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Abstract

Prediction of crack propagation kinetics in the components of nuclear plant primary circuits undergoing Stress

Corrosion Cracking (SCC) can be improved by a re�nement of the SCC models. One of the steps in the estimation of

the time to rupture is the crack propagation criterion. Current models make use of macroscopic measures (e.g. stress,

strain,..) obtained for instance using the Finite Element Method. To go down to the microscopic scale and use local

measures, a two steps approach is proposed. First, synthetic microstructures representing the material under speci�c

loadings are simulated, and their quality is validated using statistical measures. Second, the shortest path to rupture in

terms of propagation time is computed, and the distribution of those synthetic times to rupture is compared with the

time to rupture estimated only from macroscopic values. The �rst step is realized with the Cross Correlation Simulation

(CCSIM), a multipoint simulation algorithm that produces synthetic stochastic �elds from a training �eld. The Earth

Mover’s Distance is the metric which allows to assess the quality of the realizations. The computation of shortest paths

is realized using Dijkstra’s algorithm. This approach allows to obtain a re�nement in the prediction of the kinetics of

crack propagation compared to the macroscopic approach. An in�uence of the loading conditions on the distribution

of the computed synthetic times to rupture was observed, which could be reduced through a more robust use of the

CCSIM.

Keywords — Crack propagation, multipoint stochastic simulation, Dijkstra’s algorithm, random microstructures
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1 Introduction
Stress corrosion cracking (SCC) is a major problem in the nuclear industry. It is one of the main environmental degrada-

tion phenomena a�ecting the materials of pressurized water reactors (PWR) [52]. In particular, the integrity of primary

circuit, where �ows the hot primary water (320°C, 150 bar), is at stake since operational feedbacks revealed a potential

susceptibility to SCC of various primary materials: austenitic stainless steels [20], nickel based alloys [39, 1, 26, 30] and

their weld joints [34, 25, 24, 48]. As experienced in the past, such degradation can prompt severe consequences, hence

Primary Water Stress Corrosion Cracking (PWSCC) has been getting more and more attention for the last 40 years.

SCC mechanisms require the synergistic e�ects of mechanical, metallurgical and environmental factors [48]. Many

SCC models have been developed so far. Quantitative empirical models that try to predict initiation and crack growth

rate do not describe physical mechanisms, and su�er from a lack of accuracy. By contrast, models describing the possible

involved physical mechanisms responsible for degradation are usually only qualitative [51, 41].

EDF R&D is developing a multi-physics models of PWSCC, called the ‘local’ model [14, 16, 49, 13]. The ambition

of this model is to deliver quantitative values usable for industrial end-users (e.g. time versus estimated crack depth),

based on an explicit description of the di�erent stages of cracking (incubation, initiation, propagation). The ‘local’

model relies on local parameters that are experimentally collected at the scale of the grain boundary (GB) through

Scanning/Transmission Electron Microscopy (SEM/TEM) investigations in order to predict the behavior of industrial

components.

The model is based on the hypothesis that SCC corresponds to a progressive weakening of GBs due to oxidation

[9, 5, 35, 45] (incubation) leading to the fracture of the highest stressed GB [19].

The main bottleneck of such local approach lies in the costly sampling of experimental microscopic �elds required.

In particular, the experimental capture of materials variabilities such as grain morphologies, precipitates and carbides

distribution is challenging [44]. One solution is to consider the microstructures as random �elds, and to simulate them

through statistical methods, but it is quite a tricky task. For example, [3] have focused their work on a heuristic of the

path of the crack, based on randomly simulated microstructures using Poisson-Voronoi tessellations [43], but using such

simulation methods means that the simulated microstructure is not as physical as expected (i.e. the Voronoi cells do

not perfectly match the natural grain morphologies). Hence, our approach proposes the use of the CCSIM [46, 47], a

geostatistics issued algorithm, to tackle this problem.

In this paper, a generic approach is proposed, based on the stochastic modelling of local microstructural data �elds.

The methodology is applied to the simulation of synthetic plastic strain maps εp. This choice was motivated by the

following considerations:

• The plastic strain εp is a sensitive parameter: local plastic strain (which can be introduced in components by

cold work during fabrication and installation) was found to play a signi�cant role in both the initiation and the

growth of SCC cracks in PWR primary coolant water [21], in particular where heterogeneities are signi�cant

(Heat A�ected Zone, inclusions, surfaces after machining or peening, etc.).

• Some inhomogeneities are observed in industrial components: plastic strain levels estimations in representative

mock-ups of industrial components revealed a possible increase of plastic strain near fusion line of weldings.

• Some time-consuming data have been collected: εp cannot be directly measured, except at the surface where

gauges were deposited prior to deformation. Anyway, di�erent post-mortem techniques o�er the possibility to

indirectly estimate plastic strain at di�erent scales: microhardness (HV) investigates the scale of grain aggregates,

and Electron BackScatter Di�raction (EBSD) analyses, which are obtained on a SEM, can give access to local

misorientations of the material. For this second method, microstructural data are processed as Kernel Average

Misorientation (KAM) patterns [40] that describe the crystal misorientation �elds.

In the present paper, the global approach is presented (Section 2), as well as the use of the CCSIM to simulate

random microstructures from experimental EBSD maps (Section 3). Then the use of Dijkstra’s algorithm to �nd critical

propagation paths for the crack is presented (Section 4). Then a last section (Section 5) provides some conclusions and

perspectives of this work.

