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On the Phasor Control for Linear Time Invariant Systems
Fabrı́cio Saggin, Anton Korniienko and Gérard Scorletti

Abstract

In some control applications, where the reference is sinusoidal, phasor-based strategies can be considered.
The main advantage of these approaches is that instead of dealing with oscillating signals, one deals with constant
or low-frequency signals. However, to implement this solution, several nonlinearities are included into the control
loop. Then, linearization are performed around operating points to design a controller, but with no guaranties of
performance. In this work, we present a “large-signal” model for the system. Then, considering ideal measurement
of instantaneous amplitude and phase, we establish the correspondence between classical control architecture and a
phasor-based one. Hence, we show that a controller can be designed as in a classical architecture and implemented
in a phasor-based one with a simple transformation, ensuring the same performance level. However, in practical
applications, the measurements of amplitude and phase are not ideal and may quickly degrade the behavior of the
system. Thus, we propose a second design approach that takes these nonlinearities into account, ensuring nominal
stability and performance. Examples illustrate the effectiveness of these methods.

I. INTRODUCTION

In numerous applications, the primary objective of a controller is to ensure that some process variable y
follows a sinusoidal reference trajectory yr with a given amplitude Yr and a given frequency ω0 (in rads−1), i.e.,
yr(t) = Yr cos(ω0t). For instance, we can mention the control of micro gyroscopes, that shall keep a proof mass
oscillating close to a resonance frequency with a controlled amplitude [1], [2].

The general practice in control engineering is to compute the control action u based on measurements of y
and yr. However, in the above applications, another control architecture is proposed. In this alternative control
architecture, the control action is based on a phasor approach [3]. The phasor is often expressed by the couple
made up of the amplitude and the phase shift of a given signal with respect to the reference phase φexc(t) = ω0t.
Then, based on the measurement of the output phasor (amplitude and phase shift) and on the reference phasor,
the amplitude and the phase of the control action are computed, i.e., the control signal is constrained to the form

u(t) =U(t)cos(ω0t +φu(t)) . (1)

This strategy is illustrated in Fig. 1, where G is a linear time-invariant (LTI) system. The nonlinear block p2s
transforms a phasor into a modulated signal, as in (1), and s2p transforms a modulated signal into a phasor
(amplitude and phase shift) with respect to ω0t.

Kph p2s G s2p

ω0t

(Yr, φr) (U, φu) u y (Y, φy)

To-be-controlled system

Fig. 1. Block-diagram of the phasor-based control architecture.

One advantage of this control architecture is that the phasor of the reference is a constant signal and,
consequently, one can use the more classical control methods that were conceived for such type of reference
signals (as PI-controllers) [1], [3]. Another advantage is that the controller works at a lower frequency than it
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would have in the classical architecture. However, an important drawback of that phasor control architecture
is that the to-be-controlled system becomes nonlinear. Indeed, the choice to work with amplitude and phase
shift representation entails these nonlinearities and makes the control design more complicated. Moreover, the
conventional approach is to linearize the system around operating points [1], [3], leading to controllers whose
performance cannot be guaranteed.

In this work, we show that these nonlinear operations are not required: instead of using the amplitude and
phase shift representation, we can use the real and imaginary parts of the complex phasor. In this case, the system
remains linear. This is one message of the present paper. Note that, even if the control architecture is fixed and
imposes the use of amplitude and phase shift, we can go back in a software manner to the corresponding real
and imaginary parts by inverting these nonlinearities. In this framework, we denote as s2cp the operator that,
from a modulated signal, extracts the real and imaginary parts of its corresponding phasor.

In contrast to the control design methods for the classical architecture, the number of these methods for
the phasor architecture remains limited. Moreover, in general, phasor-based approaches cannot guarantee the
performance level of the closed-loop system. Then, another contribution of the present paper is to reveal that
there is a link between the classical and the phasor architecture. This link allows transforming a controller designed
for the classical architecture into a controller for the phasor architecture, yielding to the same performance level.
Thus, all the linear control design methods may be transposed to the phasor approach. The only condition for
this property to hold is that the phasor construction block (s2cp) is ideal.

In practice, however, nonidealities are present in the phasor construction block and may yield to a significant
performance discrepancy and even instability of the closed-loop system. Another contribution of this paper is,
therefore, a control design method allowing to explicitly take into account these nonidealities, ensuring the stability
and an appropriate performance level.

Notation: Subscripts R and I indicate respectively the real part and imaginary part of a complex variable.
The imaginary unit is denoted by j, i.e., j2 =−1. The variable s denotes at the same time the Laplace variable
and the differential operator. In denotes the identity matrix of Rn×n and 0n×m denotes the zero matrix of Rn×m

(subscripts are omitted if obvious from context). For two matrices A, B, diag(A,B) denotes
[

A 0
0 B

]
. AT is the

transpose of A and A∗ is its complex conjugate transpose. For a full column rank matrix M, M⊥ denotes its
orthogonal complement, i.e., M∗M⊥ = 0 and [M∗ M⊥] is of maximum rank. In linear matrix inequalities (LMI),
� represents terms that can be deduced from symmetry. For a complex matrix M, σ(M) denotes the maximum
singular value of M. The ? denotes the Redheffer (star) product [4]. For a given LTI system F , ‖F‖∞ denotes the
H∞-norm of F . We denote Ta→b the transfer from a to b. The L2-norm of a signal v from R+ to Rnv is defined as
‖v‖2

2 =
∫ ∞

0 v(t)T v(t)dt and the set of signals for which the L2-norm is bounded is denoted L2. Then, the L2-gain
of an operator Σ is defined as ‖Σ‖2 = supv∈L2, v 6=0 ‖Σv‖2/‖v‖2.

