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Abstract Prediction of crack propagation kinetics in the components of nuclear plant primary circuits under-

going Stress Corrosion Cracking (SCC) can be improved by a re�nement of the SCC models. One of the steps

in the estimation of the time to rupture is the crack propagation criterion. Current models make use of macro-

scopic measures (e.g. stress, strain) obtained for instance using the Finite Element Method. To go down to the

microscopic scale and use local measures, a two-step approach is proposed. First, synthetic microstructures

representing the material under speci�c loadings are simulated, and their quality is validated using statistical

measures. Second, the shortest path to rupture in terms of propagation time is computed, and the distribution

of those synthetic times to rupture is compared with the time to rupture estimated only from macroscopic

values. The �rst step is realized with the cross-correlation-based simulation (CCSIM), a multipoint simulation

algorithm that produces synthetic stochastic �elds from a training �eld. The Earth Mover’s Distance is the

metric which allows to assess the quality of the realizations. The computation of shortest paths is realized

using Dijkstra’s algorithm. This approach allows to obtain a re�nement in the prediction of the kinetics of

crack propagation compared to the macroscopic approach. An in�uence of the loading conditions on the dis-

tribution of the computed synthetic times to rupture was observed, which could be reduced through a more

robust use of the CCSIM.

PACS. 02.50.Ey – 02.70.Uu – 46.50.+a – 46.50.+g – 81.40.Np

1 Introduction
Stress corrosion cracking (SCC) is a major problem in the

nuclear industry. It is one of the main environmental degra-

dation phenomena a�ecting the materials of pressurized

water reactors (PWR) [51]. In particular, the integrity of

primary circuit, where �ows the hot primary water (320°C,

150 bar), is at stake since operational feedbacks revealed

a potential susceptibility to SCC of various primary ma-

terials: austenitic stainless steels [21], nickel based alloys

[36,1] and their weld joints [32,26]. As experienced in the

past, such degradation can prompt severe consequences,

hence Primary Water Stress Corrosion Cracking (PWSCC)

has been getting more and more attention for the last 40

years.

SCC mechanisms require the synergistic e�ects of me-

chanical, metallurgical and environmental factors [47]. To

be more speci�c, those e�ects taken into account individu-

ally may not be harsh enough to damage the material, but

they jointly can lead to great damages and failure. Many

SCC models have been developed so far, that can be divided

into two classes. Quantitative empirical models that try to

predict initiation and crack growth rate do not describe

physical mechanisms, and su�er from a lack of accuracy.

By contrast, models describing the possible involved phys-

ical mechanisms responsible for degradation are usually

only qualitative [50,38]. EDF R&D is developing a multi-

physics models of PWSCC, called the ‘local’ model [15,16,

a Present address: Ecole Centrale de Nantes, 1 rue de la Nöe

44300 Nantes, France

48]. The ambition of this model, whose main features are

discussed below, is to deliver quantitative values usable for

industrial end-users (e.g. crack depth vs estimated time),

based on an explicit description of the di�erent stages of

SCC (incubation, initiation and propagation).

The main bottleneck of such local approaches lies in

the costly sampling of experimental microscopic �elds re-

quired. In particular, the experimental capture of materials

variabilities such as grain morphologies, precipitates and

carbides distribution is challenging [40]. One solution is

to consider the microstructures as random �elds, and to

simulate them through statistical methods, but it is quite a

tricky task. For example, the approach proposed by [3] has

been focused on a heuristic of the path of the crack, based

on randomly simulated microstructures using Poisson-Voronoi

tessellations [39]. However, such methods lead to a binary-

like space distribution, where a pixel belongs either to a

grain boundary or to a grain with a speci�c orientation.

This prevents the crack to be intragranular, yet this prop-

agation mode is physically admissible and should not be

discarded. Moreover, the experimental maps available in

our work are continuous �elds. Using Voronoi tessellations

would presumably deteriorate this data richness. There-

fore, a tesselation-type modelling is not appropriate here.

Another approach, similar to the one proposed in this pa-

per, consists in building graphs based on experimental im-

ages [23]. Fracture mechanics considerations, by means of

minimizing a fracture energy criterion, are used to set the

graph vertices values or weights. As interesting as this ap-

proach is, it cannot be applied to SCC since mechanics
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only cannot lead to damage in those conditions, as men-

tioned before. Finally, in the local model developed by EDF

R&D and introduced before, InterGranular SCC (IGSCC) is

simulated by an explicit local coupling between mechani-

cal, oxidation and fracture parameters. It is assumed that

IGSCC propagation may occur when the local opening stress,

acting on a weakened oxidized grain boundary [20], reaches

a critical value [9,5]. As a result, realistic trends were re-

produced on an aggregate of few grains (~30). Neverthe-

less, it was revealed by [14] that the main limitation of

such an approach is the prohibitive computational time, as

the oxidation-mechanics coupling requires accurate suc-

cessive re�nements of the mesh where the oxidation oc-

curs (i.e. 1 µm3
at the grain boundary). All those methods

are then discarded for the prediction of crack propagation

of structural components involving SCC.

In this paper, we propose a complementary approach

where (i) the microstructure is simulated through the cross-

correlation-based simulation (CCSIM) [44,45], a geostatistics-

based algorithm, and (ii) the kinetics of crack propagation

is described as an empirical law that reproduces laboratory

observations. In this approach, local parameters are still

considered, but the coupling with oxidation is not explicit

anymore. More precisely, the oxidation is incorporated in

the propagation law. As a precious gain for industrial end-

users, this assumption allows to compute cracking scenar-

ios at large scale which are closer to real industrial com-

ponents. The methodology is applied to the simulation of

synthetic plastic strain maps εp. This choice was motivated

by the following considerations:

– The plastic strain εp is a sensitive parameter: local plas-

tic strain, which can be introduced in components by

cold work during fabrication and installation was, found

to play a signi�cant role in both the initiation and the

growth of SCC cracks in PWR primary coolant water

[22], in particular where heterogeneities are signi�cant

(heat a�ected zone, inclusions, surfaces after machin-

ing or peening, etc.).

– Some inhomogeneities are observed in industrial com-

ponents: plastic strain levels estimations in represen-

tative mock-ups of industrial components revealed a

possible increase of plastic strain near fusion line of

weldings.

– Some time-consuming data have been collected: εp can-

not be directly measured, except at the surface where

gauges were deposited prior to deformation. Anyway,

di�erent post-mortem techniques o�er the possibility

to indirectly estimate plastic strain at di�erent scales:

microhardness (HV) investigates the scale of grain ag-

gregates, and Electron BackScatter Di�raction (EBSD)

analyses, which are obtained on a Scanning Electron

Microscope (SEM), can give access to local misorien-

tations of the material. For this second method, mi-

crostructural data are processed as Kernel Average Mis-

orientation (KAM) patterns [37] that describe the crys-

tal misorientation �elds.