2 The crack propagation issue
In order to validate the SCC model on lab specimens (or to evaluate it on realistic industrial components) with a global

3D view and an improved added value of data analyses, a digital tool named Code_Coriolis has been developed [15]. It

consists in a �nite element modeling post analysis module. The inputs are the geometry of the piece (modelled with a

CAD software), the mesh of the piece, SCC models, and the boundary conditions (surfaces in contact with water and

parameters of water). From these information, the tool computes the most probable path of the crack, and can display

several outputs: a 3D map of crack initiation probabilities, a 3D view of the crack path and the kinetics of the crack

propagation (crack depth versus time), etc.
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Figure 1 summarizes the principle used in Code_Coriolis to compute the propagation of a crack: at instant t, the

crack tip is at a given node, and its neighbouring nodes are questioned (Figure 1b). Through mechanical calculations

(i.e. the maximum crack propagation speed between two nodes), the code determines the most critical node to which

the crack can move (Figure 1c), then the crack advances to this node (Figure 1d). The process is repeated at instant

t + 1 and so on, thus the crack propagation path can be determined. In the current version of Code_Coriolis, only

macroscopic parameters, such as FEM outputs (stress and strain �elds) are used. Thus, it uses coarse meshes which do

not account for the ‘local’ model that relies on microscopic behaviour of the grain boundaries. This work aims at linking

the local models with the microscopic behaviours, and proposing a new propagation criterion that gives the possibility

to estimate the time to rupture of the material while taking into account the microscopic properties. Note that the

microscopic behavior itself depends signi�cantly on microscopic properties such as grains joints and their distribution,

which vary within the same material. This work accounts for the in�uence of microscopic inherent uncertainties (or

variability) by introducing a probabilistic estimate of the time to rupture.

(a) Path of the crack (red) at the instant t. (b) ti are computed at the neighbouring nodes (blue).

(c) The lowest t (green) is chosen. (d) The crack moves to the chosen node.

Figure 1: Scheme of the computation of the advance of the crack in Code_Coriolis.

For a better understanding of the bene�t of a change of scale, let us consider a toy example, as presented in Figure

2. The two upper �gures are KAM maps (details in the next section), that are assimilated to stress maps for the sake of

simplicity; below are the respective histograms of their pixel values. Suppose at this point that the code must choose

between two nodes corresponding to the two maps, then it computes the two propagation times t. Using the macroscopic

criterion presented, the right map would be chosen since it has a greater mean stress, hence a lower propagation time.

However, the left map shows a relatively continuous path of high stress (red dash line), which is indeed high enough to

allow the propagation of a crack faster than on the other map. In other words, the left map is characterized by higher

stresses at connected grain boundaries, hence has a crack path which is more critical than the right map.

The objectives can be divided into two sequential steps, the second using the results of the �rst. This work is

presented in the order given below :

1. Simulate random KAM maps from training images obtained through EBSD. The purpose is to generate synthetic

maps that will be used to compute fracture paths, using an algorithm of geostatistics: the CCSIM. These simula-

tions will be validated thanks to a criterion comparing their density probability function to that of the training

image, namely the Earth Mover’s Distance.

2. Propose a new method to compute kinetics of cracking at microscopic scale, that will support the advantage of the
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Figure 2: Illustration of the bene�t of the reduction of scale in the choice of the direction of propagation of the crack.

Here, the right map exhibits a higher mean stress, but the left one shows a critical path of high stresses that goes through

the map (dots).

change of scale. By computing the critical cracking path of an experimental map and its synthetic simulations, a

re�nement of the computation of the time to rupture of the piece against the actual calculus at macroscopic scale

is expected.

3 Simulation of stochastic microstructures
Random �elds simulation is a major research topic in many �elds (see for example [6]). It has raised a particular interest

in geostatistics, which is the analysis and modelling of phenomena using spatially localized data. In this �eld, the

Gaussian random models are particularly useful and easy to manipulate. Once the statistical parameters (mean, variance,

theoretical covariance or variogram, etc.) obtained, it is possible to simulate random �elds through classical methods

such as the direct simulation [29], the turning bands methods, etc., most of which are detailed by [23].

For this work, one of the objectives is to be able to simulate random �elds which reproduce grain boundaries. Indeed,

all the previously mentioned methods do not allow the simulation to satisfy this spatial criterion. For example, from

the simulation of Figure 3 which results from the identi�ed periodogram used by [17], one can see that the realization

of the random �eld (left) does not exhibits the grain morphology, as does the FEM result utilized as the training image

(right). As a second example, Figure 4 gives the result obtained by applying a classical geostatistical approach dealing

with Gaussian random models (see for example [11]). As the initial data (shown in Figure 4 (a)) are far from Gaussian,

the approach consists in �rst transforming the variable values into data which follow a Gaussian distribution (step called

“Gaussian anamorphosis”), then to identify the best models for the horizontal and vertical covariances. Simulations of

Gaussian data following this theoretical anisotropic covariance model can then be obtained by any of the previously

mentioned methods. Finally, a simple inverse Gaussian transformation of each of these simulations allows to obtain

simulations for the initial variable. By comparing Figure 4 (a) and Figure 4 (b), one can conclude that the length scales

of the heterogeneities are well reproduced, but the microstructure appears to be stringy.

In this section, the type of data used (KAM �elds) is presented �rst, as well as an algorithm formerly developed for

geostatistics applications: the CCSIM. After a brief explanation of its principle and its input parameters, its application
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Figure 3: Simulation of a stress �eld using the identi�ed periodogram (left) and a FEM output utilized as the training

image for the left one - extracted from [17].

(a) (b)

Figure 4: (a) Example of a real microstruture to be modelled and simulated. (b) Example of a simulation coming from a

Gaussian geostatistical method applied on data in (a).

on the KAM maps is developed. To assess the quality of a realization, the use of a well known metric is proposed: the

EMD (Earth Mover’s Distance), in order to compute the distance between the histograms of the training image and the

simulation. The results are discussed and perspectives are drawn in the end.

3.1 Training dataset and algorithms
3.1.1 Training dataset

The data used in this work are KAM (Kernel Average Misorientation) maps, and are obtained through EBSD (Electron
Back Scatter Di�raction). KAM is a value representing the local misorientation between a pixel and its neighbours. The

KAM map commonly exhibits a greater misorientation at grain boundaries than within the grains [8]. This is due to

the di�erence in the crystallographic orientations of neighbour grains and their deformations under loading e�ects.

The data type studied in this work are KAM maps, where each coordinate is the KAM value at the given pixel on

a 2D Cartesian grid. Figure 5 presents the training map obtained at the macroscopic strain level ε = 12%, displayed as

an image for a better understanding of the physical interpretation of the parameters. One can see that the high values

of KAM are concentrated at the grain boundaries, as expected.