II. PHASOR CONTROL PROBLEM

Let us consider the linear time invariant plant

G :
{

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

(2)

with x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny , and real matrices A, B, C and D of appropriate dimensions. The original
control objective is to compute u in order that y tracks a sinusoidal reference yr at frequency ω0 and/or reject
sinusoidal disturbances at the same frequency.

In Automatic control, this problem is usually solved by computing a linear time invariant control law using
e.g. the H∞ approach (see [4]), which computes u from the measurement of y and yr. In the sequel, this approach
is referred to as the direct control problem.

Nevertheless, for this particular problem, an alternative approach, named the phasor control problem, was
proposed in order to take into account implementation constraints. In this approach, the controlled signal has a
special form:

u(t) =U(t)cos(φexc(t)+φu(t)) , (3)

where φexc(t), named the excitation phase, is given and is assumed to be differentiable. The couple (U, φu) is
referred to as a phasor of the signal u in the sequel. A complex phasor can be similarly defined: u(t) =U(t)e jφu(t).



In this approach, instead of computing u(t), the controller computes U(t) and φu(t) from the measurement of
Y (t) and φy(t) defined as:

y(t) = Y (t)cos(φexc(t)+φy(t)) , (4)

that is the measure of the phasor of y. The control problem is then recast as the tracking and/or the rejection
of phasor signals: compute the phasor (U(t), φu(t)) such that the phasor (Y (t), φy(t)) tracks a reference phasor
(Yr(t), φyr(t)).

In the usual case where yr is a sinusoidal signal at frequency ω0 and φexc(t) = ω0t, the reference signals
(Yr(t), φyr(t)) are actually constant. Since u(t) and y(t) are sinusoidal signals in steady state, U(t), φu(t), Y (t)
and φy(t) are also constant.

As a consequence, in the phasor control problem, the to-be-controlled plant (input (U(t), φu(t)), output
(Y (t), φy(t))) is actually defined by (3), (2) and an operator which associates (Y (t), φy(t)) to y, referred to
in the sequel as s2p, that is:





ẋ(t) = Ax(t)+BU(t)cos(φexc(t)+φu(t))[
Y (t)
φy(t)

]
= s2p(Cx(t)+DU(t)cos(φexc(t)+φu(t)))

(5)

Since this operator and (3) are nonlinear, the design of the controller is a priori a difficult problem.
In the next section, we reveal that if the signals are replaced by their complex phasor, the (to-be-controlled)

plant (5) becomes linear.

III. COMPLEX PHASOR MODELING

A. Complex phasor model

The following theorem introduces a (linear) model of the plant based on the complex phasors.

Theorem 1. Given a differentiable function φexc, the ouput y(t) of the system

G :
{

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

for the input u(t) =U(t)cos(φexc(t)+φu(t)) is given by

y(t) = Y (t)cos(φexc(t)+φy(t)) ,

where (Y (t),φy(t)) is such that Y (t) = |y(t)|, φy(t) = arg(y(t)) and y(t) is the output of the system G defined by

G :
{

ẋ(t) =
(
A− jφ̇exc(t)In

)
x(t)+Bu(t)

y(t) = Cx(t)+Du(t) (6)

for the input u(t) =U(t)e jφu(t).

Note that in (6), the signals x(t), u(t) and y(t) are actually complex. The system (6), which computes the
complex phasor of y from the complex phasor of the input u, is linear parameter varying (LPV). Furthermore,
in the important case when φexc(t) = ω0t, it is actually a linear time invariant system.

Proof. Let y(t) and x(t) be solutions of (6) for the input u(t) = U(t)e jφu(t). By multiplying (6) by e jφexc(t), we
have, after simplifications

{
d
dt

(
x(t)e jφexc(t)

)
= Ax(t)e jφexc(t)+Bu(t)e jφexc(t)

y(t)e jφexc(t) = Cx(t)e jφexc(t)+Du(t)e jφexc(t)
.

By taking the real part, since A, B, C and D are real matrices, we obtain




d
dt

(
ℜ
(

x(t)e jφexc(t)
))

= Aℜ
(

x(t)e jφexc(t)
)
+Bℜ

(
u(t)e jφexc(t)

)

ℜ
(

y(t)e jφexc(t)
)

= Cℜ
(

x(t)e jφexc(t)
)
+Dℜ

(
u(t)e jφexc(t)

)

that corresponds to (2) with u(t) =U(t)cos(φexc(t)+φu(t)).



The system G, see (6), is referred to as the Complex Phasor Model (CPM) associated with G. The CPM
is a system with complex-valued parameters. Nonetheless, by splitting the signals into real part and imaginary
part, G can be equivalently represented by the following real-valued system, denoted complex phasor real model
(CPRM):

Gcp :
{

ẋcp(t) = Acp
(
φ̇exc(t)

)
xcp(t)+Bcpucp(t)

ycp(t) =Ccpxcp(t)+Dcpucp(t)
(7)

with xcp = [xT
R xT

I ]
T , ucp = [uT

R uT
I ]

T , ycp = [yT
R yT

I ]
T ,

Acp
(
φ̇exc(t)

)
=

[
A φ̇exc(t)In

−φ̇exc(t)In A

]
,

Bcp = diag(B, B), Ccp = diag(C,C) and Dcp = diag(D, D). Note that this model corresponds to the system
{

ẋ(t) = Ax(t)+B
[
cos(φexc(t)) −sin(φexc(t))

]
ucp(t)

ycp(t) = s2cp
(
Cx(t)+D

[
cos(φexc(t)) −sin(φexc(t))

]
ucp(t)

)

where x is the state space vector of (5) and s2cp is an operator which associates ycp to y.
Based on the model (7), we can define a new control problem, denoted complex phasor control problem.