In the present paper, the global approach is presented

(Section 2), as well as the use of the CCSIM to simulate ran-

dom microstructures from experimental EBSD maps (Sec-

tion 3). Then the use of Dijkstra’s algorithm to �nd crit-

ical propagation paths for the crack is presented (Section

4). Section 5 provides conclusions and perspectives of this

work.

2 The crack propagation issue

In order to validate the SCC model on lab specimens (or to

evaluate it on realistic industrial components) with a global

3D view and an improved added value of data analyses, a

digital tool named Code_Coriolis has been developed [13].

It consists in a �nite element modeling post analysis mod-

ule. The inputs are the geometry of the piece (modelled

with a CAD software), the mesh of the piece, SCC mod-

els, and the boundary conditions (surfaces in contact with

water and parameters of water). From these information,

the tool computes the most probable path of the crack, and

can display several outputs: a 3D map of crack initiation

probabilities, a 3D view of the crack path and the kinetics

of the crack propagation (crack depth versus time), etc.

Figure 1 summarizes the principle used in Code_Coriolis

to compute the propagation of a crack: at instant t, the

crack tip is at a given node, and its neighbouring nodes are

questioned (Figure 1b). Through mechanical calculations

(i.e. the maximum crack propagation speed between two

nodes), the code determines the most critical node to which

the crack can move (Figure 1c), then the crack advances to

this node (Figure 1d). The process is repeated at instant

t + 1 and so on, thus the crack propagation path can be

determined. In the current version of Code_Coriolis, only

macroscopic parameters, such as FEM outputs (stress and

strain �elds) are used. Thus, it uses coarse meshes which do

not account for the ‘local’ model that relies on microscopic

behaviour of the grain boundaries. This work aims at link-

ing the local models with the microscopic behaviours, and

proposing a new propagation criterion that gives the pos-

sibility to estimate the time to rupture of the material while

taking into account the microscopic properties. Note that

the microscopic behavior itself depends signi�cantly on

microscopic properties such as grains joints and their dis-

tribution, which vary within the same material. This work

accounts for the in�uence of microscopic inherent uncer-

tainties (or variability) by introducing a probabilistic esti-

mate of the time to rupture.

For a better understanding of the bene�t of a change

of scale, let us consider a toy example, as presented in Fig-

ure 2. The two upper �gures are KAM maps (details in the

next section), that are assimilated to stress maps for the

sake of simplicity; below are the respective histograms of

their pixel values. Suppose at this point that the code must

choose between two nodes corresponding to the two maps,

then it computes the two propagation times t. Using the

macroscopic criterion presented, the right map would be

chosen since it has a greater mean stress, hence a lower

propagation time. However, the left map shows a relatively

continuous path of high stress (red dash line), which is in-

deed high enough to allow the propagation of a crack faster

than on the other map. In other words, the left map is char-

acterized by higher stresses at connected grain boundaries,

hence has a crack path which is more critical than the right

map.

The proposed approach can be divided into two se-

quential steps, the second using the results of the �rst. This

work is presented in the order given below :

1. Simulate random KAM maps from training images ob-

tained through EBSD. The purpose is to generate syn-

thetic maps that will be used to compute fracture paths,

using an algorithm of geostatistics: the CCSIM. These

simulations will be validated thanks to a criterion com-
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paring their density probability function to that of the

training image, namely the Earth Mover’s Distance.

2. Propose a new method to compute kinetics of cracking

at microscopic scale, that will support the advantage of

the change of scale. By computing the critical cracking

path of an experimental map and its synthetic simu-

lations, a re�nement of the computation of the time

to rupture of the piece against the actual calculus at

macroscopic scale is expected.

(a) Path of crack (red) at the instant t.

(b) ti are computed at the neighbouring

nodes (blue).

(c) The lowest t (green) is chosen.

(d) The crack moves to the chosen node.

Figure 1: Scheme of the computation of the advance of the

crack in Code_Coriolis.

3 Simulation of stochastic microstructures

Random �elds simulation is a major research topic in many

�elds (see for example a review in [6]). It has raised a par-

ticular interest in geostatistics, which is the analysis and

modelling of phenomena using spatially localized data. In

this �eld, the Gaussian random models are particularly use-

ful and easy to manipulate. Once the statistical parameters

(mean, variance, theoretical covariance or variogram, etc.)

obtained, it is possible to simulate random �elds through

classical methods such as the direct simulation [28], the

turning bands methods, etc., most of which are detailed by

[25].

For this work, one of the objectives is to be able to sim-

ulate random �elds which reproduce grain boundaries. In-

deed, all the previously mentioned methods do not allow

the simulation to satisfy this spatial criterion. For exam-

ple, from the simulation of Figure 3 which results from

the identi�ed periodogram used by [17], one can see that

the realization of the random �eld (left) does not exhibit

the grain morphology, as does the FEM result utilized as

the training image (right). As a second example, Figure 4

gives the result obtained by applying a classical geostatis-

tical approach dealing with Gaussian random models (see

for example [11]). As the initial data (shown in Figure 4

(a)) are far from Gaussian, the approach consists in �rst

transforming the variable values into data which follow a

Gaussian distribution (step called “Gaussian anamorpho-

sis”), then to identify the best models for the horizontal

and vertical covariances. Simulations of Gaussian data fol-

lowing this theoretical anisotropic covariance model can

then be obtained by any of the previously mentioned meth-

ods. Finally, a simple inverse Gaussian transformation of

each of these simulations allows to obtain simulations for

the initial variable. By comparing Figure 4 (a) and Figure

4 (b), one can conclude that the length scales of the het-

erogeneities are well reproduced, but the microstructure

appears to be stringy. Use of tessellation approaches al-

lows the capture of the microstructure morphology, but in

return is balanced by the challenge of capturing the data

richness of a continuous random �eld, as analyzed in the

introduction.

In this section, the type of data used (KAM �elds) is

presented �rst, as well as an algorithm formerly developed

for geostatistics applications: the CCSIM. After a brief ex-

planation of its principle and its input parameters, its ap-

plication on the KAM maps is developed. To assess the

quality of a realization, the use of a well known metric is

proposed: the EMD (Earth Mover’s Distance), in order to

compute the distance between the histograms of the train-

ing image and the simulation. The results are discussed and

perspectives are drawn in the end.

3.1 Training dataset and algorithms

3.1.1 Training dataset

The data used in this work areKAM (Kernel Average Mis-
orientation) maps, and are obtained through EBSD (Elec-
tron Back Scatter Di�raction). KAM is a value represent-

ing the local misorientation between a pixel and its neigh-

bours. The KAM map commonly exhibits a greater mis-

orientation at grain boundaries than within the grains [8].
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Figure 2: Illustration of the bene�t of the reduction of scale in the choice of the direction of propagation of the crack.