The training dataset consists of 13 KAM maps of size 500 × 500, each realized at a di�erent macroscopic strain

ε ∈ {0%, 1%, .., 9%, 10%, 12%, 15%} during a in situ tensile test. Each map was obtained by scanning the same zone

in the material, one at each increment of deformation.

3.1.2 Algorithms

Developed in 2012 by [46], the CCSIM is a geostatistics-born algorithm. It scans the training image (TI), looking for

matching patterns, and stitches together these patterns in a blank image. Its main feature is the overlapping based

stitching, as shown in Figure 6, extracted from [47]: each new block of pixels overlaps the one (or ones) already pasted
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Figure 5: Training KAM map at ε = 12%.

in the blank image, and a cut following a continuous boundary that minimizes the error between the two images in the

overlap region is realized (more details in Appendix B).

Figure 6: Scheme of the CCSIM (courtesy of P. Tahmasebi). From A to D, the blank simulation is �lled block by block, all

extracted from the training image E. Each new block patched is randomly picked among a de�nite number of matching

patterns.

Algorithm 1 is based on the one proposed by [47], and presents the main steps of the CCSIM. The main variables

are explained hereafter (others are used in the code distributed on-line by Tahmasebi
1
) :

• TI : training image, it is the reference from which all the blocks of pixels are picked.

• T : size of the template that is being picked in the TI and pasted on the simulation grid. The same T is applied to

both horizontal and vertical directions of the template.

• OL: size of the overlap region (see Figure 19).

1
https://github.com/SCRFpublic/MS_CCSIM
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• max_c: number of matching patterns of the TI from which one is randomly picked.

• nreal: number of realizations to compute.

Algorithm 1 CCSIM

1: procedure ccsim(TI, T,OL,max_c, nreal)
2: for each realization ireal = 1 : nreal do
3: path← de�ne a raster path in the realization, which direction varies between

4: realizations (Fig. 6: the path goes from bottom left to top right)

5: for each location u in the TI along path do
6: OLu ← extract the overlap region of size OL at the location u of the current

7: realization. OLu can be the existing block on the left (Fig. 6.A), on the

8: bottom (Fig. 6.C) or both (Fig. 6.D).

9: CC ← calculate convolution between the newly de�ned overlap region OLu and TI
10: cand_loc← Sort CC by decreasing order, and keep only the �rst max_c elements

11: loc← randomly pick an element in cand_loc
12: real(u)← assign the block consisting of loc completed with its neighbouring

13: right/upper block of size (T −OL) (total size sizeT ) at the location u in

14: the realization (e.g. from Fig. 6.C to D: loc completed by its upper block

15: of size (T −OL))

return all realizations

The most important parameters of the CCSIM are T and OL, respectively the template size and the overlap size.

Great variations in quality can occur with minor variation of T and OL. [27] recommend to use an OL that is between

a third to a quarter the value of T . Therefore, OL is set to OL = T
3 as a �rst approach.

As detailed in the results, there is no a priori rule that helps de�ning T , so the CCSIM is run with di�erent values of

T that cover the minimum size computable (i.e T = 20) to the maximum size (T = 230), on a 500×500 image. Once the

realizations are obtained, their quality must be assessed not only through visual inspection (of the grain morphology)

but also using a statistical criterion based on the pixel values. The objective is to retrieve a general rule for choosing the

value of T , ideally relying on a physical parameter such as the grain size, the training image size, etc.

Using the CCSIM, a total of 16900 synthetic maps were generated: 1300 simulations were realized for each exper-

imental map at the 13 di�erent deformation levels (ε ∈ {0%, .., 15%}). In each batch of 1300 maps, 100 maps were

simulated for each T and OL such as:

(T,OL) ∈ {(20, 8), (30, 10), (40, 14), ..., (100, 34), (120, 40), (150, 50), (200, 68), (230, 78)}

3.1.3 Validation of the simulations

One of the objectives of MPS algorithms such as the CCSIM is to obtain realizations that resemble the training image, but

are not verbatim copies. [27] use the terms within variability and between variability to assess respectively the similarity

between the training image and one realization, and between two realizations based on the same training image. To infer

the quality of a CCSIM-issued simulation, it is proposed to compare the histograms of both the training image and the

simulation. Several metrics and dissimilarity functions have been proposed for the past three decades [38, 32, 42], each

comparing di�erent parameters. The �rst proposals were bin-by-bin metrics, such as the Minkowski-Form distance,

or the Kullback-Leibler divergence, but they do not account for cross bins information, and are sensitive to bin size

[38]. Through an adaptation of the Earth Mover’s Distance (EMD, also known as the �rst Wasserstein distance), [38]

were able to propose a new metric that often accounts for perceptual similarity better than other previously proposed

methods. The idea is to use the EMD in order to de�ne a scalar criterion that would account for an observer-based sense

of the quality of the realizations (i.e a low distance between the simulation and the training image would mean a "good"

quality). The mathematical de�nition of the EMD is presented in Appendix C.

In what follows, the terms "EMD" or "Wasserstein distance" are indi�erently used to refer to the distance computed

by scipy (Appendix C, Eq. (14)).

3.2 Results
Let us introduce some examples of realizations that show the di�erent cases one can face using this algorithm. The

following three �gures (Figures 7 to 9) show the 500 × 500 training image (which is a part of the experimental map

realized at ε = 12%) next to 500×500 simulations. The size of the simulations was limited to 500×500 for computational

e�ciency of the shortest path (see section 4). Figure 7 depicts a case where visual inspection would qualify the simulation

as a good reproduction of the training image’s morphology. Indeed, the grain structure seems random regarding to the
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training image, and no speci�c part could be spotted as being quali�ed of low quality. The EMD for this realization is

EMD = 0.087.

(a) Training image at a macroscopic strain ε = 12%. (b) Simulation of the training image on the left with T = 70,

OL = 24.

Figure 7: Example of a high quality simulation - EMD = 0.087.

As one can see with the orange circles on Figure 8, a pattern is repeated at least 6 times in this simulation. However,

one can still observe a grain structure, but this repetition of pattern could lead the observer to naturally classify this

type of realization as medium, compared to the high quality one. The EMD for this realization is EMD = 0.048. Note

that the EMD for the medium quality realization is smaller than that for the high quality realization.