For the sake of simplicity, we focus on the case when φexc(t) = ω0t, that is, Gcp is an LTI system. The general
case can be similarly discussed using the LPV control approach, see e.g. [5].

In this problem, the plant is defined by G, see (6) (resp. Gcp, see (7)), and the controller denoted K (resp.
Kcp), has to compute u (resp. ucp) from the measurement of y (resp. ycp), such that y tracks the reference signal
yr (resp. yrcp).

Before to proceed with the control design, we present some relevant properties of the complex phasor model
in the LTI case.

B. Properties of the complex phasor model in the LTI case

Since G and Gcp have poles with the same real part that the poles of G, the stability of one is equivalent to
the stability of the other ones [6]. Since G can be defined as [7], [8]

G(s) = G(s+ jω0),

the frequency response of G corresponds to a frequency shift of the frequency response of G. Moreover, the
H∞-norm of G is equal to the H∞-norm of G which is equal to the H∞-norm of Gcp, see [8].

IV. CONTROL DESIGN BASED ON THE DIRECT PROBLEM

In this section, we intend to answer two key questions:
(i) Considering the direct control and the complex phasor control approaches, does any of them ensure a better

performance level?
(ii) Is it possible to compute a direct control law and transform it into a complex phasor control law, since a

strong motivation for considering this approach is to respect implementation constraints?
We first define the performance level as an upper bound on the H∞-norm of the interconnection of the augmented

plant, that is, the plant augmented with weighting functions and the controller [4]. Note that the discussion holds
true for other performance criteria, based on, e.g., the H2 norm.

A. Solving the direct control problem and the complex phasor control problem

The control law for the direct control problem can be computed by solving the standard H∞ problem. We
consider an augmented plant P, composed by the plant G and weighting functions (for further details, see [4]),
usually defined by a state-space representation

P :





ẋP(t) = APxP(t) + BuuP(t) + Bww(t)
yP(t) = CyxP(t) + Dyww(t)
z(t) = CzxP(t) + DzuuP(t) + Dzww(t)

(8)



The problem is: given γ > 0, compute a controller

K :
{

ẋK(t) = AKxK(t) + BKyP(t)
uP(t) = CKxK(t) + DKyP(t)

, (9)

if there is any, such that ‖P?K‖∞ < γ , where P?K denotes the Redheffer product of P and K, that is, the closed
loop system defined by (8) and (9).

The following theorem allows testing if this problem has a solution.

Theorem 2 ([9]). Consider the system (8). There is a dynamic output feedback, in the form of (9), such that
‖P?K‖∞ < γ if and only if there exist R,S ∈ Rn×n such that R = RT , S = ST ,

[
�
]T
⊥




SAT
P +APS Bw SCT

z
BT

w −γI DT
zw

CzS Dzw −γI


[BT

u 0 DT
zu
]
⊥ ≺ 0,

[
�
]T
⊥




AT
PR+RAP RBw CT

z
BT

wR −γI DT
zw

Cz Dzw −γI


[Cy Dyw 0

]
⊥ ≺ 0

and
[

R I
I S

]
� 0.

The complex phasor control problem can be addressed as a special case of the H∞ control problem, with a new
augmented plant Pcp which is the complex phasor real model associated to the augmented plant P. Nevertheless,
the solution K˜ of this H∞ control problem does not necessarily admit a state space representation which has the
structure of a complex phasor real model.

Since the direct control problem and the complex phasor one can be formulated as an H∞ control problem, in
the next subsection we consider this formalism to investigate the links between them.

B. Connections between the direct control problem and the complex phasor real control problem

We now investigate the connections between the direct control problem and the complex phasor one.

Theorem 3. Let P be the augmented plant defined by (8) and K the controller defined by (9). Let Pcp and Kcp
be respectively the CPRM of P and K for φexc(t) = ω0t. Then, given γ > 0,

1) if K is such that ‖P?K‖∞ < γ then ‖Pcp ?Kcp‖∞ < γ;
2) ‖P?K‖∞ = ‖Pcp ?Kcp‖∞;
3) there exists a controller K˜ such that ‖Pcp ?K˜‖∞ < γ if and only if there exists K such that ‖P?K‖∞ < γ .

The first property presented in the theorem claims that if a direct control law K achieves a given performance
level γ , then the phasor model Kcp of K is a solution of the complex phasor control problem, ensuring the same
performance level. Furthermore, according to the second property, the H∞-norm of the closed-loop systems are
equal.

The third property reveals that if the H∞ solution K˜ of the complex phasor control problem achieves a given
performance level then, necessarily, the same level of performance can be obtained by a direct control law and
vice-versa. In other words, even with an augmented degree of freedom (number of variables), the complex phasor
control problem cannot ensure a better performance level than that of the direct control.

Proof. Properties 1) & 2): they can be proved by building the state-space realisations of (P?K)cp and Pcp ?Kcp
from the state-space realisations of P and K and by observing that both realisations are the same, i.e., Pcp ?Kcp =
(P?K)cp. For the sake of briefness, the details based on routine algebra are omitted. As ‖(P?K)cp ‖∞ = ‖P?K‖∞,
then ‖P?K‖∞ = ‖Pcp ?Kcp‖∞, which proves property 1 and property 2.