Here, the right map exhibits a higher mean stress, but the left one shows a critical path of high stresses that goes through

the map (dots).

Figure 3: Simulation of a stress �eld using the identi�ed periodogram (left) and a FEM output utilized as the training

image for the left one - extracted from [17].

This is due to the di�erence in the crystallographic orien-

tations of neighbour grains and their deformations under

loading e�ects.

The data type studied in this work are KAM maps,

where each coordinate is the KAM value at the given

pixel on a 2D Cartesian grid. Figure 5 presents the training

map obtained at the macroscopic strain level ε = 12%, dis-

played as an image for a better understanding of the phys-

ical interpretation of the parameters. One can see that the

high values of KAM are concentrated at the grain bound-

aries, as expected.

The training dataset consists of 13 KAM maps of size

500 × 500, each realized at a di�erent macroscopic strain

ε ∈ {0%, 1%, .., 9%, 10%, 12%, 15%} during a in situ ten-

sile test. Each map was obtained by scanning the same zone

in the material, one at each increment of deformation.
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(a)

(b)

Figure 4: (a) Example of a real microstruture to be modelled

and simulated. (b) Example of a simulation coming from a

Gaussian geostatistical method applied on data in (a).

Figure 5: Training KAM map at ε = 12%.

3.1.2 Algorithms

Developed in 2012 by [44], the CCSIM is a geostatistical

algorithm and, more precisely, part of the multiple point

statistics approaches [43]. It scans the training image (TI),

looking for matching patterns, and stitches together these

patterns in a blank image. Its main feature is the overlap-

ping based stitching, as shown in Figure 6, extracted from

[45]: each new block of pixels overlaps the one (or ones)

already pasted in the blank image, and a cut following a

continuous boundary that minimizes the error between the

two images in the overlap region is realized (more details

in Appendix B).

Figure 6: Scheme of the CCSIM (courtesy of P. Tahmasebi).

From A to D, the blank simulation is �lled block by block,

all extracted from the training image E. Each new block

patched is randomly picked among a de�nite number of

matching patterns.

Algorithm 1 is based on the one proposed by [45], and

presents the main steps of the CCSIM. The main variables

are explained hereafter (others are used in the code dis-

tributed on-line by Tahmasebi
1
) :

– TI : training image, it is the reference from which all

the blocks of pixels are picked.

– T : size of the template that is being picked in the TI
and pasted on the simulation grid. The same T is ap-

plied to both horizontal and vertical directions of the

template.

– OL: size of the overlap region (see Figure 19).

– max_c: number of matching patterns of the TI from

which one is randomly picked.

– nreal: number of realizations to compute.

The most important parameters of the CCSIM are T
andOL, respectively the template size and the overlap size.

Great variations in quality can occur with minor variation

ofT andOL. [27] recommend to use anOL that is between

a third to a quarter the value of T . Therefore, OL is set to

OL = T
3 as a �rst approach.

As detailed in the results, there is no a priori rule that

helps de�ning T , so the CCSIM is run with di�erent values

of T that cover the minimum size computable (i.e. T = 20)

to the maximum size (T = 230), on a 500 × 500 image.

Once the realizations are obtained, their quality must be

assessed not only through visual inspection (of the grain

morphology) but also using a statistical criterion based on

the pixel values. The objective is to retrieve a general rule

for choosing the value of T , ideally relying on a physical

parameter such as the grain size, the training image size,

etc.

Using the CCSIM, a total of 16900 synthetic maps were

generated: 1300 simulations were realized for each exper-

imental map at the 13 di�erent deformation levels (ε ∈
{0%, .., 15%}). In each batch of 1300 maps, 100 maps were

1

https://github.com/SCRFpublic/MS_CCSIM
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Algorithm 1 CCSIM

1: procedure ccsim(TI, T,OL,max_c, nreal)
2: for each realization ireal = 1 : nreal do
3: path ← de�ne a raster path in the realization, which direction varies between realizations (Fig. 6: the path

goes from bottom left to top right)

4: for each location u in the TI along path do
5: OLu ← extract the overlap region of size OL at the location u of the current realization. OLu can be

the existing block on the left (Fig. 6.A), on the bottom (Fig. 6.C) or both (Fig. 6.D).

6: CC ← calculate cross correlation between the newly de�ned overlap region OLu and TI
7: cand_loc← Sort CC by decreasing order, and keep only the �rst max_c elements

8: loc← randomly pick an element in cand_loc
9: real(u)← assign the block consisting of loc completed with its neighbouring right/upper block of size

(T − OL) (total size sizeT ) at the location u in the realization (e.g. from Fig. 6.C to D: loc completed by its upper

block of size (T −OL))
return all realizations

simulated for each T and OL such as:

(T,OL) ∈ {(20, 8), (30, 10), (40, 14), ..., (100, 34),
(120, 40), (150, 50), (200, 68), (230, 78)}.

3.1.3 Validation of the simulations

One of the objectives of MPS algorithms such as the CC-

SIM is to obtain realizations that resemble the training im-

age, but are not verbatim copies. [46] use the terms within
variability and between variability to assess respectively

the similarity between the training image and one real-

ization, and between two realizations based on the same

training image. To infer the quality of a CCSIM-issued sim-

ulation, two methods are used here: �rst the overall aspect

is visually inspected, then it is proposed to compare the

histograms of both the training image and the simulation.

Even though apparently not robust, one must keep in mind

that a visual inspection remains one of the most used meth-

ods to assess the validity of the simulations [18]. Several

metrics and dissimilarity functions have been proposed for

the past three decades [35,30], each comparing di�erent

parameters. The �rst proposals were bin-by-bin metrics,

such as the Minkowski-Form distance, or the Kullback-

Leibler divergence, but they do not account for cross bins

information, and are sensitive to bin size [35]. Through an

adaptation of the EarthMover’s Distance (EMD, also known

as the �rst Wasserstein distance), [35] were able to propose

a new metric that often accounts for perceptual similarity

better than other previously proposed methods. The idea

is to use the EMD in order to de�ne a scalar criterion that

would account for an observer-based sense of the quality

of the realizations (i.e. a low distance between the simu-

lation and the training image would mean an acceptable

quality). The mathematical de�nition of the EMD is pre-

sented in Appendix C.

In what follows, the terms "EMD" or "Wasserstein dis-

tance" are indi�erently used to refer to the distance com-

puted by scipy (Appendix C, Eq. (14)).

3.2 Results

Let us introduce some examples of realizations that show

the di�erent cases one can face using this algorithm. The

following three �gures (Figures 7 to 9) show the 500×500

(a) Training image at a macroscopic strain ε = 12%.

(b) Simulation of the training image with T = 70, OL = 24.

Figure 7: High quality simulation example - EMD = 0.087.

training image (which is a part of the experimental map

realized at ε = 12%) next to 500× 500 simulations.

