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Decay of solutions to a water wave model with a nonlocal viscous term

S. Dumont1, O. Goubet2, I. Manoubi3

Abstract

We update here the results on the decay of solutions to a nonlocal water wave equation that

reads

ut + ux + 1√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + uux = uxx ,

where
1√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds is the Riemann–Liouville half-order derivative.

Keywords Nonlocal water wave equation · Decay rate of solutions

Mathematics Subject Classification 35B40 · 35Q35

1 Introduction

1.1 Themodeling

This article addresses some issues related to the decay rate of solutions to a one-direction

asymptotical water wave model with a nonlocal viscous term.

Without viscosity, it is now standard to derive asymptotical models as the Korteweg-de

Vries equation or the Boussinesq system from the Euler equations [2]. Taking into account

the viscosity is challenging. In the last decades, many studies partakes of this modeling: the

first model is due to T. Kakutani and K. Matsuuchi in their article [16], more recently, Liu

and Orfila [20], and Dutykh and Dias [8] have independently derived viscous asymptotic

models for transient long-wave propagation on viscous shallow water.
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In this article we focus on a single equation for a one-way wave equation that was inves-

tigated in [22], where fractional term is described by the Riemann–Liouville half derivative.

This equation reads

ut + ux + 1√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + uux = uxx . (1.1)

Here, for the sake of convenience, the physical constants are set equal to 1. The nonlocal

term provides both diffusion and dispersion to the equation [5,22].

On the other hand, diffusion equations with non local operators are of great interest for

mathematicians and also for other scientific communities (see [7,12,13,15,23–25] and the

references therein).

The initial value problem for (1.1) was previously addressed in [11,22]; we know

that for initial data u0 in L2(R), there exists a unique solution u ∈ C(R+; L2
x (R)) ∩

C1/2(R+; H−2
x (R)). Besides, for more regular initial data u0 ∈ S(R) in the Schwartz class,

the solution belongs to C1/2(R+; S(R)). The solution map t �→ u(t) is C1 but at t = 0+.

In this article we are interested in the decay rate of solutions towards 0. We prove that any

solution converges towards 0 with the expected decay rate; this is an improvement over [22]

where a smallness assumption on the initial data was required.

On the other hand, the numerical investigation of this decay rate has also received interest also

in the last decade. Many authors have provided different numerical methods to approximate

the nonlocal fractional operator [5,9,10,17,22]. Some have proposed the so-called diffusive

realization of fractional operators. This alternative provides a local representation of the

fractional operator as a system of linear differential equation. Several applications of this

approach can be found in [1,13,23,26]. We use here this diffusive approach to prove theoretical

results. Due to uniqueness, we will use in the sequel that a solution of the original equation

with u0 in L2(R) is solution to the diffusive representation and vice-versa.

This article is organized as follows. We introduce a suitable diffusive representation for the

equation, we state the main theoretical result and we proceed to the proof. We complete this

article by numerical computations that illustrate our theoretical results.

1.2 Statement of the result

The aim of this article is to answer a question left open in [22]. Concerning the decay rate

of solutions, the third author proved that if ‖u0‖L1(R) is small enough, then the solution u

satisfies the decay estimate

max(1, t3/4)‖u(t, ·)‖L2
x (R) + max(t1/2, t)‖u(t, ·)‖L∞

x (R) ≤ C .

However, this result is proved assuming a smallness condition on the initial data. We relax

here this assumption first for non negative initial data u0 ≥ 0, and then conclude by a

comparison result. Our main result states as follows

Theorem 1.1 Assume u0 in L1(R)∩ L2(R). Then there exists C(u0) such that for any t ≥ 0,

max(1, t3/4)‖u(t, ·)‖L2
x (R) + max(t1/2, t)‖u(t, ·)‖L∞

x (R) ≤ C(u0). (1.2)

We provide here a complete proof that relies on an ad hoc representation of the solution.
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1.3 A diffusive representation of the solution

Introducing a new variable σ ≥ 0, for a given function u(t, x) that depends on t and on x

(the variable x will be omitted in the remaining of this section) we introduce

ϕ(t, σ ) =
∫ t

0

u(s) exp(−σ 2(t − s))ds. (1.3)

Then the half-integral of a function u reads

I u(t) = 1√
π

∫ t

0

u(s)√
t − s

ds = Ŵ(ϕ)(t) = 2

π

∫ +∞

0

ϕ(t, σ )dσ. (1.4)

Hence equation (1.1) reads also

ut + ux + Ŵ(ϕt ) + uux = uxx ,

ϕt + σ 2ϕ = u,
(1.5)

supplemented with initial data (u0, 0).