Property 3): here, we just present the sketch of the proof. Details are developed in Appendix A. The proof
consists in first applying the H∞ problem associated to the direct control problem. The existence of K such that
‖P ?K‖∞ < γ is equivalent to the fact that the feasibility problem defined by Theorem 2 has a solution. The
second step consists in using the solution of this feasibility problem to construct the solution of the feasibility
problem defined by Theorem 2 when this theorem is applied to the complex phasor control problem, which
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Fig. 2. Block-diagram of the synchronous demodulation.

implies that there exists K˜ such that ‖Pcp ?K˜‖∞ < γ . The same procedure is applied in the other sense, changing
the direct problem by the complex phasor problem and vice-versa.

All these results are based on the fact that (5) is exactly described by Gcp. Nonetheless, we will discuss in
the next section that the ideal s2cp block cannot be implemented in practice. To extract amplitude and phase
of a signal (or equivalently the real and imaginary parts), nonlinear operators and filters are introduced into the
loop. These additional elements, that were not taken into consideration in this section, may drastically degrade
the performance of the closed-loop system or even make it unstable. Thus, in the next section, we present how to
implement the s2cp block and how to model its nonidealities. Then, we propose an approach to take into account
these nonidealities during the control design.

V. IMPLEMENTATION OF S2CP AND ROBUST CONTROL DESIGN

Up to this point, we have considered the s2cp block as an operator that allows to extract ycp from a signal y.
Nonetheless, by observing (4), one can notice that, for a given φexc and y, an infinity number of couples (Y, φy),
and consequently (yR, yI), satisfies the equation. This ambiguity problem is recurrent in communication theory
and signal processing (see e.g. [10], [11]) and can be solved by means of the Hilbert transform. In practice,
this operation is performed by a synchronous demodulation, that will introduce some nonidealities into the s2cp
block. Therefore, in this section, we aim to discuss the implementation of the s2cp block and how to model its
nonidealities. Then, we propose a control design method that takes into account these nonidealities.

A. Implementation of the s2cp block

In practice (and for φexc(t) = ω0t), the operator s2cp can be implemented by a synchronous demodulation
if the power spectrum of y is in the interval (0, 2ω0) [10]. Fig. 2 presents the structure of the demodulator,
which includes ideal low-pass filters FLP with cutoff frequency ωc = ω0. This structure is motivated by the
following point. Let y be the complex phasor of y, i.e., y(t) = yR(t)cos(ω0t)− yI(t)sin(ω0t). Thus, the signals
yc(t) = 2y(t)cos(ω0t) and ys(t) =−2y(t)sin(ω0t) can be rewritten as

yc(t) = yR(t)+

δyR(t)︷ ︸︸ ︷(
yR(t)cos(2ω0t)− yI(t)sin(2ω0t)

)

ys(t) = yI(t)−
(

yR(t)sin(2ω0t)+ yI(t)cos(2ω0t)
)

︸ ︷︷ ︸
δyI(t)

.

(10)

As the power spectrum support of the signal y is assumed to be included in the frequency interval (0, 2ω0), then
the power spectrum support of yR(t) and yI(t) is in (0, ω0), and the power spectrum support of δyR(t) and δyI(t)
is in (ω0, 3ω0). As a consequence, since FLP is an ideal filter with ωc = ω0, then ŷR(t) = yR(t) and ŷI(t) = yI(t).

In practice however, the low-pass filter is not ideal. Indeed, it presents a transition band between the pass band
and the stop band. Since the power spectrum support of δyR(t) and the power spectrum support of yR(t) can be
very close, the existence of the transition band can dramatically change the behavior of the closed-loop system.
Therefore, it is crucial to:



1) evaluate the effect of this nonideal filter when the control law was computed as described in section IV,
with the assumption that the s2cp block was ideal; this a posteriori analysis is investigated in [12];

2) to take this nonideality into account for the computation of the control law. This point is developed in the
next section.

B. Complex phasor control with nonideal s2cp

Now, the question is how to model the nonideal s2cp, i.e., the synchronous demodulation with nonideal FLP.
From (10), yc and ys can be rewritten in matrix form as

[
yc(t)
ys(t)

]
= (I +∆(ω0))

[
yR(t)
yI(t)

]

with
∆(ω0) =

[
cos(2ω0t) −sin(2ω0t)
−sin(2ω0t) −cos(2ω0t)

]
.

Hence, the nonideal s2cp (synchronous demodulation) may be modeled as the series connection of an ideal s2cp,
the block (I +∆(ω0)) and the nonideal filters FLP, as illustrated in Fig. 3. The strong interest of this modeling is
that the to-be-controlled system is represented as a serial connection of the CPRM and associated nonidealities
of the s2cp block.

K
˜ cp2s G s2cp

ω0t

yrR

yrI

uR

uI
u y

yR

yI

∆(ω0)

+

+

+

+

FLP

FLP

yc

ys

ŷR

ŷI

CPRM

Nonideal s2cp

Fig. 3. Block-diagram of the complex phasor architecture with nonideal s2cp

In the sequel, this modeling is used to propose a method for computing the CPRM controller K˜ by explicitly
taking into account the nonideal s2cp.

C. Solution to the complex phasor control problem with nonideal s2cp

In this section, we propose a solution of the complex phasor control problem which takes into account the
two elements of the nonideal s2cp: the nonideal filtering and the time-varying matrix ∆(ω0). The closed-loop
system has to satisfy some performance specifications: stability, constant reference tracking with a maximum
allowed steady-state error and constant disturbance rejection. To this purpose, we consider the control architecture
presented in Fig. 4, where yrcp is the reference, εcp the tracking error, dcp the input disturbance and ncp represents
the disturbance provoked by the time-varying matrix ∆(ω0).