The size of the simulations was limited to 500×500 for

computational e�ciency of the shortest path (see section

4). Figure 7 depicts a case where visual inspection would

qualify the simulation as a good reproduction of the train-

ing image’s morphology. Indeed, the grain structure seems

random regarding to the training image, and no speci�c

part could be spotted as being quali�ed of low quality. The

EMD for this realization is EMD = 0.087.

As one can see with the orange circles on Figure 8, a

pattern is repeated at least 6 times in this simulation. How-

ever, one can still observe a grain structure, but this repeti-

tion of pattern could lead the observer to naturally classify

this type of realization as medium, compared to the high
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quality one. The EMD for this realization is EMD = 0.048.

Note that the EMD for the medium quality realization is

smaller than that for the high quality realization.

(a) Training image at a macroscopic strain ε = 12%. The orange

circle emphasizes the pattern that is being patched several times in

the simulation.

(b) Simulation of the training image with T = 100,OL = 34. The

orange circles highlight repeated patterns.

Figure 8: Example of the issue of the repetition of patterns

in the simulation - EMD = 0.048.

Finally, Figure 9 presents what could easily be consid-

ered as a low quality simulation, for it barely exhibits a

grain morphology: no highly continuous deformed zones

(i.e. grain boundaries) can be seen, and the �eld is quite ho-

mogeneous. The EMD for this realization is EMD = 0.26,

which is signi�cantly superior to the EMDs of the two pre-

vious examples (high and medium qualities).

It must also be emphasized that the medium and low

quality simulations have been realized with the exact same

input parameters, and come from the same run of the CC-

SIM. In fact, no set of parameters produced a 100% of high

quality simulations, there are always simulations of medium

and low quality in the 13 batches of 100 realizations (and in

any other tried and not studied in this work). So as to see

the e�ect of the input parameters T and OL on the EMD,

the distribution of the EMD versus T ∈ {20, .., 230} is dis-

played on Figure 10, for ε = 12%. The same plot has been

realized for all the other levels of deformation, but are not

shown in this study for the sake of conciseness.

Both Figure 10 (in addition to all the 12 other plots at

the other levels of deformation not shown here) and Figure

11 show some correlation between T and the EMD of the

realizations: at very "low" T , i.e. T ∈ {20, 30}, the mean

EMD and variance are low, but the quality is visually un-

satisfying as the structure is relatively homogeneous (Fig.

(a) Training image at a macroscopic strain ε = 12%.

(b) Simulation of the training image with T = 100, OL = 34.

Figure 9: Low quality simulation example - EMD = 0.26.

11b). In the range of medium T , i.e. T ∈ {40, .., 80}, the

mean EMD is stabilized around roughly 0.12, but the dis-

persion increases signi�cantly. It is however in this range

that the realizations satisfy the visual inspection the most

(Figure11c). For higher T i.e. above 100, the mean EMD

�rst increases to a maximum (around 0.23 for T = 120),

then decreases to 0.14. In this range, the dispersion is also

high, and the visual aspect is poor: nearly all the realiza-

tions in this range show either pattern repetition (Fig.11d)

or no pattern at all (Fig.9b). Finally, the plots of the EMD vs

T for all the 13 macroscopic maps (not shown here) high-

light that the mean EMD and its dispersion greatly increase

with the load: at ε = 1% the mean EMD is around 0.05, and

it goes up to 0.25 for ε = 15%.

The CPU times required for one realization varied be-

tween roughly 3 seconds forT ≥ 60 up to less than a dozen

of minutes for lower T .

3.3 Discussion

The �rst thing to discuss is the use of the term "visual qual-

ity" employed in the previous part. They obviously lead

to a very subjective and observer dependent approach of

the problem. However, since simulation of EBSD maps has

not been done yet (to the best of authors’ knowledge), the

tools available in geostatistics (where the CCSIM comes

from) were used as a �rst approach. It could, for example,

have been possible to get interested in connectivity met-

rics, as proposed by [33], and compute the connectivity

function τ(h) (h here is the lag vector), but its computa-

tion time is prohibitive (several hours for a single map).
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Figure 10: Evolution of the EMD for 100 realizations of the 500x500 training image at ε = 12% with T varying in

{20, 30, .., 100, 120, 150, 200, 230} and OL set to a third of T .

(a) Training image for the 1 300 realizations - ε = 12%. (b) Simulation of the training image with low T and OL
(T = 20, OL = 8) - EMD = 0.077.

(c) Simulation of the training image with medium T andOL
(T = 70, OL = 24) - EMD = 0.067.

(d) Simulation of the training image with high T and OL
(T = 200, OL = 68) - EMD = 0.030.

Figure 11: Examples of impact of T and OL on simulations’ quality - (T,OL) ∈ {(20, 8), (70, 24), (200, 68)}.

In this work, EMD was proposed as a criterion for being

quite intuitive and fast to compute. It is a scalar criterion

that makes sense in itself, as distances are indeed intu-

itive and genuinely understandable. However, its simplic-

ity comes with a cost as shown previously: it cannot as-

sess perfectly the quality of a simulation. Indeed, due to its
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simplicity, this metric does not transport enough informa-

tion in the present case, as it is based on a 1-dimensional

arrays comparison, whereas the data used in this work are

2-dimensional arrays, with spatial variability. Even though

this distance can fairly eliminate the poor simulations (e.g

when EMD≥ 0.20), it cannot properly give full account of

the pathologies previously described. Indeed, some simu-

lations exhibiting patterns repetition have a low EMD (be-

low 0.05). Yet, using the EMD to �nd a range of suitable

input parameters is an interesting lead: Figure 10 shows a

plateau in the range 40 ≤ T ≤ 80, on which the mean

EMD is stabilized, and corresponds to a better proportion

of high quality simulations. The recommendation that can

be drawn from this work is to use 60 ≤ T ≤ 80, OL to a

third the value of T , in order to maximize the occurrence

of good simulations. Yet it is certain that each training im-

age is speci�c, and that there is no global rule leading to

the prior determination of T and OL. No relationship was

found when trying to link the grain size (which is an ac-

cessible parameter) to T . This could be due to the fact that

the process of determining the grain diameter relies on the

assumption that the grains are circular (see Appendix A),

whereas T and OL are square patches.

The training images used here are well suited for the

exercise, as they exhibit a fairly smooth microstructure:

the deformations are concentrated at the grain boundaries,

and there are no complicated behaviours such as textures

for instance. It is probable that using maps with complex

behaviours as training image would lead to very variable

results, e.g maps with some sparse large carbides or large

secondary phases, incoherent with the matrix. It is sup-

ported by the fact that the EMD tends to augment with the

macroscopic strain: in other words, the coarser the grain

boundaries (i.e. the more deformations are concentrated at

the grain boundaries), the more di�cult it is to produce

synthetic maps with a low EMD. More generally, any �eld

exhibiting very local but pronounced behaviours would

be hard to simulate without the use of conditioning data.