(a) Training image at a macroscopic strain ε = 12%. The

orange circle emphasizes the pattern that is being patched

several times in the simulation.

(b) Simulation of the training image on the left with T =
100, OL = 34. The orange circles highlight repeated pat-

terns.

Figure 8: Example of the issue of the repetition of patterns in the simulation - EMD = 0.048.

Finally, Figure 9 presents what could easily be considered as a low quality simulation, for it barely exhibits a grain

morphology: no highly continuous deformed zones (i.e grain boundaries) can be seen, and the �eld is quite homoge-

neous. The EMD for this realization is EMD = 0.26, which is signi�cantly superior to the EMDs of the two previous

examples (high and medium qualities).

It must also be emphasized that the medium and low quality simulations have been realized with the exact same

input parameters, and come from the same run of the CCSIM. In fact, no set of parameters produced a 100% of high

quality simulations, there are always simulations of medium and low quality in the 13 batches of 100 realizations (and

in any other tried and not studied in this work). So as to see the e�ect of the input parameters T and OL on the EMD,

the distribution of the EMD versus T ∈ {20, .., 230} is displayed on Figure 10, for ε = 12%. The same plot has been

realized for all the other levels of deformation, but are not shown in this study (for the sake of conciseness).

Both Figure 10 (in addition to all the 12 other plots at the other levels of deformation not shown here) and Figure 11

show some correlation between T and the EMD of the realizations: at very "low" T , i.e T ∈ {20, 30}, the mean EMD
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(a) Training image at a macroscopic strain ε = 12%. (b) Simulation of the training image on the left with T =
100, OL = 34.

Figure 9: Example of a low quality simulation - EMD = 0.26.

Figure 10: Evolution of the EMD for 100 realizations of the 500x500 training image at ε = 12% with T varying in

{20, 30, .., 100, 120, 150, 200, 230} and OL set to a third of T .

and variance are low, but the quality is visually unsatisfying for the structure is relatively homogeneous (Fig. 11b).

In the range of medium T , i.e T ∈ {40, .., 80}, the mean EMD is stabilized around roughly 0.12, but the dispersion

increases signi�cantly. It is however in this range that the realizations satisfy the visual inspection the most (Figure11c).

For higher T i.e above 100, the mean EMD �rst increases to a maximum (around 0.23 for T = 120), then decreases

to 0.14. In this range, the dispersion is also high, and the visual aspect is poor: nearly all the realizations in this range

show either pattern repetition (Fig.11d) or no pattern at all (Fig.9b). Finally, the plots of the EMD vs T for all the 13

macroscopic maps (not shown here) highlight that the mean EMD and its dispersion greatly increase with the load: at

ε = 1% the mean EMD is around 0.05, and it goes up to 0.25 for ε = 15%.

The CPU times required for one realization varied between roughly 3 seconds for T ≥ 60 up to less than a dozen of
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(a) Training image for the 1 300 realizations - ε = 12%. (b) Simulation of the training image with low T and OL
i.e T = 20, OL = 8.

(c) Simulation of the training image with medium T and

OL i.e T = 70, OL = 24.

(d) Simulation of the training image with high T andOL
i.e T = 200, OL = 68.

Figure 11: Examples of the impact of T and OL on the quality of the simulations - (T,OL) ∈
{(20, 8), (70, 24), (200, 68)}.

minutes for lower T .

3.3 Discussion
The �rst thing to discuss is the use of the terms "visual quality" employed in the previous part. They obviously lead to

a very subjective and observer dependent approach of the problem. However, since simulation of EBSD maps has not

been done yet (to the best of authors’ knowledge), the tools available in geostatistics (where the CCSIM comes from)

were used as a �rst approach. It could, for example, have been possible to get interested in connectivity metrics, as

proposed by [36], and compute the connectivity function τ(h) (h here is the lag vector), but its computation time is

prohibitive (several hours for a single map). The reason theEMD was proposed as a criterion is that it is quite intuitive

and fast to compute. It is also a scalar criterion that makes sense in itself, as distances are indeed intuitive and genuinely

understandable. However, its simplicity comes with a cost as shown previously: it cannot assess correctly the quality

of a simulation. Indeed, due to its simplicity, this metric does not transport enough information in the present case, as

it is based on a 1-dimensional arrays comparison, whereas the data used in this work are 2-dimensional arrays, with

spatial variability. Even though this distance can fairly eliminate the poor simulations (e.g when EMD ≥ 0.20), it

cannot properly give full account of the pathologies previously described. Indeed, some simulations exhibiting patterns

repetition have a low EMD (below 0.05). Yet, using the EMD to �nd a range of suitable input parameters is an

interesting lead: Figure 10 shows a plateau in the range 40 ≤ T ≤ 80, on which the mean EMD is stabilized, and

corresponds to a better proportion of high quality simulations. The recommendation that can be drawn from this work

is to use 60 ≤ T ≤ 80, OL to a third the value of T , in order to maximize the occurrence of good simulations. Yet it is

certain that each training image is speci�c, and that there is no global rule leading to the prior determination of T and

OL. No relationship was found when trying to link the grain size (which is an accessible parameter) to T . This could be
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due to the fact that the process of determining the grain diameter relies on the assumption that the grains are circular

(see Appendix A), whereas T and OL are square patches.

The training images used here are well suited for the exercise, as they exhibit a fairly smooth microstructure: the

deformations are concentrated at the grain boundaries, and there are no complicated behaviours such as textures for

instance. It is probable that using maps with complex behaviours as training image would lead to very variable results,

e.g maps with some sparse large carbides or large secondary phases, incoherent with the matrix. It is supported by the

fact that the EMD tends to augment with the macroscopic strain: in other words, the coarser the grain boundaries

(i.e the more deformations are concentrated at the grain boundaries), the more di�cult it is to produce synthetic maps

with a lowEMD. More generally, any �eld exhibiting very local but pronounced behaviours would be hard to simulate

without the use of conditioning data. The EMD would require an additional information in order to be fully useful

here, e.g. periodograms and variograms [17], or energy distance [37].