In the H∞ synthesis approach, the solution is obtained by finding K˜ , if there is any, such that the following
H∞ criterion is ensured:
∥∥∥∥

diag(Wε ,Wε)Tyrcp→εcp diag(Wr,Wr) diag(Wε ,Wε)Tdcp→εcp diag(Wd ,Wd) diag(Wε ,Wε)Tncp→εcp diag(Wn,Wn)

diag(Wu,Wu)Tyrcp→ucp diag(Wr,Wr) diag(Wu,Wu)Tdcp→ucp diag(Wd ,Wd) diag(Wu,Wu)Tncp→ucp diag(Wn,Wn)

∥∥∥∥
∞
< 1,

(11)



K
˜

Gcpyrcp
+

ucp

dcp
+ ycp

diag(FLP,FLP)
ncp++

+

−
εcp

∆(ω0)

Tncp→ycp

Fig. 4. Control architecture considered for the complex phasor control with nonideal s2cp.

where Ta→b denotes the transfer from signal a to signal b and

Wε(s) =
1

Mε
s+ω∗ε

s+ω∗ε Aε
, Wu(s) =

s+ω∗u Au
1

Mu
s+ω∗u

,

Wr(s) = kr, Wd(s) = kd , Wn(s) =Wε(s)−1

with the user chosen parameters Aε ≤ 1, Mε ≥ 1, ω∗ε , Au ≤ 1, Mu ≥ 1, ω∗u , kr and kd , detailed in the sequel. This
H∞ criterion is represented in Fig. 5, where the weighting functions Wx express the control specifications [4], as
detailed thereafter.
• Reference tracking: (11) implies that

∀ω, |TyrR→εR( jω)| ≤ 1
|Wε ( jω)Wr( jω)| and ∀ω, |TyrI→εI ( jω)| ≤ 1

|Wε ( jω)Wr( jω)| ,

which ensures the tracking of constant yrR and yrI by yR and yI with a static error bounded by Aεkr and the
convergence speed is constrained by ω∗ε , that is, it enforces a lower bound on the time response. For further
details, see e.g. [4].

• Disturbance rejection: (11) implies that

∀ω, |TdR→εR( jω)| ≤ 1
|Wε ( jω)Wd( jω)| and ∀ω, |TdI→εI ( jω)| ≤ 1

|Wε ( jω)Wd( jω)| ,

which ensures disturbance rejection of constant dR and dI with a static error bounded by Aεkd and a bandwidth
constraints by ω∗ε .

• Control limitation: (11) implies that

∀ω, |TyrR→uR( jω)| ≤ 1
|Wu( jω)Wr( jω)| and ∀ω, |TyrI→uI ( jω)| ≤ 1

|Wu( jω)Wr( jω)|
∀ω, |TdR→uR( jω)| ≤ 1

|Wu( jω)Wd( jω)| and ∀ω, |TdI→uI ( jω)| ≤ 1
|Wu( jω)Wd( jω)| ,

which constraints by ω∗u the bandwidth of the two-degree-of-freedom controller.
• Nonideal s2cp: (11) implies that :

‖diag(Wε ,Wε)Tncp→εcp diag(Wn,Wn)‖∞ < 1.

Since Wn =Wε
−1 and Tncp→εcp =−Tncp→ycp , we have that the previous inequality implies ‖Tncp→ycp‖∞ < 1.

As the L2 gain of an LTI system is equal to its H∞ norm [13], the L2 gain of Tncp→ycp is strictly less than
1. Note that the nonideal closed-loop system presented in Fig. 4 can be rewritten as the interconnection of
Tncp→ycp and ∆(ω0). Since

∀ t,ω0 ∈ R, σ (∆(ω0))≤ 1

the L2 gain of the operator which to ycp associates ∆(ω0)ycp is less or equal to 1. Then, since the product
of the L2 gain of this operator and the L2 gain of Tncp→ycp is strictly less than 1, the stability of overall
interconnected system is obtained by applying the small gain theorem [13].
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Fig. 5. Considered criterion for the H∞ synthesis.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the different control approaches considered in this paper. We consider three different
cases. For the first two ones, we design a controller in the direct approach. Then, we take its corresponding CPRM
to apply in a phasor approach, as presented in section IV. The third case consists of the synthesis taking the s2p
nonidealities into account, as discussed in section V.

For this example, we consider the control of a MEMS gyroscope. This type of device is composed of two
perpendicular resonant modes: the primary mode and the secondary one. Oscillations are driven on the primary
mode. Then, if the gyroscope is submitted to an angular rate perpendicular to those axes, oscillations are provoked
on the secondary mode due to the Coriolis effect. Hence, by measuring these secondary oscillations, the angular
rate is estimated. To ensure high accuracy of the measurements, control loops are used, see e.g., [1], [2]. Here,
we focus on the control of the primary mode, that shall drive oscillations with a controlled amplitude. Moreover,
to avoid saturation of the control signal, the oscillations shall be driven around the resonance frequency of the
primary mode. This system can be modeled by (2) with

A =

[
0 1
−ω2

n −ωn/Q

]
, B =

[
0

ωn

]
, C =

[
1 0

]
, D = 0,

with the natural frequency ωn = 2π ·11500 rads−1 and the quality-factor Q = 50.
Then, for this application, we consider the following specifications:

1) the tracking of a reference signal in the form yr(t) =Yr cos(ω0t) with ω0 =ωn and an error ε(t) = yr(t)−y(t)
is ensured, such that |ε(t)| < 0.002Yr in steady-state (i.e. 0,2% of the reference amplitude); moreover, the
steady-state is achieved in less than 0.5 ms;

2) the amplitude of the control signal is less than 0.5 units;
3) the closed-loop system is stable, i.e. the stability against the nonidealities of the s2cp has to be guaranteed.