The EMD would require an additional information in order

to be fully useful here, e.g. periodograms and variograms

[17], or energy distance [34].

Finally, the performances were in accordance with the

literature, yet it could be interesting to have a deeper look

at the multi-scale approach of the CCSIM, that permits a

diminution of the CPU times [45], especially when one

would apply this method to 3D problems.

4 Computation of crack propagation time

The multi physics aspect of SCC mechanisms make them

challenging issues for the scienti�c community of mechan-

ical engineer and corrosion scientists. Besides the afore-

mentioned local SCC model [13], the present study shares

some similarities with the work of [29], who tried to model

SCC mechanisms in a Ni based alloy (Inconel 600). Through

a phase �eld approach, a modelling of the di�usion coef-

�cient and a prescription of displacements thanks to an

image processing based on digital image correlation, their

results exhibited great agreements with the experiments

(i.e. prediction of crack morphology). One of the main dif-

ferences with the present study is that the work is done at

a microscopic scale, where the grain morphology itself is

assumed to in�uence the kinetics of crack propagation.

In this section, �rst the computation of the local strain

from KAM maps is explained, and then the use of empir-

ical laws to determine the maximum crack speed locally.

Knowing the strain at each pixel, this relationship assigns

a speed of crack propagation to every pixel. Second, Di-

jkstra’s algorithm (which was formerly made for oriented

graphs [19]) is adapted to the present case: by de�ning the

adjacency matrix of an image, it is possible to compute

the critical crack path going through it, i.e. the crack with

the lowest travel time (or equivalently the highest overall

speed), going from the left edge to the right edge. A graph-

ical summary is proposed below (Fig. 12) De�nitions and

parametrization of the problem are presented hereafter.

4.1 Constitutive equations

The determination of strain �elds using EBSD mappings

techniques has been studied in the past two decades [12,

49]. Even though promising results were obtained, there is

no direct relationship between the KAM and the strain

ε at the pixel scale [8]. But since the computation of the

crack speed requires the strain ε, a thresholded relation-

ship between the KAM value and the local strain (Eq. (1),

Fig. 13) is assumed:{
ε = εmean

KAMmean
KAM KAM ≤ Kmean

εmean
0.2

ε = 0.2 KAM ≥ Kmean

εmean
0.2

(1)

Hence ε varies between 0% and 20%. This relationship is

the simplest the authors could de�ne between the KAM

and the local strain, as no study has been able to propose

any more relevant alternative yet. Eq. (1) ensures a mean

strain on the maps close to the experimental, as well as a

maximum strain of 20%, which correlates the experimen-

tal data.

As introduced in the section 2, the computation of the

propagation time of cracks is made through the implemen-

tation of empirical laws whose shape and coe�cients have

been determined using experimental data. SCC being a multi-

physics phenomenon involving corrosion and mechanics,

the empirical law is a product of functions, each handling

a speci�c part of the physics of the problem, e.g corrosion,

kinetics, etc. The main law is the one that computes the

maximum crack speed ȧmax, in µm.h−1:

ȧmax = αȧf(K)g(ε)h(∆EcP ) exp(− Q

RTr
) (2)

The di�erent terms in (2) are listed and explained be-

low:

– f(K): K is the stress intensity factor as de�ned in Eq.

(3), and f is a function inferring a thresholded behaviour

(Eq. (4)). It implies that barely no propagation occurs

under K0. We have:

K = σ
√
πa (3)

f(K) =
Kn

1 + exp(−λ (K −K0))
(4)

– h(∆EcP ): ∆EcP is the electrochemical potential de-

termined using a Nernst-like law (Eq. (5)). The solution

chemistry in contact with the polycristal is modeled
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Figure 12: Graphical summary of the steps used to compute the crack propagation time.

Figure 13: Plot of the law that transforms the KAM into the deformation ε. The linear part is �tted on the macroscopic

strain ε0 and the maximum is set at εmax = 20%.

in this function, which takes as input the concentra-

tion in dihydrogen in the water, as well as the temper-

ature. The function h has been empirically determined

by �tting data from laboratory experiments conducted

in autoclaves in representative primary water (around

320°C and 150 bar) (Eq. (6)). We have:

∆EcP = 1000
R.Tr
2.F

ln

(
[H2]test

[H2]Ni/NiO

)
(5)

h(∆EcP ) = 1+3.604 exp

[
−1

2

(
∆EcP + 11.33

43.36

)2
]

(6)

– exp
(
− Q
RTr

)
: Arrhenius-like law inferring the thermo-

dynamic aspect of the process. As the temperature in-

creases, so does the crack speed.

– g(ε): ε is the plastic strain in the material. It is easily

computed by Finite Element Analysis at a macroscopic

scale, however it is still quite di�cult to assess the local

strain at a microscopic scale from only KAM maps. ε is
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computed from the KAM maps using Eq. (1). The func-

tion g depends on the piece studied, the form proposed

is:

g(ε) = ε3.6 (7)

Since not all the laws have been �tted with the same

accuracy, only the most studied and referenced ones in the

french nuclear industry are used, which details are given

in Eq. (8) and Table 1:

ȧmax = αȧ
Kn

1+exp[−λ(K−K0)]
ε3.6(

1 + 3.604 exp
[
− 1

2

(
∆EcP+11.33

43.36

)2])
exp

[
− Q
RTr

] (8)

Variable Value

αȧ (µm.h
−1) 9.1012

K0 (MPa.
√
m) 12

n 0.5
λ (MPa.

√
m)−1 0.8

R (J.mol−1.K1) 8.314
F (C) 96500
[H2]Ni/NiO (L.kg−1) 21187.7
Tr (K) 563
Q (J.mol−1) 130.103

a (m) 5.10−3

σ (MPa) 250
[H2]test (L.kg

−1) 30.10−3

Table 1: Numerical values of the coe�cients appearing in

the crack propagation speed (Eq. 8). Note that a, the initial

crack length, is not set to zero since the crack is already in

the propagation stage.

The speeds are computed in µm.hr−1, but they may

be displayed relatively to a reference time (i.e. the time to

rupture of the training image) when possible.

4.2 Algorithms

Once the strain maps are computed from the KAM maps,

they are used to predict the most critical crack path: apply-

ing Eq. (8) to a deformation map leads to a map of crack

speed (or velocity map) and, since the goal is to obtain

the most critical cracking path, it is equivalent to �nding

the path with the lowest propagation time between two

points/surfaces, so propagation times must be de�ned. For

the sake of simplicity, only the critical path between the

left edge and the right edge of the maps is computed.

To achieve this goal, Dijkstra’s algorithm was adopted.