We emphasize (see [22]) that there is no uniqueness for the diffusive representation. The

representation above is convenient for our purpose.

1.4 Outline of the proof andmathematical framework

The proof of Theorem 1.1 relies on two arguments. The first one is a comparison principle

between solutions. The second one is the proof of the main theorem for non negative solutions.

Throughout the article, the variable x is omitted for the functions u and ϕ. We set

|u|2
L2 =

∫

R

u2(x)dx,

for functions of one variable and

||ϕ||2
L2 =

∫

R×[0,+∞)

ϕ2(σ, x)dxdσ,

for functions of two variables. Here the third variable t is omitted.

2 Proof of themain theorem

2.1 A comparison result

Our first milestone is to prove a comparison result between solutions.

Proposition 2.1 Consider u0 ≤ v0 two ordered initial data that satisfy the assumptions of

Theorem 1.1, i.e. u0, v0 in L1(R) ∩ L2(R). We have that u(t, x) ≤ v(t, x) for any t > 0 and

a.e. x ∈ R.

Proof We prove the comparison result first for initial data in the Schwartz’s class S(R) and

then the final result for general initial data by a limiting argument. This limiting argument is

standard and then omitted for the sake of conciseness.
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We now consider u0(x) < v0(x) two (strictly) ordered initial data in the Schwartz class.

Consider u, v the corresponding solutions and ϕu, ϕv the associated diffusive representation

of solutions. Consider w = v − u and ψ = ϕv − ϕu . Introduce

T = inf
{

t > 0; inf
x

w(t, x) < 0
}

. (2.1)

We prove that T = +∞ arguing by contradiction. Assume that T < +∞. There exists x0 in

R such that inf x w(T , x) = w(T , x0) = 0 and then wx (T , x0) = 0, wxx (T , x0) ≥ 0. Since

the solution is smooth away from the boundary t = 0 we also have wt (T , x0) ≤ 0.

On the other hand we infer from the first equation in (1.5) that

Ŵ(ψt )(T , x0) = −wt (T , x0) + wxx (T , x0)

+ wx (T , x0)

(

1 + u(T , x0) + v(T , x0)

2

)

+ w(T , x0)

(

ux (T , x0) + vx (T , x0)

2

)

≥ 0.

(2.2)

Besides, since w(t, x) ≥ 0 for t ≤ T , then ψ(T , x, σ ) ≥ 0. Therefore the second

equation in (1.5) yields ψt (T , x0, σ ) = −σ 2ψ(T , x0, σ ) ≤ 0 for any σ ≥ 0. Gathering

this inequality with (2.2) we have that Ŵ(ψt )(T , x0) = 0. Therefore Ŵ(σ 2ψ)(T , x0) = 0,

and then ψ(T , x0, σ ) = 0 for any σ . This yields w(t, x0) = 0 for any t ≤ T then the

contradiction. ⊓⊔

Choosing 0 ≤ u0 in Proposition 2.1 yields

Corollary 2.2 Assume u0 in L1(R) ∩ L2(R) and u0 ≥ 0 then u(t, x) ≥ 0 for almost every

x ∈ R and t > 0.

2.2 Decay of the L1 norm

Proposition 2.3 Assume u0 in L1(R) ∩ L2(R). We have

|u(t)|L1 ≤ min

(

1,
1√
t

)

|u0|L1 . (2.3)

Proof In fact we just have to prove the result for u0 ≥ 0 Since
u0−|u0|

2
≤ u0 ≤ u0+|u0|

2
,

then the corresponding solutions starting from these three initial data remain ordered, say

v ≤ u ≤ w. We prove the decay estimate for −v and w that are non negative, and conclude.

Assume then u0 ≥ 0. We now know that the solution remains non negative for all time.

Integrating in x (and in t) the Eq. (1.1) we have, setting m(t) =
∫

R
u(t, x)dx that is the L1

norm

m(t) + I m(t) = m(0). (2.4)

Appealing Proposition 1 in [22] we know that the solution of (2.4) reads

m(t) =
(∫ +∞

t

et−s

√
s

ds

)

m(0).