A. Study case 1: design based on the direct control problem (two degrees of freedom)

In this first case, we consider a two-degrees-of-freedom controller that has two inputs: the reference signal yr
as well as the system output y. This controller computes the control signal u which is applied to G. Thus, we
consider an H∞ synthesis with the criterion presented in Fig. 6 in order to compute K, if there is any, such that:∥∥∥∥

WεTyr→εWr WεTd→εWd WεTn→εWn
WuTyr→uWr WuTd→uWd WuTn→uWn

∥∥∥∥
∞
< 1. (12)

This H∞ criterion is similar to the one presented in (11) and Fig. 5, except that the nonidealities of the synchronous
demodulation are not explicitly taken into account, the signals of the closed-loop system are scalars and the
weighting function used are modified. Indeed, as mentioned before, in contrast to the complex phasor control
problem, in the direct control problem, the reference and disturbance signals are sinusoidal and not constant
signals. The weighting filters are thus given by

Wε(s) =
1

Mε

s2 +αεs+ω2
0

s2 +αεAε/Mε · s+ω2
0
, Wu(s) = Mu

s2 +αuAu/Mu · s+ω2
0

s2 +αus+ω2
0

,
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Fig. 6. Criterion for the H∞ synthesis for the study case 1.

Wr(s) = kr, Wd(s) = kd , Wn(s) = kn,

where the choice of the parameters Aε ≤ 1, Mε ≥ 1, αε , Au ≤ 1, Mu ≥ 1, αu, kr and kd is detailed in the sequel.
These weighting functions express the following control specifications [4]:
• reference tracking: (12) implies that

∀ω, |Tyr→ε( jω)| ≤ 1
|Wε ( jω)Wr( jω)| ,

which ensures the tracking of sinusoidal reference signal yr by y with a frequency ω0 and error bounded by
Aεkr and convergence speed constrained by αε ;

• control limitation: (12) implies that

∀ω, |Tyr→u( jω)| ≤ 1
|Wu( jω)Wr( jω)| and ∀ω, |Td→u( jω)| ≤ 1

|Wu( jω)Wd( jω)| ,

which constrains by αu the bandwidth of the controller and by Au,Mu the control signal power and therefore
its amplitude [4];

• robustness against the s2cp nonidealities: since we consider the direct control problem, this specification is
not taken into consideration for the controller design. In the present case, the robustness with respect to the
nonidealities of the s2cp is evaluated in simulation.

To respect these specifications, we choose the parameters presented in Table I.

TABLE I
PARAMETERS FOR THE CONTROLLER DESIGN OF THE STUDY CASE 1

Parameter Value Parameter Value
Aε 1.25 ·10−3 Au 2.5 ·10−2

Mε 2 Mu 2.5 ·103

αε 0.5538ω0 αu 1056ω0
kr 1 kd 1 ·10−3

kn 0.5

By solving the H∞ problem we find the controller K = [Kr Ky], ensuring (12) with:

Kr(s) = 2.59 ·10−4 (s+1382ωn)(s−0.8647ωn)(s+5.852 ·10−4ωn)(s2 +0.0206ωns+ω2
n )

(s+0.5309ωn)(s2 +3.9 ·10−4ωns+ω2
n )(s2 +1.353ωns+1.629ω2

n )

Ky(s) =−5.65 ·10−5 (s+6359ωn)(s−0.865ωn)(s+4.441 ·10−4ωn)(s2 +0.0205ωns+ω2
n )

(s+0.5309ωn)(s2 +3.9 ·10−4ωns+ω2
n )(s2 +1.353ωns+1.629ω2

n )

This controller is then transformed into a phasor controller Kcp via Theorem 1 and implemented according to
the phasor-based architecture.

To evaluate the tracking performance of the obtained controller, we apply an amplitude reference step at t = 1ms
and ω0 = ωn, as shown in Fig. 7. The closed loop composed of K and G is referred to as direct approach, whereas
the control loop composed by Kcp and Gcp is denoted ideal CPRM.



Fig. 7. Study case 1 - reference signal.

TABLE II
PARAMETERS FOR THE CONTROLLER DESIGN OF THE STUDY CASE 2

Parameter Value Parameter Value
Aε 1.25 ·10−3 Au 5 ·10−6

Mε 2 Mu 5 ·103

ω∗ε (in rads−1) 1.154 ·104 ω∗u (in rads−1) 1.669 ·104

kr 1 kd 1 ·10−3

The output, tracking error and the control signal of both strategies are presented in Fig. 8. We observe that,
in about 0.3 ms, the error of the direct approach converges to its steady-state value, that is close to 0.11% of Yr.
For the sake of illustration, we present only the amplitude computed from the ideal CPRM, that corresponds to
the amplitude envelope of the error of the direct approach. If we reconstruct a signal from the amplitude and
phase shift (or equivalently from real and imaginary parts), we obtain exactly the same signal produced in the
direct approach. This fact illustrates the Theorem 1 and validates the discussions of section IV.