It is commonly used for the computation of the less expen-

sive path of weighted and oriented graphs [19]. Its princi-

ple is very basic as it calculates, starting from a given node,

the cheapest path (in terms of weights) to a target. A graph

is an ordered pairG = (V,E) comprising a set V of nodes

and a set E of edges. Elements of E are 2-element subsets

of V , linking 2 nodes. It is called oriented and weighted

when its edges have orientation, and a weight is assigned

to each edge. It can be represented by an adjacency matrix

M , which is a square matrix where the coe�cient Mi,j

represents the weight of the displacement from the node

i to the node j. The focus of this paper is on general ori-

ented and weighted graphs, but several other examples of

speci�c graphs can be found in [24].

To apply Dijkstra’s algorithm here, the �rst step is there-

fore to de�ne the graph G and the adjacency matrix A
corresponding to the image.. Let I denote the image, repre-

sented as aNxN matrix, and Ii,j the value of the pixel of I
located at the row i and the column j. In this case, Ii,j is the

speed of the region covered by the pixel (i, j). As Dijkstra’s

algorithm computes the shortest path, the idea is to use the

time to propagate from one node to another as the weights

of the edges. The nodes are de�ned as being located at each

corner of a pixel, i.e. on a (N+1)×(N+1) grid, as shown

in Figure 14a. Now that the nodes have been de�ned, the

relationship between each node must be de�ned as well.

The studied structure is an 8-connected one, meaning that

each node has a maximum of 8 neighbours, which makes 9

weights to compute for each node (the weight that loops a

node on itself has to be de�ned). The 9 weights are de�ned

as follows (and summarized in Figure 14b):

– Since the crack is supposed to propagate forward, a null

weight is assigned to the edges that send a node back-

ward, leaving 6 relationships to de�ne.

– It is assumed that the crack never stops, hence the weight

{D → D} is also set to 0.

– For the 5 remaining nodes :

– {D → B} and {D → H}: the crack crosses the

pixel so it does propagate within a constant speed

region, to a distance

√
2d. These weights are set to

respectively:

{D → B} =
√
2d

Ii,j

{D → H} =
√
2d

Ii+1,j

(9)

– {D → A}, {D → E} and {D → G}: the crack

crosses the border between 2 pixels. It has been de-

cided to use the mean of the 2 values of the pixels,

which is supported by the fact that neighbouring

pixels have usually close value (continuity of the

�elds). The distance is the length d of the pixel, then

:

{D → A} = 2d

Ii,j−1 + Ii,j

{D → E} = 2d

Ii,j + Ii+1,j

{D → G} = 2d

Ii+1,j−1 + Ii+1,j

(10)

The resolution is d = 0.25µm for all the maps in this

work. Now that the image has been parametrized into a

graph, Dijkstra’s algorithm can be applied, whose pseudo-

algorithm is proposed below in Algorithm 2.

The dataset used in this section is the same batch than

the one used in the section 3: 100 realizations of the train-

ing 500 × 500 training image (Figure 11a) for each T and

OL such as:

(T,OL) ∈ {(20, 8), (30, 10), (40, 14), ..., (100, 34),
(120, 40), (150, 50), (200, 68), (230, 78)}
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(a) Parametrization of the nodes V of the graph G representing

the image I . The nodes (red dots) are located at the four corners of

each pixel.

(b) Parametrization of the edges E of the graph G representing

the image I . Knowing the resolution d of the image I , the distance

from the nodeD to its 5 neighbouring nodes to its right is de�ned.

Figure 14: Parametrization of the image I , assuming that

the crack only propagates forward (to the right), in order

to create the graph G and the adjacency matrix A for Di-

jkstra’s algorithm.

Algorithm 2 Dijkstra

1: procedure Dijkstra(graph, source)
2: for each vertex V in graph do
3: dist[V ] =∞
4: previousl[V ] = 0

5: dist[source] = 0

6: Q = set of all the nodes in graph
7: while Q 6= ∅ do
8: u = node in Q with min(dist)

9: remove u from Q
10: for each neighbour V of U do
11: alt = dist[u] + dist(u,v)

12: if alt ≤ dist[V ] then
13: dist[V ] = alt

14: previous[V ] = u

return previous

The purpose here is the study of the in�uence of both T
andOL on the times to rupture, hence Dijkstra’s algorithm

was applied to the 1 300 realizations of the KAM maps at

both ε = 2% and ε = 12%.

4.3 Results

First, Figure 15 presents two examples of shortest paths

displayed on top of their corresponding velocity maps. It

must be noticed that these two realizations could respec-

tively be classi�ed as high and low quality, respectively,

both with a low EMD (see Section 3). The CPU time re-

quired to obtain the shortest path between the left edge

and the right edge of one image is around 3mn (the perfor-

mances are similar for all the simulations).

Figure 16 shows the results of the application of Dijk-

stra’s algorithm for di�erent realizations of CCSIM with

T ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 230}

on both synthetic (boxplots) and experimental (red line)

maps, as well as the result at the macroscopic scale (green

line), at two levels of deformation: 1% and 12%. Note that

the two plots cannot be directly compared to each other

as the references (time to rupture of the training image)

are some orders of magnitude di�erent. Several comments

can be made: �rst, the �gures highlight the di�erence in

the times to rupture for the two approaches (micro and

macro). In fact, a factor 9 is observed between the time

to rupture using Dijkstra’s algorithm on the experimen-

tal map and the one at the macroscopic scale, and a fac-

tor between roughly 1.5 and 10 for the synthetic maps and

via the macroscopic approach at ε = 1%. The same re-

mark can be made for the higher strain. Second, the syn-

thetic maps are statistically overestimating the time com-

pared to the experimental maps, with only a few realiza-

tions underestimating it, except at ε = 12% and for T ∈
{60, 70, 80} ∪ {200, 230}, where the results are well dis-

tributed around the reference. Finally, one can again see

the pronounced dispersion in the results issued from the

synthetic maps: there is a factor of more than 5 between

the lowest and the highest time at T = 120, and a factor

of more than 2 at T = 30, for the two levels of strain.

4.4 Discussion

The results depicted in Figure 16 shows the bene�ts of the

microscopic approach: there is a factor of at least 3 between

the microscopic and macroscopic approaches for the 2 lev-

els of deformation. For T ∈ {60, 70, 80} and ε = 12%, the

times to rupture are well distributed around the one of the

training image. This demonstrates the fact that the syn-

thetic maps can actually be used to take into account the

e�ect of microscopic variability –(e.g. when the grain mor-

phology might di�er from the reference experimental ma-

terial) in the times to rupture. In some extreme cases, when

the morphology changes signi�cantly, the time to rupture

might di�er considerably from the reference value. Using

the synthetic maps, one is not limited to a deterministic es-

timation of the rupture time, but can obtain a probabilistic

description of this quantity. In order to reduce the e�ect

of a single training image, one might use more experimen-

tal training images from the same material under the same

loading conditions.
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Figure 15: Shortest paths (red dots) displayed on top of the velocity maps for two realizations of the CCSIM issued from

the map at ε = 12% - left: T = 60, OL = 20, right: T = 230, OL = 78.