This completes the proof of the Proposition. ⊓⊔
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2.3 Revisiting the Schonbek’s splittingmethod

Consider a solution (u, ϕ) to (1.5). Introduce the energy functional

E(t) = |u(t)|2
L2 + 2

π
||σϕ||2

L2 . (2.5)

Multiplying the first equation in (1.5) by u and the second one by 2
π
ϕt and summing the

resulting equations lead to the energy dissipation mechanism

d

dt
E(t) + 2|ux (t)|2L2 + 4

π
||ϕt ||2L2 = 0. (2.6)

This implies that t �→ |u(t)|L2 remains bounded by |u0|L2 . We now state and prove a first

result

Lemma 2.4 There exists a numerical constant c such that for any t ≥ 0

t E(t) ≤ c

(

|u0|2L1 +
(∫ t

0

|u(s)|
4
3

L2 ds

)
3
2

)

. (2.7)

Proof We begin with the identity

d

dt
(t E(t)) = E(t) − 2t |ux |2L2 − 4t

π
||ϕt ||2L2 . (2.8)

Dropping the last term, we infer from this

d

dt
(t E(t)) ≤ (|u(t)|2

L2 − 2t |ux |2L2) + 2

π
||σϕ||2

L2 . (2.9)

We now bound by above the last term in the right hand side of (2.9). Due to Minkowski’s

inequality, equality (1.3), and Fubini-Tonelli theorem we have

||σϕ||L2 ≤
∫ t

0

|u(s)|L2

(∫ ∞

0

σ 2 exp(−2σ 2(t − s))dσ

)
1
2

ds (2.10)

using that
∫ ∞

0 x2 exp(−ax2)dx =
√

π

4a
3
2

, we deduce from (2.10)

||σϕ||L2 ≤ π
1
4 2− 7

4

∫ t

0

|u(s)|L2

(t − s)
3
4

ds. (2.11)

We now tackle the first term in the right hand side of (2.9). Proceeding as in the classi-

cal Schonbek’s argument we have, appealing Plancherel’s theorem and the inverse Fourier

transform

|u(t)|2
L2 − 2t |ux |2L2 = 1

2π

∫

R

(1 − 2t |ξ |2)|û(t, ξ)|2dξ

≤ 1

2π

∫

2t |ξ |2≤1

|û(t, ξ)|2dξ ≤ 4π |u(t)|2
L1

∫ 1√
2t

0

dξ.

(2.12)

Combining this with the L1 estimate (2.3) leads to

|u(t)|2
L2 − 2t |ux |2L2 ≤

2
√

2π |u0|2L1√
t

min

(

1,
1

t

)

. (2.13)
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It is worth to point out that the right hand side of (2.13) is integrable for t ∈ [0,+∞).

Gathering these inequalities and integrating in time (2.9) yields

t E(t) ≤ 8
√

2π |u0|2L1 + π− 1
2 2− 5

2

∫ t

0

(

∫ τ

0

|u(s)|L2

(τ − s)
3
4

ds

)2

dτ. (2.14)

Besides, we recall the Hardy–Littlewood–Sobolev inequality (see Sect. 4.3 in [19] or Theorem

9.13 in [27]) that reads: there exists a constant cH L S (see [19] for the precise value of this

constant) such that

||
∫

R

|g(s)||s − t |− 3
4 ds||L2

t
≤ c2

H L S ||g||2
L

4
3

. (2.15)

Applying this to the function that is g(s) = |u(s)|L2 if s ∈ (0, t), and g(s) = 0 elswhere

leads to
∫ t

0

(

∫ τ

0

|u(s)|L2

(τ − s)
3
4

ds

)2

dτ ≤ c2
H L S

(∫ t

0

|u(s)|
4
3

L2 ds

)
3
2

. (2.16)

This completes the proof of the Lemma. ⊓⊔

We now prove the next milestone

Corollary 2.5 Assume that u0 in L1(R) ∩ L2(R). There exists a numerical constant c such

that

√
t E(t) ≤ c|u0|2L1∩L2 .