Finally, the performances were in accordance with the literature, yet it could be interesting to have a deeper look

at the multi-scale approach of the CCSIM, that permits a diminution of the CPU times [47], especially when one would

apply this method to 3D problems.

4 Computation of crack propagation time
The multi physics aspect of SCC mechanisms make them challenging issues for the scienti�c community of mechanical

engineer and corrosion scientists. Besides the aforementioned local SCC model [15], the present study shares some

similarities with the work of [31], who tried to model SCC mechanisms in a Ni based alloy (Inconel 600). Through a phase

�eld approach, a modelling of the di�usion coe�cient and a prescription of displacements thanks to an image processing

based on digital image correlation, their results exhibited great agreements with the experiments (i.e prediction of crack

morphology). One of the main di�erences with the present study is that the work is done at a microscopic scale, where

the grain morphology itself is assumed to in�uence the kinetics of crack propagation.

In this section, �rst the computation of the local strain from KAM maps is explained, and then the use of empirical

laws to determine the maximum crack speed locally. Second, Dijkstra’s algorithm (which was formerly made for oriented

graphs [18]) is adapted to the present case: by de�ning the adjacency matrix of an image, it is possible to compute the

critical crack path going through it, i.e. the crack with the lowest travel time, going from the left edge to the right edge.

De�nitions and parametrization of the problem are presented hereafter.

4.1 Constitutive equations
The determination of strain �elds using EBSD mappings techniques has been studied in the past two decades [12, 50].

Even though promising results were obtained, there is no direct relationship between the KAM and the strain ε at the

pixel scale [8]. But since the computation of the crack speed requires the strain ε, a thresholded relationship between

the KAM value and the local strain (Eq. (1), Fig. 12) is assumed :{
ε = εmean

KAMmean
.KAM KAM ≤ Kmean

εmean
.0.2

ε = 0.2 KAM ≥ Kmean

εmean
.0.2

(1)

hence ε varies between 0% and 20%. This relationship is the simplest the authors could de�ne between the KAM

and the local strain, as no study has been able to propose any more relevant alternative yet. Equation (1) ensures a mean

strain on the maps close to the experimental, as well as a maximum strain of 20%, which correlates the experimental

data.

As introduced in the section 2, the computation of the propagation time of cracks is made through the implemen-

tation of empirical laws whose shape and coe�cients have been determined using experimental data. SCC being a

multi-physics phenomenon involving corrosion and mechanics, the empirical law is a product of functions, each han-

dling a speci�c part of the physics of the problem, e.g corrosion, kinetics,etc. The main law is the one that computes the

maximum crack speed ȧmax, in µm.h−1
:

ȧmax = αȧ.f(K).g(ε).h(∆EcP ).exp(− Q

RTr
) (2)

The di�erent terms in (2) are listed and explained below:

• f(K): K is the stress intensity factor as de�ned in Eq.(3), and f is a function inferring a thresholded behaviour

(Eq. (4)). It implies that barely no propagation occurs under K0. We have:

K = σ
√
πa (3)

f(K) =
Kn

1 + exp(−λ(K −K0))
(4)
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Figure 12: Plot of the law that transforms the KAM into the deformation ε. The linear part is �tted on the macroscopic

strain ε0 and the maximum is set at εmax = 20%.

• h(∆EcP ): ∆EcP is the electrochemical potential determined using a Nernst-like law (Eq. (5)). This function

takes as input the concentration in dihydrogen in the water, as well as the temperature. The function h is empir-

ically determined on the data (Eq. (6)). We have:

∆EcP = 1000.
R.Tr
2.F

.ln

(
[H2]test

[H2]Ni/NiO

)
(5)

h(∆EcP ) = 1 + 3.604.exp(−1

2

(
∆EcP + 11.33

43.36

)2

) (6)

• exp((− Q
RTr

)): Arrhenius-like law inferring the thermodynamic aspect of the process. As the temperature in-

creases, so does the crack speed.

• g(ε): ε is the plastic strain in the material. It is easily computed by a FEM at a macroscopic scale, however it is

still quite di�cult to assess the local strain at a microscopic scale from only KAM maps. ε is computed from the

KAM maps using Eq. (12). The function g depends on the piece studied, the form proposed is:

g(ε) = ε3.6 (7)

Since not all the laws have been �tted with the same accuracy, only the most studied and referenced ones in the

french nuclear industry are used, which details are given below :

ȧmax = αȧ.
Kn

1 + exp(−λ(K −K0))
.ε3.6.[1 + 3.604.exp(−1

2

(
∆EcP + 11.33

43.36

)2

)].exp(− Q

RTr
) (8)

where αȧ = 9.1012 µm.h−1
, K0 = 12 MPa

√
m , n = 0.5 , λ = 0.8 , R = 8.314 J.mol−1.K−1

, F = 96500 C
, [H2]Ni/NiO = 2.10−6.exp(0.0256.Tr) L.kg

−1
, Tr = 290°C (= 563K) , Q = 130.103 J.mol−1

, a = 5.10−3 m
(the crack is assumed to be already propagating, i.e the incubation and initiation stages are over) , σ = 250 MPa ,

[H2]test = 30.10−3L.kg−1
.

The speeds are computed in µm.hr−1
, but they may be displayed relatively to a reference time (i.e the time to

rupture of the training image) when possible.

4.2 Algorithms
Once the strain maps are computed from the KAM maps, they are used to predict the most critical crack path: applying

Eq. (8) to a deformation map leads to a map of crack speed (or velocity map) and, since the goal is to obtain the most

critical cracking path, it is equivalent to �nding the path with the lowest propagation time between two points/surfaces,

so propagation times must be de�ned. For the sake of simplicity, only the critical path between the left edge and the
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right edge of the maps is computed.