Figure 16: Times to rupture of 1 300 realizations for varying T and OL, at a macroscopic strain ε = 1% (top) and

ε = 12% (bottom) alongside with the time to rupture of the corresponding training image, and the macroscopic time.

The times are displayed relatively to the one of the training image.

At lower macroscopic strain (ε = 1%), the results are

not as good and this, for any T , which implies an e�ect

of the strain level on the quality of this approach. It does

not corroborate the results shown in Section 3, which ex-

hibited the in�uence of the load on the EMD: as the load

increases, so does the distance between the training image
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and the realizations (Figure 10). It could con�rm the pre-

vious conclusion that the EMD is not a perfect criterion to

validate the simulation.

Some works remain to be done in order to reinforce this

new method, as a sound relationship between the KAM
and the strain ε (Eq. (1)) has not been found. Indeed, it is

assumed here that the maximum strain is εmax = 20%
for any load (from 1% to 12%), which is a strong assump-

tion. Moreover, the relationship used here implies the ex-

istence of "clusters" of high velocity that get larger with

higher macroscopic strains as shown in Figure 15, but no

evidence of this phenomenon was found in this study. The

GND (Geometrically Necessary Dislocations), which is an

estimation of the density of dislocation in the material,

seems to be a promising parameter to obtain the aforemen-

tioned local strain maps [10,8]: it is more physical than the

KAM , hence it should lead to a more robust estimation of

the local deformation.

It is worth noting that this approach only computes the

shortest path on a �xed con�guration of the material, i.e. it

proposes a virtual crack path. The changes in mechanical

and material properties (e.g. local Young’s modulus, strain,

stress,..) in the surrounding area of the crack tip, as it is the

case for example during cyclic loading [31,2], are not taken

into account.

As this method is to be implemented in Code_Coriolis,

it is assumed that the CPU times must not be too impor-

tant. With an average of 3mn per simulation to compute

the time to rupture between the left and the right edges of

a 500×500 image, it is for now too high of a cost to be used

like this, especially since the �nal goal is to draw a sample

of several synthetic maps and compute their time to rup-

ture to obtain a probabilistic distribution. Several points

could lead to an improvement of the performances: �rst,

only the shortest paths between the left and right edges

of the image were considered, i.e. the algorithm is forced

to search in a set of 251001 paths (501 nodes on the left,

501 on the right). Yet having a prior knowledge of where is

the crack starting would lead to greatly reduced CPU times

since there would be only one source.

Another idea is to compute the shortest path between

reduced sets of sources and targets, assuming that this path

will overlap the true critical path after a small number of

pixels. It is believed that this estimator should not be too

far from the shortest time for the path sought (computed

between the left and right edges), but it would always over-

estimate this targeted value (which is the minimum of all

the possible times). To ensure that this method is worth

the try, Dijkstra’s algorithm was run on a single map with

a varying number of sources and targets for each run, and

the CPU times were stored for each computation. The re-

sults are shown in Figure 17, which exhibits a linear rela-

tionship between the number of sources and the CPU time,

with times going from less than 40s to more than 2mn. It

appears that the method proposed above could be interest-

ing in order to reach reasonable CPU times.

A second point is to have a look at other path�nd-

ing algorithms such as A∗ (A-star), which is supposed to

be more e�cient than Dijkstra [7]. A-star which is an in-

formed search algorithm uses an evaluation function to

guide the selection of nodes. It maintains a tree of paths

originating at the start node and extends those paths one

edge at a time. At each iteration, A-star determines the

paths to be extended and prunes away signi�cant number

of nodes that an uninformed search algorithm like Dijk-

Figure 17: CPU time for Dijkstra’s algorithm vs the num-

ber of sources and targets for the experimental map at the

macroscopic strain ε = 12% - 500× 500 image i.e. 251 001

(=501 × 501) nodes in the corresponding graph (with the

parametrization assumed in this work).

stra would explore. The selection is based on the evalua-

tion function f(n) = g(n) + h(n) where g(n) represents

the cost of the path from the starting point to the node n
and h(n) is a heuristic function estimating the cost of the

path from node n to the target point. If the heuristic func-

tion never overestimates the actual cost to get to the goal,

A-star algorithm will return a least-cost path from start

to goal. The time complexity of A-star algorithm depends

on the heuristic function, which is problem-speci�c. How-

ever, due to the fact that only a selected number of paths

is explored, A-star provides the optimal path faster than

Dijkstra when the correct heuristic is chosen.

5 Conclusion and perspectives

In this paper, it is shown that using microscopical �elds

permitted a re�nement in the prediction of the propaga-

tion of a crack into a metallic material. This was rendered

possible thanks to a two-step approach that takes into ac-

count the microstructural heterogeneities (e.g concentra-

tion of deformation at grain boundaries) in the SCC mod-

els, instead of using global macroscopic parameters. As a

result, one obtains a probabilistic description of the time

to rupture, which is considerably more informative than a

single deterministic estimation.

Using the CCSIM to simulate microstructures has been

demonstrated possible and provides promising results. How-

ever, it has been shown that more work is required in or-

der to assess the quality of the synthetic maps: the EMD

proved to be insu�cient by itself. A solution is that the

EMD be completed by additional criteria that can infer the

spatial heterogeneities of the random �elds studied here.

Variograms, periodograms, etc. seem interesting leads, but

computing those parameters on �elds as large as the ones

used in this work (at least 500× 500) is expensive. A gen-

eral indicator of the value a priori of the input parameters

of the CCSIM (T and OL) is yet to be found.

The computation of the times to rupture using Dijk-

stra’s algorithm was found to be promising. Indeed, through

a correct parametrization of the studied random �eld into a

graph, it could be possible to apply this method to numer-

ous �elds: temperature, chemistry, mechanics, etc., which
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makes this method quite generic. Yet, one must keep in

mind that a strong hypothesis lies at the base of this ap-

proach: a sound relationship between the KAM and the

deformation ε at the microscopic scale, that is of the ut-

most importance, has yet to be determined. This is why

the results must be interpreted with that information in

mind, even though they are encouraging. Once this rela-

tionship is scienti�cally more robust, one will be able to

make proper comparisons between this new microscopic

approach and the macroscopic one.

The perspectives for this work can be summarized as

follows :

– The determination of the local deformation ε should be

studied, as it constitutes the basis of the approach. It is

more likely to be related to the GND than to the KAM,

but both �elds are easily obtained with EBSD.