Proof Here and in the sequel |u0|L1∩L2 = |u0|L1 +|u0|L2 . We begin with an a priori estimate

on the L2 norm of the solution. Appealing Gagliardo–Nirenberg inequality (see [3])

|u|L2 ≤ |u|
2
3

L1 |ux |
1
3

L2 . (2.17)

Then using the Hölder’s inequality

∫ t

0

|u(s)|
4
3

L2 ds ≤
(∫ t

0

|u(s)|
8
7

L1 ds

)
7
9
(∫ t

0

|ux |2L2 ds

)
2
9

. (2.18)

Therefore, since the last term in the right hand side is bounded by C(u0) = (
|u0|2

L2

2
)

2
9 thanks

to (2.6), using (2.3)

∫ t

0

|u|
4
3

L2 ≤ 2− 2
9 |u0|

4
9

L2 |u0|
8
9

L1

(∫ t

0

min

(

1,
1

s
4
7

)

ds

)
7
9

. (2.19)

since (
∫ t

0 min(1, 1

s
4
7

)ds)
7
9 ≤ ( 7

3
)

7
9 t

1
3 , plugging this into Lemma 2.4 leads to

t E(t) ≤ c|u0|2L1∩L2(1 +
√

t); (2.20)

Since we know by (2.6) that E(t) ≤ |u0|2L2 , gathering this with (2.20) completes the proof

of the Corollary. ⊓⊔
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2.4 Completing the proof of the theorem

We already know that t �→ |u(t)|2
L2 is bounded by |u0|2L2 . We know from Corollary 2.5 that

for large t this function decays as t−
1
4 . Before improving this decay rate, we prove a first

decay estimate for the L∞ norm of the solution.

Using the results in [22] we know that there exists two functions K (t)(x) and N (t)(x)

such that, where ∗ stands for the convolution in the x variable

u(t) = K (t) ∗ u0 +
∫ t

0

N (t − s) ∗ u2(s)ds. (2.21)

We also have that there exists c a numerical constant such that (see [22])

max(1,
√

t)
(√

t |K (t)|L∞ + |K (t)|L1

)

+
(√

t |N (t)|L1 + t |N (t)|L∞
)

≤ c. (2.22)

Therefore

|u(t)|L∞ ≤ |K (t)|L∞ |u0|L1 +
∫ t

0

|N (t)|L3 |u(s)|2
L3 ds

≤ c|u0|L1 min(
1√
t
,

1

t
) + c

∫ t

0

(t − s)−
5
6 |u(s)|

4
3

L2 |u(s)|
2
3

L∞ds.

(2.23)

Introducing the auxiliary function A(t) =
√

t |u(t)|L∞ we then infer from (2.23) and from

the L2 estimate in Corollary 2.5

A(t) ≤ c|u0|L1 + c|u0|
4
3

L1∩L2

(

∫ t

0

√
tds

(t − s)−
5
6 s− 2

3

)

(sup
s≤t

A(s))
2
3 . (2.24)

We easily infer from (2.24) that A(t) ≤ c|u0|2L1∩L2 that is the good decay estimate for small

t , i.e. |u0|L1∩L2 t−
1
2 .

We now proceed to the decay rate for large t for the L2 norm of the solution. Interpolating

the L1 and the L∞ decay rate we have that

|u(t)|2
L2 ≤ |u(t)|L1 |u(t)|L∞ ≤ c|u0|2L1∩L2 t−1; (2.25)

we improve this new estimate. We infer from (2.21)–(2.22)

|u(t)|L2 ≤ |K (t)|L2 |u0|L1 +
∫ t

0

|N (t)|L2 |u(s)|2
L2 ds

≤ c|u0|L1 t−
3
4 + c

∫ t

0

(t − s)−
3
4 |u(s)|2

L2 ds.

(2.26)

The first term in the right hand side of this inequality has the good decay rate. We focus

on the second one. Due to Corollary 2.5 and using that |u(t)|L2 remains bounded

∫ t

0

(t − s)−
3
4 |u(s)|2

L2 ds ≤ c̃|u0|2L1∩L2

∫ t

0

(t − s)−
3
4 min

(

1,
1

s

)

ds. (2.27)

This last integral splits as (for t ≥ 1)

∫ 1

0

(t − s)−
3
4 ds +

∫ t

1

(t − s)−
3
4

ds

s
≤ 1

(t − 1)
3
4

+ t−
3
4

∫ 1

1
t

ds

s(1 − s)
3
4

. (2.28)
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Hence for t ≥ 2 there exists a numerical constant c such that

∫ 1

0

(t − s)−
3
4 ds +

∫ t

1

(t − s)−
3
4

ds

s
≤ c

1 + log t

t
3
4

. (2.29)

We now get rid of the extra term log t . From the previous extimates we have improved

(2.25) as |u(t)|L2 ≤ C(u0)t
− 5

8 for instance. Using this in (2.27) and performing the same

computations as in (2.27)–(2.29) leads to the good decay estimate (without the extra log t

term).