To achieve this goal, Dijkstra’s algorithm was adopted. It is commonly used for the computation of the less expensive

path of weighted and oriented graphs [18]. Its principle is very basic as it calculates, starting from a given node, the

cheapest path (in terms of weights) to a target. A graph is an ordered pair G = (V,E) comprising a set V of nodes and

a set E of edges. Elements of E are 2-element subsets of V , linking 2 nodes. It is called oriented and weighted when its

edges have orientation, and a weight is assigned to each edge. It can be represented by an adjacency matrix M , which

is a square matrix where the coe�cient Mi,j represents the weight of the displacement from the node i to the node j.
To apply Dijkstra’s algorithm here, the �rst step is therefore to de�ne the graph G and the adjacency matrix A

corresponding to the image. Let I denote the image, represented as a NxN matrix, and Ii,j the value of the pixel of

I located at the row i and the column j. In this case, Ii,j is the speed of the region covered by the pixel (i, j). As

Dijkstra’s algorithm computes the shortest path, the idea is to use the time to propagate from one node to another as the

weights of the edges. The nodes are de�ned as being located at each corner of a pixel, i.e on a (N + 1)× (N + 1) grid,

as shown in Figure 13a. Now that the nodes have been de�ned, the relationship between each node must be de�ned

as well. The studied structure is an 8-connected one, meaning that each node has a maximum of 8 neighbours, which

makes 9 weights to compute for each node (the weight that loops a node on itself has to be de�ned). The 9 weights are

de�ned as follows (and summarized in Figure 13b):

• Since the crack is supposed to propagate forward, a null weight is assigned to the edges that send a node backward,

leaving 6 relationships to de�ne.

• It is assumed that the crack never stops, hence the weight {D → D} is also set to 0.

• For the 5 remaining nodes :

– {D → B} and {D → H}: the crack crosses the pixel so it does propagate within a constant speed region,

to a distance

√
2d. These weights are set to respectively:

{D → B} =

√
2d

Ii,j

{D → H} =

√
2d

Ii+1,j

(9)

– {D → A}, {D → E} and {D → G}: the crack crosses the border between 2 pixels. It has been decided

to use the mean of the 2 values of the pixels, which is supported by the fact that neighbouring pixels have

usually close value (continuity of the �elds). The distance is the length d of the pixel, then :

{D → A} =
2d

Ii,j−1 + Ii,j

{D → E} =
2d

Ii,j + Ii+1,j

{D → G} =
2d

Ii+1,j−1 + Ii+1,j

(10)

The resolution is d = 0.25µm for all the maps in this work. Now that the image has been parametrized into a graph,

Dijkstra’s algorithm can be applied, whose pseudo-algorithm is proposed below in Algorithm 2.

The dataset used in this section is the same batch than the one used in the section 3: 100 realizations of the training

500× 500 training image (Figure 11a) for each T and OL such as:

(T,OL) ∈ {(20, 8), (30, 10), (40, 14), ..., (100, 34), (120, 40), (150, 50), (200, 68), (230, 78)}

The purpose here is the study of the in�uence of both T and OL on the times to rupture, hence Dijkstra’s algorithm

was applied to the 1 300 realizations of the KAM maps at both ε = 2% and ε = 12%.

4.3 Results
First, Figure 14 presents two examples of shortest paths displayed on top of their corresponding velocity maps. It must

be noticed that these two realizations could respectively be classi�ed as high and low quality, respectively, both with a

low EMD (see Section 3). The CPU time required to obtain the shortest path between the left edge and the right edge

of one image is around 3mn (the performances are similar for all the simulations).

Figures 15 and 16 show the results of the application of Dijkstra’s algorithm for di�erent realizations of the CCSIM

with T ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 230} on both synthetic (boxplots) and experimental (red line)

maps, as well as the result at the macroscopic scale (green line), at two levels of deformation: 1% and 12%. Note that
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(a) Parametrization of the nodesV of the graph

G representing the image I . The nodes (red

dots) are located at the four corners of each

pixel.

(b) Parametrization of the edgesE of the graph

G representing the image I . Knowing the res-

olution d of the image I , the distance from the

nodeD to its 5 neighbouring nodes to its right

is de�ned.

Figure 13: Parametrization of the image I , assuming that the crack only propagates forward (to the right), in order to

create the graph G and the adjacency matrix A for Dijkstra’s algorithm.

Algorithm 2 Dijkstra

1: procedure Dijkstra(graph, source)
2: for each vertex V in graph do
3: dist[V ] =∞
4: previousl[V ] = 0

5: dist[source] = 0

6: Q = set of all the nodes in graph
7: while Q 6= ∅ do
8: u = node in Q with min(dist)

9: remove u from Q
10: for each neighbour V of U do
11: alt = dist[u] + dist(u,v)

12: if alt ≤ dist[V ] then
13: dist[V ] = alt

14: previous[V ] = u

return previous

the two plots cannot be directly compared to each other as the references (time to rupture of the training image) are

some orders of magnitude di�erent. Several comments can be made: �rst, the �gures highlight the di�erence in the

times to rupture for the two approaches (micro and macro). In fact, a factor 9 is observed between the time to rupture

using Dijkstra’s algorithm on the experimental map and the one at the macroscopic scale, and a factor between roughly

1.5 and 10 for the synthetic maps and via the macroscopic approach at ε = 1%. The same remark can be made for the

higher strain. Second, the synthetic maps are statistically overestimating the time compared to the experimental maps,

with only a few realizations underestimating it, except at ε = 12% and for T ∈ {60, 70, 80} ∪ {200, 230}, where the

results are well distributed around the reference. Finally, one can again see the pronounced dispersion in the results

issued from the synthetic maps: there is a factor of more than 5 between the lowest and the highest time at T = 120,

and a factor of more than 2 at T = 30, for the two levels of strain.

4.4 Discussion
The results depicted in Figures 15 and 16 show the bene�ts of the microscopic approach: there is a factor of at least 3

between the microscopic and macroscopic approaches for the 2 levels of deformation. For T ∈ {60, 70, 80} and ε = 12%
(Figure 16), the times to rupture are well distributed around the one of the training image. This demonstrates the fact
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Figure 14: Shortest paths (red dots) displayed on top of the velocity maps for two realizations of the CCSIM issued from

the map at ε = 12% - left: T = 60, OL = 20, right: T = 230, OL = 78.