– It would be interesting to �nd an indicator that could

give a value a priori of the input parameters of the CC-

SIM, so as to lead to a higher proportion of good simu-

lations without having to try a lot of combinations be-

forehand. Moreover, the in�uence of OL has not been

studied, since it was set to a third of the value of T . To

go further, running new simulations with di�erent val-

ues ofOL is advised, as the recommendations given by

[27] may not be suitable for this application.

– As for now, the implementation of the approach is also

limited by its CPU time. The main drawback of Dijk-

stra’s algorithm is its computational cost, which makes

it the bottleneck of the whole process. Yet the conclu-

sion regarding this aspect is optimistic, as it has been

shown that this could be dealt with by using more pow-

erful algorithms such as A∗ [7], or through a smart

choice of the sources and targets.

– The full potential of the CCSIM has not been exploited,

and it could be interesting to have a look at the multi-

scale approach developed by [45], or other pattern-based

methods such as a conditional probability formulation

[42] or the HYPPS algorithm [41,42]. It could also allow

fast simulations of microstructures in 3D.

Programming tools

The main programming tool used for the simulation of the

microstructure is MATLAB 2017b, with the toolbox Image
Processing useful for its function xcorr2.m. It is signi�cantly

faster than its Python equivalent correlate2d(x,y) from the

library scipy.signal. As mentioned above, the EMD is com-

puted with the function scipy.stats.wasserstein_distance. Note

that other packages dedicated to optimal transport can be

found (e.g POT), but optimization of computation times is

not the focus of this work.

The main tool used to deal with the simulation of the

crack paths is Python 3.6: the de�nition of the adjacency

matrix was realized with the function dok_matrix from the

package scipy.sparse.dok. It builds a sparse matrix that is

to be parametrized by the user. Dijkstra’s algorithm is also

available on scipy: scipy.sparse.csgraph.dijkstra. Those tools

were used to �nd the shortest path between the left edge

and the right edge of the images.
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6 Appendices

A Experimental data - supplementary material

Figure 18 presents the distribution of the grain diameter

of 7 of the 13 experimental maps. In order to determine

those values, the grains are likened to circles, and sorted in

20 ranges of values, hence the interpretation of the graph

should be realized with that information in mind. The ac-

quisition of the EBSD maps were led on a Tescan Mira 3
SEM, which parameters are shown in Table 2.

B Minimum error boundary cut

As presented in the section 3, the CCSIM goes through a

step to smoothen the stitching of two images side by side.

The idea is to compute the error between 2 overlapping re-

gions, and to calculate the cumulative minimum error line

by line. It is then possible to create a continuous path of

minimum error. Algorithm 3 (adopted from [27]), presents

how a 2D vertical smooth stitching is done. It is easily ap-

plied to an horizontal cut. Figure 19 summarizes this pro-

cess on an example.

C Earth Mover’s Distance

The EMD is actually the optimal transport distance when

considering the optimal transport (or Monge-Kantorovitch)

problem, which consists in �nding the most e�cient plan

to rearrange one probability measure into another. Kan-

torovitch version goes as follows [30]: let (X,µ) and (Y, ν)
be two probability measure spaces, π be a probability mea-

sure on the product space X × Y . Let

∏
(µ, ν) = {π ∈

P (X × Y ): π[A × Y ] = µ[A] and π[X × B] = ν[B]
hold for all measurable sets A ∈ X and B ∈ Y } be the

set of admissible transport plans. For a given cost function

c : X × Y → R where c(x, y) means the cost of mov-

ing from location x to location y, the total transport cost

associated to plan π ∈
∏
(µ, ν) is:

I[π] =

∫
X×Y

c(x, y)dπ(x, y) (11)

The optimal transport cost between µ and ν is:

Tc(µ, ν) = inf
π∈

∏
(µ,ν)

I[π] (12)

More speci�cally, the p-Wasserstein distance is a �nite met-

ric on (X,µ) de�ned as in [4]:

Wp(µ, ν)
p = inf

π∈Γ (u,v)

∫
R×R

c(x, y)pdπ(x, y) (13)

In practice, the function scipy.stats.wasserstein_distance
from the Scipy library is used. It is de�ned as follows when

c(x, y) =| x − y |: for two distributions u and v, the �rst

Wasserstein distance (named EMD when p = 1) goes as:

l1(u, v) = inf
π∈Γ (u,v)

∫
R×R
| x− y | dπ(x, y) (14)
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Figure 18: Fitted distribution of the grain diameter (µm) of some experimental maps. 20 bins were used for the �t.

Parameter Value
Microscope

Accelerating voltage 30 kV

Current 75 nA

Focus Set on the EBSD scan generator

Working distance 17 mm

Acquisition step 250 nm

Analyzed zone area 350× 350 µm2

Grid type Square

Points 1 960 000

Acquisition speed 252 fps

Exposure time 3918 µs

EBSD resolution 160× 160 pixels

Indexation (OIM Data Collection 5.32)
Phases Ni

Binned pattern size 160

Theta step size 0.5°

Min - max peak count 3 - 7

Min peak magnitude 3

Min peak distance 10

Peak symmetry 89 %

Hough type Classic

Hough resolution Low

Convolution mask 9 x 9

Treatment (OIM Analysis 6.1.3)
Data �lter Removal of CI <0,1

Data count interval (for stat representation) 0.02°

KAM representation 1st neighbours

Table 2: Acquisition parameters of the experimental EBSD maps.
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Algorithm 3 Minimum error cut

1: procedure mincut(Two overlapping patching B1, B2, with overlapping areas BOV1 , BOV2 )

2: De�ne an error surface e = (BOV1 −BOV2 )2, size (p,m)
3: Compute the cumulative minimum error along the cutting direction :

4: for each row i in e (i = 2, ..p) do
5: for each column j in e (j = 1, ..m) do
6: Calculate the cumulative minimum error E using the 3 closest pixels on the previous row (2 if on an

edge) :

7: Ei,j = ei,j +min(Ei−1,j−1, Ei−1,j , Ei−1,j+1); if j = 2, ..,m− 1
8: Ei,j = ei,j +min(Ei−1,j , Ei−1,j+1); if j = 1
9: Ei,j = ei,j +min(Ei−1,j−1, Ei−1,j); if j = m

10: k ← identify the coordinate k corresponding to the entry with the smallest minimum value on the last row of

E (i.e. arrival point of a path of minimum cost through the error surface)

11: min← trace back the minimum values for each row i going backward (i = p− 1, .., 1), and each time identify

the cutting path as min(Ei,k−1, Ei,k, Ei,k+1)
return Minimum error boundary cut

Figure 19: Stitching process: the 2 OL regions are �rst de�ned (1.), the error is then computed between these 2 regions

(2.) and a continuous path of minimum error is built (3.). The 2 images are cut along this path (4.) and �nally stitched

together, with a smooth boundary (5.).