It remains to prove the large t estimate for the L∞ norm of the solution. We set B(t) =
t |u(t)|L∞ . We infer from (2.21)–(2.22)

B(t) ≤ c

(

|u0|L1 + t

∫ 1

0

|N (t − s)|L∞ |u(s)|2
L2 ds

+t

∫ t

1

|N (t − s)|L2 |u(s)|L2 |u(s)|L∞ds

)

.

(2.30)

The second term in the right hand side of (2.30) is bounded by above by c t
t−1

|u0|2L2 and

then bounded for large t . The third term in the right hand side of (2.30) is bounded by above

by c|u0|2L1∩L2

∫ t

1
tds

(t−s)
3
4 s

5
4

ds, using the L2 estimate in Theorem 1.1 and the previous bound

in Ct−
1
2 for the L∞ norm of u. This completes the proof of the theorem

3 Numerical results

3.1 The numerical scheme

Here we consider the generalized model

ut + ux +
√

ν√
π

∂

∂t

∫ t

0

u(s)√
t − s

ds + γ uux = αuxx , (3.1)

where ν, γ and α are non-negative parameters. Using the diffusive realization of the half-order

derivative (1.5), the model (3.1) is rewritten as a PDE-ODE coupled system as follows

⎧

⎨

⎩

∂t u(t, x) + ∂x (u + γ
2

u2) = − 2
√

ν

π

∫ ∞
0 (u(t, x) − σ 2ϕ(t, x, σ ))dσ

+αuxx (t, x), t > 0, x ∈ R

∂tϕ(t, x, σ ) = −σ 2ϕ(t, x, σ ) + u(t, x), t > 0, x ∈ R, σ ≥ 0,

(3.2)

supplemented with the initial conditions

∀x ∈ R, ∀σ ≥ 0, ϕ(0, x, σ ) = 0,

∀x ∈ R, u(0, x) = u0(x).

Following [6], we use the Gauss-Jacobi quadrature method with Nm points to approximate

the generalized integral in (3.2). We note by wi the weights and by σi the nodes of the

8



Gauss-Jacobi quadrature method. We get

D1/2u(t, x) ≃
Nm
∑

i=1

wi

(

2

π
u(t, x) − σ 2

i ϕ(t, x, σi )

)

=
Nm
∑

i=1

wi

(

2

π
u(t, x) − σ 2

i ϕi (t, x)

)

.

We note by U = (u, ϕ1, . . . , ϕNm )T the vector of (Nm + 1) unknowns, by

F(U ) = (u + γ

2
u2, 0, . . . , 0)T ,

and finally

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 2
√

ν

π

∑Nm

i=1 wi
2
√

ν

π
w1σ

2
1 · · · · · · 2

√
ν

π
wNm σ 2

Nm

1 −σ 2
1 0 · · · 0

1 0 −σ 2
2

. . . 0
...

...
. . .

1 0 · · · · · · −σ 2
Nm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus, the problem (3.2) is written in the following form

∂tU + ∂xF(U ) = S(U ) + G1∂
2
x U , (3.3)

where G1 is a diagonal matrix of order Nm + 1. Following [6], we use a splitting method to

provide numerical results. Let t > 0, for all n ≥ 0, we recall that tn = nt and

U n(x) ≈ U (nt, x).

From equation (3.3), we consider the propagation equation

∂tU + ∂xF(U ) = G1∂
2
x U , (3.4)

and the diffusive equation

∂tU = S(U ). (3.5)

We note by Ha (respectively, Hb) the discrete operator of the solution of (3.4) (respectively,

the solution of (3.5)). Then a Strang splitting method of order 2 (see for example [14,18])

between tn and tn+1 is used to solve respectively (3.4) and (3.5) as follows

U (1) = Hb

(

t

2

)

U n,

U (2) = Ha (t) U (1),

U n+1 = Hb

(

t

2

)

U (2).

(3.6)

Here, the constructed operators Ha and Hb are stable and of order 2. Then, the scheme (3.6)

provides an approximation of order 2 in time to the problem (3.3). Now, let t ∈ [0, T ],
x ∈ [0, L]. We consider periodic boundary conditions i.e u|x=0 = u|x=L . Let t > 0 be a

fixed time step and h > 0 be a fixed space step. We set for all n = 0, . . . , N , tn = n t and

for all j = 1, . . . , K , x j = jh. We use the following notations:

∀ i = 1, . . . , N , un(x) ≈ u(nt, x), ψn
i (x) ≈ ψ(nt, x, σi ).
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Fig. 1 Error of the time

discretization
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For the propagation Eq. (3.4), we use a Crank–Nicolson scheme for the linear part and Adams-

Bashforth scheme for the nonlinear part. For the space discretization, we use standard Fourier

methods. Hence, the scheme is given by

ûn+1 − ûn

t
= ûn+1 + ûn

2
(−αξ2 − iξ)

− iγ ξ

2

(3(̂un)2 − ̂(un−1)2)

4
.