In order to evaluate the behavior of the closed-loop system with the nonideal s2cp, we simulate the overall
system with

FLP(s) =
ωc

s+ωc

and ωc = 2π ·100rads−1. The simulation results are presented in Fig. 9, where we notice that the error has higher
values and takes more than 20 ms to achieve steady-state. When in steady-state, the amplitude error is about 0.46%
of Yr. These substantial differences with respect to the ideal CPRM are due to the nonideal filter. During the
transient state, the filter slows down the output measure. Then, the controller applies stronger actions, what is
actually not necessary, justifying the important amplitude overshoot. When, the system achieves the steady-state,
the harmonics generated by the synchronous demodulation are not completely eliminated by the filter, then these
components disturb the system and produce an error that is bigger than the one in the ideal case.

Besides the important changes on the behavior of the closed-loop system, if we reduce the cutoff frequency
of the nonideal filter, the system may become unstable. To illustrate this fact, we make ωc = 2π ·8rads−1. The
simulation results are presented in Fig. 10, where the tracking error diverges.

B. Study case 2: design based on the CPRM and nonideal s2cp

In this case, we illustrate the method presented in section V, where the nonidealities of the synchronous
demodulation are taken into account for the design of the controller. Furthermore, we consider FLP with ωc =
2π8rads−1, which makes the closed-loop system of the previous study case unstable.

To respect the requirement specifications, we consider the criterion and weighting functions presented in
section V-C with the parameters presented in Table II.

Then, with the H∞ synthesis, we obtain a controller that ensures, in addition to the reference tracking and
control limitation performance (at a similar level than in the ideal case example), ‖Tncp→ycp‖∞ = 0.983. Hence,
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Fig. 8. Study case 1 - comparison between direct approach (G, K) and ideal CPRM (Gcp, Kcp) for a two-degree-of-freedom controller.

the small gain theorem conditions are satisfied and ensure the stability of the closed-loop system in presence of
the time-varying matrix ∆(ω0).

This controller is applied according to a phasor-based architecture with a nonideal s2cp and FLP with ωc =
2π ·8rads−1. We apply the same reference signal of the previous study case, see Fig. 7. For the sake of comparison,
we also consider the results of the direct approach presented previously. The tracking errors, as well as the outputs
and control signals, are presented in Fig. 11, where we can notice that, despite the nonideal s2cp, at the transient-
state, both strategies present a very similar behavior. The phasor approach presents some small oscillations until
t ≈ 3ms. In steady-state, the tracking errors of both strategies converge to close to 0.1% of Yr, as specified at
the beginning of the section.

C. Study case 3: design based on the direct problem (one degree of freedom)

In this last case, we simulate a simplified version of the study case 1. Here, a direct approach with a one-degree-
of-freedom controller is considered. This controller is by with the H∞ approach with the criterion presented in
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Fig. 9. Study case 1 - CPRM (Gcp, Kcp) with nonideal s2cp and ωc = 2π · 100rads−1. (a) tracking error, (b) output and (c) control
signal in a long time scale; zoom of (d) tracking error, (e) output and (f) control signal.

Fig. 10. Study case 1 - CPRM (Gcp, Kcp) with nonideal s2cp and ωc = 2π ·8rads−1.
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Fig. 11. Study case 2 - comparison between direct approach (G, K) and nonideal CPRM (Gcp, K̃).

Fig. 12, known as 4-block criterion [4], i.e. u(t) = K(s)(r(t)− y(t)), and same weighting functions of section VI-
A. Thus, the controller is given by

K(s) = 2.05 ·10−4 (s+1752ωn)(s−0.8648ωn)(s+5.115 ·10−4ωn)(s2 +0.02ωns+ω2
n )

(s+0.5313ωn)(s2 +3.2 ·10−4ωns+ω2
n )(s2 +1.352ωns+1.628ω2

n )
.

This controller is then transformed into a phasor controller Kcp via Theorem 1 and applied according to the
phasor-based architecture.

As in the previous cases, we apply an amplitude reference step at t = 1ms and ω0 = ωn. The simulation results
for the direct approach and of the ideal CPRM one are presented in Fig. 13. We observe that the behavior of
both approaches are very similar to the results of section VI-A. This is justified by the use of the same weighting
functions.

Now, we use Kcp in a phasor architecture with nonideal s2cp with ωc = 2π ·100rads−1, obtaining the results
presented in Fig. 14. As previously, we observe a similar performance degradation since the nonidealities of the
synchronous demodulation are not taken into account explicitly for the control design.
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Fig. 13. Study case 3 - comparison between direct approach (G, K) and ideal CPRM (Gcp, Kcp).

To better investigate the effects of the nonideal s2cp in this example, [12] proposes special multipliers to
describe the time-varying matrix ∆(ω0). In the referenced work, a stability analysis of the interconnection of
Tncp→ycp and ∆(ω0) is performed.

VII. CONCLUSIONS

In some applications, from the implementation point of view, it can be interesting to consider a phasor-based
control architecture, as in MEMS sensors or electrical systems, for instance. However, this strategy includes
several nonlinear elements into the control loop, what can make the control design a difficult task. In this paper,
we have presented the complex phasor modeling, that allows to consider the to-be-controlled system as linear
for the controller design.

Correspondences between classical control architectures and phasor-based ones were established. These equiv-
alences allow one to design a linear controller in classical architecture and implement an equivalent controller in
a phasor-based architecture, ensuring, in theory and at most, the same performances if the s2cp block is ideal.
In practical implementations, nonidealities appear and can quickly degrade the performance of the closed-loop
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Fig. 14. Study case 3 - CPRM (Gcp, Kcp) with nonideal s2cp and ωc = 2π100rads−1. (a) tracking error and (b) output in a long time
scale; zoom of (c) tracking error and (d) output.

system. The modeling of these nonidealities allows to analyze the closed-loop system and to take them into
account to design a controller. Simulation results emphasized the effectiveness of the proposed method.

