bits architectures.

To circumvent classical attacks, the literature has

proposed some countermeasures. We show that a prac-

tical collision attack defeats the less expensive protec-

tions. The practical results of a chosen plaintext colli-

sion attack allow us to conclude that the attack of the

protected implementations induces a factor 10000 for

the number of traces.

Here are some alternative solutions for a secure pair-

ing implementation:

– Arithmetic randomization. For example in Residue

Number System (RNS) representation with a new

base which is calculated for every execution of the

pairing. Of course, this randomization step will in-

volve extra computation, as a future work we will

study the risk-benefit ratio of this countermeasure.

– The randomization step which we wish to protect

is made of three modular multiplications xQλ, yQλ

and zQλ. The protection of the modular multiplica-

tion was proposed in [4,9,30]. These protections can

be used in order to secure the three critical multi-

plications which manipulate the secret coordinates.

– Consider slower external countermeasures to pair-

ings such as e(P,Q) = e(aP, bQ) or e(P,Q) =

e(P +R,Q)e(−R,Q), as proposed by Page and Ver-

cauteren [32].
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6. J. Blömer, P. Günther, and G. Liske. Improved
Side Channel Attacks on Pairing Based Cryptography.
COSADE, pages 154–168, 2013.

7. D. Boneh and M. Franklin. Identity-Based Encryption
from the Weil Pairing, volume 32. Springer Berlin Hei-
delberg, 2001.

8. E. Brier, C. Clavier, and F. Olivier. Correlation power
analysis with a leakage model. In CHES, pages 16–29.
Springer, 2004.

9. C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Roussel-
let, and V. Verneuil. ROSETTA for Single Trace Analy-
sis. In International Conference on Cryptology in India,
pages 140–155. Springer, 2012.

10. J. Coron. Resistance against differential power analysis
for elliptic curve cryptosystems. CHES, pages 292–302,
1999.

11. J.-S. Coron, P. Kocher, and D. Naccache. Statistics and
secret leakage. In Financial Cryptography, pages 157–
173. Springer, 2000.

12. Y. Desmedt and M. Burmester. Identity-based key infras-
tructures (iki). In SEC, pages 167–176. Springer, 2004.

13. J.-G. Dumas, P. Lafourcade, and P. Redon. Architectures
PKI et communications sécurisées. Dunod, 2015.
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