(3.7)

Then, for the diffusion equation (3.5), the exact solution is given by

Hb

(

t

2

)

U = eS t
2 U . (3.8)

We note that the scheme (3.7) as well as the Strang splitting method are of order two. It

follows that (3.6) is of order 2.

3.2 Numerical results

In the sequel, we present the numerical results. To this end, we fix the parameters values to

ν = 1 and α = γ = 0.5. This case is theoretically investigated here and in [22]. Let us notice

that in this article, contrarily to [6], the dispersive term βuxxx is not taken into account as in

the present theoretical study and we have shown in [6] that the magnitude of the constant β

has a strong influence on the decay rate of the solution for large times.

Unfortunately, an exact solution of (3.1) is not known, but a numerical study of the

convergence of the scheme is provided in [22]. Then, in order to numerically investigate the

decay rate of the solutions for large times, we choose an initial data u0 that can provide an

exact KdV soliton for well chosen parameters (see [4]). Moreover, we choose an interval,

both in time and in space, such that the solution remains small at the boundary in order to

have a numerical solution (on a finite domain) that correctly approximates the exact solution

that exists on the whole real line R. Actually, we have that the initial data u0 is in the space

L1(R) ∩ L2(R).

We denote by x0 the middle of the space interval. Then the initial data reads

u0(x) = 0.32 ∗ sech2(0.4 ∗ (x − x0)). (3.9)

10



Fig. 2 Error in terms of grid

points Nm

N
m

91715131
L

2
-e

rr
o

r
10-8

10-7

10-6

10-5

|| En(N
m

) ||
2

line with slope -11

Fig. 3 Numerical solution when

ν = 1, α = γ = 0.5 and

h = t = 0.1
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We run the computations for the numerical scheme (3.7)–(3.8) on the space interval [0, L]
with L = 800. Moreover, we take the space step h = 0.1 and Nm = 20. In order to

numerically confirm the order of the convergence in time of the scheme (3.7)–(3.8), we take

T = 100, we denote by un
Ref the reference solution when t = 0.05 and by un the numerical

solution for different time steps t . We denote by En(t) = ‖un
Ref − un‖2 the L2−error

due to the time discretization of the solution. We illustrate in Fig. 1 the error En in terms

of t in the log-log scale. We observe that, as expected, the error En decreases when t

decreases. Moreover, the measured values are close to a straight line with slope 2.24. This

test confirms that the numerical scheme (3.7)–(3.8) is of order 2 in time. In the sequel, we

provide our simulations with the time step t = 0.1.

In order to check the convergence of the scheme (3.7)–(3.8) in terms of the Gauss-Jacobi

quadrature points Nm , we denote by un
Ref the reference solution when Nm = 20 and by un

the numerical solution for different values of Nm . We denote by En(Nm) = ‖un
Ref − un‖2

the L2−error in terms of the quadrature points. We display the results in Fig. 2. As expected,

we see that the error decreases when the number of grid points Nm increases. In addition, we

observe that the measured values are close to a straight line with slope −11. Moreover, we

observe that the error En is less that 10−6 from Nm = 15. Other numerical simulations are
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Fig. 4 a L2-decay rate of the solution, b L∞-decay rate of the solution when ν = 1, α = γ = 0.5 and

h = t = 0.5

done and we made similar observations (see also [21,22]). Hence, we will use 15 grid points

in the remaining of this article.

In the sequel, we use the numerical scheme (3.7)–(3.8) with the previous parameters values

on a large time interval [0, T ] = [0, 1000]. Numerical results are displayed in Figs. 3 and 4.

It can be observed that the numerical solution remains non negative. This matches the results

of Corollary 2.2. Moreover, the decay rates of the numerical solution provided in Fig. 4 in

norm L2 and in norm L∞ matches the theoretical results of Theorem 1.1 very precisely.

Indeed, one can observe that the relative error between the theoretical and the numerical L2

decay rate (diffusion) is less than 0.53% whereas it is less than 0.8% the the decay rate in

the L∞-norm (dispersion).
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