Figure 15: Times to rupture of 1 300 realizations for varying T and OL, at a macroscopic strain ε = 1% alongside with

the time to rupture of the corresponding training image, and the macroscopic time. The times are displayed relatively

to the one of the training image.

that the synthetic maps can actually be used to take into account the e�ect of microscopic variability –(e.g. when the

grain morphology might di�er from the reference experimental material) in the times to rupture. In some extreme

cases, when the morphology changes signi�cantly, the time to rupture might di�er considerably from the reference

value. Using the synthetic maps, one is not limited to a deterministic estimation of the rupture time, but can obtain a

probabilistic description of this quantity. In order to reduce the e�ect of a single training image, one might use more

experimental training images from the same material under the same loading conditions.

At lower macroscopic strain (ε = 1%), the results are not as good and this, for any T , which implies an e�ect of
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Figure 16: Times to rupture of 1 300 realizations for varying T and OL, at a macroscopic strain ε = 12% alongside with

the time to rupture of the corresponding training image, and the macroscopic time. The times are displayed relatively

to the one of the training image.

the strain level on the quality of this approach. It does not corroborate the results shown in Section 3, which exhibited

the in�uence of the load on the EMD: as the load increases, so does the distance between the training image and the

realizations (Figure 10). It could con�rm the previous conclusion that theEMD is not a perfect criterion to validate the

simulation.

Some works remain to be done in order to reinforce this new method, as a sound relationship between the KAM
and the strain ε (Eq. (1)) has not been found. Indeed, it is assumed here that the maximum strain is εmax = 20% for

any load (from 1% to 12%), which is a strong assumption. Moreover, the relationship used here implies the existence of

"clusters" of high velocity that get larger with higher macroscopic strains as shown in Figure 14, but no evidence of this

phenomenon was found in this study. The GND (Geometrically Necessary Dislocations), which is an estimation of the

density of dislocation in the material, seems to be a promising parameter to obtain the aforementioned local strain maps

[10, 8]: it is more physical than the KAM , hence it should lead to a more robust estimation of the local deformation.

It is worth noting that this approach only computes the shortest path on a �xed con�guration of the material, i.e it

proposes a virtual crack path. The changes in mechanical and material properties (e.g. local Young’s modulus, strain,

stress,..) in the surrounding area of the crack tip, as it is the case for example during cyclic loading [33, 2], are not taken

into account.

As this method is to be implemented in Code_Coriolis, it is assumed that the CPU times must not be too important.

With an average of 3mn per simulation to compute the time to rupture between the left and the right edges of a 500×500
image, it is for now too high of a cost to be used like this, especially since the �nal goal is to draw a sample of several

synthetic maps and compute their time to rupture to obtain a probabilistic distribution. Several points could lead to

an improvement of the performances: �rst, only the shortest paths between the left and right edges of the image were

considered, i.e the algorithm is forced to search in a set of 251001 paths (501 nodes on the left, 501 on the right). Yet

having a prior knowledge of where is the crack starting would lead to greatly reduced CPU times since there would be

only one source.

Another idea is to compute the shortest path between reduced sets of sources and targets, assuming that this path will

overlap the true critical path after a small number of pixels. It is believed that this estimator should not be too far from

the shortest time for the path sought (computed between the left and right edges), but it would always overestimate this

targeted value (which is the minimum of all the possible times). To ensure that this method is worth the try, Dijkstra’s

algorithm was run on a single map with a varying number of sources and targets for each run, and the CPU times
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were stored for each computation. The results are shown in Figure 17, which exhibits a linear relationship between the

number of sources and the CPU time, with times going from less than 40s to more than 2mn. It appears that the method

proposed above could be interesting in order to reach reasonable CPU times.

Figure 17: CPU time for Dijkstra’s algorithm vs the number of sources and targets for the experimental map at the

macroscopic strain ε = 12% - 500 × 500 image i.e 251 001 (=501 × 501) nodes in the corresponding graph (with the

parametrization assumed in this work).

A second point is to have a look at other path�nding algorithms such as A∗ (A-star), which is supposed to be more

e�cient than Dijkstra [7].

5 Conclusion and perspectives
Using microscopical �elds permitted a re�nement in the prediction of the propagation of a crack into a metallic material.

This was rendered possible thanks to a two-steps approach that takes into account the microstructural heterogeneities

(e.g concentration of deformation at grain boundaries) in the SCC models, instead of using global macroscopic parame-

ters. As a result, one obtains a probabilistic description of the time to rupture, which is considerably more informative

than a single deterministic estimation.

Using the CCSIM to simulate microstructures has been demonstrated possible and gives promising results. However,

it has been shown that more work is required in order to assess the quality of the synthetic maps: the EMD proved

to be insu�cient by itself. A solution is that the EMD be completed by additional criteria that can infer the spatial

heterogeneities of the random �elds studied here. Variograms, periodograms, etc. seem interesting leads, but computing

those parameters on �elds as large as the ones used in this work (at least 500 × 500) is expensive. A general indicator

of the value a priori of the input parameters of the CCSIM (T and OL) is yet to be found.

The computation of the times to rupture using Dijkstra’s algorithm was found to be promising. Indeed, through a

correct parametrization of the studied random �eld into a graph, it could be possible to apply this method to numerous

�elds: temperature, chemistry, mechanics, etc., which makes this method quite generic. Yet, one must keep in mind

that a strong hypothesis lies at the base of this approach: a sound relationship between the KAM and the deformation

ε at the microscopic scale, that is of the utmost importance, has yet to be determined. This is why the results must be

interpreted with that information in mind, even though they are encouraging. Once this relationship is scienti�cally

more robust, one will be able to make proper comparisons between this new microscopic approach and the macroscopic

one.

The perspectives for this work can be resumed as follows :

• The determination of the local deformation ε should be studied, as it constitutes the basis of the approach. It is

more likely to be related to the GND than to the KAM, but both �elds are easily obtained with EBSD.

• It would be interesting to �nd an indicator that could give a value a priori of the input parameters of the CCSIM,

so as to lead to a higher proportion of good simulations without having to try a lot of combinations beforehand.

Moreover, the in�uence of OL has not been studied, since it was set to a third of the value of T . To go further,

running new simulations with di�erent values of OL is advised, as the recommendations given by [27] may not

be suitable for this application.
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• As for now, the implementation of the approach is also limited by its CPU time. The main drawback of Dijkstra’s

algorithm is its computational cost, which makes it the bottleneck of the whole process. Yet the conclusion

regarding this aspect is optimistic, as it has been shown that this could be dealt with by using more powerful

algorithms such as A∗ [7], or through a smart choice of the sources and targets.