The final message of this paper is that if there are practical constraints imposing the use of a phasor architecture,
the nonidealities of the s2cp block have to be taken into consideration, guaranteeing that the design specifications
are verified in the real implementation.
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APPENDIX

A. Proof of the Property 3 (Theorem 3)

Proof. Please note that, by Theorem 2, the existence of a controller K such that ‖P?K‖∞ < γ is equivalent to
the existence of the matrices R = RT and S = ST such that

[
�
]T
⊥




SAT
P +APS Bw SCT

z
BT

w −γI DT
zw

CzS Dzw −γI


[BT

u 0 DT
zu
]
⊥ ≺ 0, (13)

[
�
]T
⊥




AT
PR+RAP RBw CT

z
BT

wR −γI DT
zw

Cz Dzw −γI


[Cy Dyw 0

]
⊥ ≺ 0 (14)

and
[

R I
I S

]
� 0. (15)

In its turn, again by Theorem 2, the existence of K˜ such that ‖Pcp ?K˜‖∞ < γ is equivalent to the existence of
matrices R˜ = R˜

T and S˜= S˜
T such that

[
�
]T
⊥




S˜AT
Pcp

+APcpS˜ Bwcp S˜C
T
zcp

BT
wcp −γI DT

zwcp

CzcpS˜ Dzwcp −γI



[
BT

ucp 0 DT
zucp

]
⊥
≺ 0, (16)

[
�
]T
⊥




AT
Pcp

R˜+R˜APcp R˜Bwcp CT
zcp

BT
wcpR˜ −γI DT

zwcp

Czcp Dzwcp −γI


[Cycp Dywcp 0

]
⊥ ≺ 0 (17)

and
[

R˜ I
I S˜

]
� 0. (18)

For completeness, we recall that




APcp Bucp Bwcp

Cycp 0 Dywcp

Czcp Dzucp Dzwcp


=




AP ω0I Bu 0 Bw 0
−ω0I AP 0 Bu 0 Bw

Cy 0 0 0 Dyw 0
0 Cy 0 0 0 Dyw

Cz 0 Dzu 0 Dzw 0
0 Cz 0 Dzu 0 Dzw



.

(Sufficient part: K⇒ K˜) Let us assume that there exists K such that ‖P?K‖∞ < γ . Then, we take the solutions
of (13), (14) and (15) and build the matrices S˜= diag(S, S) and R˜ = diag(R, R). These matrices are solution of
(16), (17) and (18) since, after developing (16) and (17) the dependencies on ω0 are canceled out, and we end
up with the equations (13)–(15) repeated in a block diagonal structure.

(Necessary part: K˜ ⇒ K) Now, assume that there exists K˜ such that ‖Pcp ?K˜‖∞ < γ . By partitioning

S˜=
[

S1 S2
ST

2 S3

]
,



the inequality (16) can be rewritten as

N T




ΠS1 ΠS2 Bw 0 S1CT
z S2CT

z
ΠT

S2 ΠS3 0 Bw ST
2 CT

z S3CT
z

BT
w 0 −γI 0 DT

zw 0
0 BT

w 0 −γI 0 DT
zw

CzS1 CzS2 Dzw 0 −γI 0
CzST

2 CzS3 0 Dzw 0 −γI




N ≺ 0 (19)

with
ΠS1 = APS1 +S1AP

T +ω0(S2 +ST
2 )

ΠS2 = APS2 +S2AP
T +ω0(−S1 +S3)

ΠS3 = APS3 +S3AP
T −ω0(S2 +ST

2 )

N =

[
BT

u 0 0 0 DT
zu 0

0 BT
u 0 0 0 DT

zu

]

⊥
.

Then, by permuting the lines and columns of (19), it is rewritten as
[
N T

B MS1NB N T
B MS2NB

N T
B MT

S2NB N T
B MS3NB

]
≺ 0 (20)

with
NB =

[
BT

u 0 DT
zu
]
⊥

MS1 =




ΠS1 Bw S1CT
z

BT
w −γI DT

zw
CzS1 Dzw −γI




MS2 =




ΠS2 0 S2CT
z

0 0 0
CzS2 0 0




MS3 =




ΠS3 Bw S3CT
z

BT
w −γI DT

zw
CzS3 Dzw −γI


 .

Since the matrix of (20) is negative definite, the sum of its main diagonal blocks is also negative definite, i.e.,

N T
B (MS1 +MS3)NB ≺ 0.

Then, let us introduce M̃S =
1
2 (MS1 +MS3) and apply the same procedure to (17) and (18). We obtain

N T
B M̃SNB ≺ 0

N T
C M̃RNC ≺ 0
[

R̃ I
I S̃

]
� 0



with
NC =

[
Cy Dyw 0

]
⊥

R̃ = 1
2 (R1 +R3)

S̃ = 1
2 (S1 +S3)

M̃R =




AT
P R̃+ R̃AP R̃Bw CT

z
BT

wR̃ −γI DT
zw

Cz Dzw −γI




M̃S =




S̃AT
P +APS̃ Bw S̃CT

z
BT

w −γI DT
zw

CzS̃ Dzw −γI




This means that R̃ and S̃ are solution of the inequalities (13)–(15) of Theorem 2. Hence, this theorem ensures
that there exists a controller K for P defined in (8), such that ‖P?K‖∞ < γ .
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