• The full potential of the CCSIM has not been exploited, and it could be interesting to have a look at the multi-scale

approach developed by [47]. It could also allow fast simulations of microstructures in 3D.

Programming tools
The main programming tool used for the simulation of the microstructure is MATLAB 2017b [28], with the toolbox Image
Processing useful for its function xcorr2.m. It is signi�cantly faster than its Python equivalent correlate2d(x,y) from the

library scipy.signal. As mentioned above, theEMD is computed with the function scipy.stats.wasserstein_distance. Note

that other packages dedicated to optimal transport can be found (e.g POT), but optimization of computation times is not

the focus of this work.

The main tool used to deal with the simulation of the crack paths is Python 3.6: the de�nition of the adjacency matrix

was realized with the function dok_matrix from the package scipy.sparse.dok. It builds a sparse matrix that is to be

parametrized by the user. Dijkstra’s algorithm is also available on scipy [22]: scipy.sparse.csgraph.dijkstra. Those tools

were used to �nd the shortest path between the left edge and the right edge of the images.
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6 Appendices

A Experimental data - supplementary material
Figure 18 presents the distribution of the grain diameter of 7 of the 13 experimental maps. In order to determine those

values, the grains are likened to circles, and sorted in 20 ranges of values, hence the interpretation of the graph should

be realized with that information in mind.

Figure 18: Fitted distribution of the grain diameter (µm) of some experimental maps. 20 bins were used for the �t.

The acquisition of the EBSD maps were led on a Tescan Mira 3 SEM, which parameters are shown in Table 1:

B Minimum error boundary cut
As presented in the section 3, the CCSIM goes through a step to smoothen the stitching of two images side by side.

The idea is to compute the error between 2 overlapping regions, and to calculate the cumulative minimum error line by

line. It is then possible to create a continuous path of minimum error. Algorithm 3 (adopted from [27]), presents how a

2D vertical smooth stitching is done. It is easily applied to an horizontal cut. Figure 19 summarizes this process on an

example.

C Earth Mover’s Distance
The EMD is actually the optimal transport distance when considering the optimal transport (or Monge-Kantorovitch)

problem, which consists in �nding the most e�cient plan to rearrange one probability measure into another. Kan-

torovitch version goes as follows [32]: let (X,µ) and (Y, ν) be two probability measure spaces, π be a probability

measure on the product space X × Y . Let

∏
(µ, ν) = {π ∈ P (X × Y ): π[A × Y ] = µ[A] and π[X × B] = ν[B]

hold for all measurable sets A ∈ X and B ∈ Y } be the set of admissible transport plans. For a given cost function

c : X×Y → R where c(x, y) means the cost of moving from location x to location y, the total transport cost associated

to plan π ∈
∏

(µ, ν) is :

I[π] =

∫
X×Y

c(x, y)dπ(x, y) (11)

The optimal transport cost between µ and ν is :
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Parameter Value
Microscope

Accelerating voltage 30 kV

Current 75 nA

Focus Set on the EBSD scan generator

Working distance 17 mm

Acquisition step 250 nm

Analyzed zone area 350x350 µm2

Grid type Square

Points 1 960 000

Acquisition speed 252 fps

Exposure time 3918 µs

EBSD resolution 160x160 pixels

Indexation (OIM Data Collection 5.32)
Phases Ni

Binned pattern size 160

Theta step size 0,5°

Min - max peak count 3 - 7

Min peak magnitude 3

Min peak distance 10

Peak symmetry 89 %

Hough type Classic

Hough resolution Low

Convolution mask 9 x 9

Treatment (OIM Analysis 6.1.3)
Data �lter Removal of CI <0,1

Data count interval (for stat representation) 0,02°

KAM representation 1st neighbours

Table 1: Acquisition parameters of the experimental EBSD maps.

Algorithm 3 Minimum error cut

1: procedure mincut(Two overlapping patching B1, B2, with overlapping areas BOV1 , BOV2 )

2: De�ne an error surface e = (BOV1 −BOV2 )2
, size (p,m)

3: Compute the cumulative minimum error along the cutting direction :

4: for each row i in e (i = 2, ..p) do
5: for each column j in e (j = 1, ..m) do
6: Calculate the cumulative minimum error E using the 3 closest pixels on the previous

7: row (2 if on an edge) :

8: Ei,j = ei,j +min(Ei−1,j−1, Ei−1,j , Ei−1,j+1); if j = 2, ..,m− 1
9: Ei,j = ei,j +min(Ei−1,j , Ei−1,j+1); if j = 1

10: Ei,j = ei,j +min(Ei−1,j−1, Ei−1,j); if j = m

11: k ← identify the coordinate k corresponding to the entry with the smallest minimum value

12: on the last row of E (i.e arrival point of a path of minimum cost through the error surface)

13: min← trace back the minimum values for each row i going backward (i = p− 1, .., 1), and

14: each time identify the cutting path as min(Ei,k−1, Ei,k, Ei,k+1)
return Minimum error boundary cut

Tc(µ, ν) = inf
π∈

∏
(µ,ν)

I[π] (12)

More speci�cally, the p-Wasserstein distance is a �nite metric on (X,µ) de�ned as in [4] :

Wp(µ, ν)p = inf
π∈Γ(u,v)

∫
R×R

c(x, y)pdπ(x, y) (13)

In practice, the function scipy.stats.wasserstein_distance from the Scipy library [22] is used. It is de�ned as follows

when c(x, y) =| x− y |: for two distributions u and v, the �rst Wasserstein distance (named EMD when p = 1) goes as

:
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Figure 19: Stitching process: the 2 OL regions are �rst de�ned (1.), the error is then computed between these 2 regions

(2.) and a continuous path of minimum error is built (3.). The 2 images are cut along this path (4.) and �nally stitched

together, with a smooth boundary (5.).

l1(u, v) = inf
π∈Γ(u,v)

∫
R×R
| x− y | dπ(x, y) (14)
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