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Flows driven by libration, precession and tides in planetary cores
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Understanding the flows in planetary cores, i.e. the large liquid iron oceans hidden in the central
part of terrestrial planets, is a tremendous interdisciplinary challenge, at the frontier of fundamental
fluid dynamics and planetary sciences. Beyond buoyancy driven flows that constitute the standard
model for core fluid dynamics, an increasing amount of research has focused on the rotational dynam-
ics of these spinning systems, periodically perturbed by tides, precession and libration. Although of
small amplitude, those harmonic forcings are capable of exciting resonant instabilities in planetary
cores, providing alternative routes towards turbulence and magnetic field generation. In this paper,
I provide an overview of some recent works on this field, focusing on the mechanisms of tide and
libration driven elliptical instabilities. Combined laboratory experiments and pioneering numerical
simulations have allowed a full description of the stability and linear state of these flows, as well
as the investigation of some convincing planetary applications. Open questions now remain regard-
ing the non-linear saturation of the excited flows as well as their dynamo capability. These will
undoubtedly be the focus of forthcoming research, in the context of intense activity in planetary
exploration of our Solar System and others, that highlights the need to go beyond the standard
convective models.
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I. SOME CHALLENGES AND OPEN QUESTIONS IN THE FLUID DYNAMICS OF PLANETARY
CORES

A large number of celestial bodies are made of a metallic, mostly iron, central core, surrounded by a solid silicate
mantle. Examples include the Earth, the inner planets of the Solar System, the Moon and some of the large moons
of Jupiter (Io, Europa, Ganymede), large asteroids (e.g. Vesta, as revealed by the recent Dawn mission [1]), and
presumably Super-Earths in extra-solar systems (see e.g. [2]). In all cases, the metal compound was liquid when the
core formed during planet accretion, and the core has then remained liquid during some period whose duration depends
on the planet size, the core chemical content, etc. For instance, the cores of the Earth and Moon are still partly liquid
presently, as proven by seismic studies (e.g. [3]). Understanding the fluid dynamics of planetary cores, from their
formation up to their present dynamical state, remains a tremendous challenge in planetary fluid dynamics, despite
more than half a century of intense research. Beyond the challenge in fundamental fluid dynamics to understand
these extraordinary flows involving turbulence, rotation and/or buoyancy effects at typical scales well beyond our
day-to-day experience, a global knowledge of the involved processes is fundamental to a better global understanding
of the dynamics of planets. Indeed, the flow driven by buoyancy and/or rotation in the core significantly influences
the planet’s thermal and orbital evolution because of heat advection, viscous dissipation, coupling with the overlying
mantle, solidification, etc. Also, fluid motions in conducting liquid cores are the main mechanism for generating
planetary magnetic fields through dynamo action, one of the essential ingredients for planetary habitability.

The main obstacle to quantitative modelling and understanding of planetary core flows stands in the extreme
value of the involved physical dimensionless parameters. For instance, typical present-day flows at the Earth’s core
surface have a Reynolds number (measuring the relative importance of flow nonlinearity compared to viscous effects)
Re = UR/ν ' 109, where ν is the core viscosity, R its radius and U a typical velocity given by the measured drift of
magnetic patterns at the core surface: core flows are thus highly turbulent. Another relevant dimensionless parameter
is the Ekman number, which quantifies the relative importance of viscous and Coriolis forces: E = ν/ΩR2, where Ω
is the planet rotation rate (spin). Earth is a fast rotator with E ' 10−15. Schematically, even with the most powerful
computational tools, direct numerical simulation becomes barely feasible above Re ' 106 and/or below E ' 10−6,
and at this level, a single computational run takes months for a few turnover times, which is not long enough to
develop a converged statistical description of the flow. Studies relevant to planetary flows rely on the general principle
of dynamical similitude and scaling laws, supported by asymptotic theory: rather than reproducing in a model the
exact parameters of a planetary flow, the effort is focused on reaching the same dynamical regime, with the correct
balance of forces. A systematic exploration of the parameter space then allows for the derivation of generic scaling
laws that are extrapolated towards planetary scales and challenged against available data (e.g. [4]). In this approach,
laboratory experiments are especially useful because they reach more extreme values of the relevant parameters and
more extreme levels of turbulence than simulations. Besides, experiments allow for the systematic exploration of the
parameter space using very long data acquisition. The drawbacks are of course the difficulty in data acquisition, as
well as the limitations of accessible geometries and physics compared to simulations. Both approaches, underlined by
theoretical analyses, are thus fully complementary.

Since the seminal analytical works of Roberts [5] and Busse [6], most research on the fluid dynamics of planetary
cores has focused on convection. Indeed, buoyancy is naturally present in planetary cores because of both radiogenic
and primordial heat, and thermal convection takes place providing the temperature profile is super-adiabatic. Besides,
while planetary cores are mostly made of iron, they may also include some amount of light elements: convection may
then be driven by thermal energy and light elements released during the solidification of this alloy. Early analytical
works (e.g. [6]), complemented by innovative laboratory experiments (e.g. [7, 8]) and numerous direct numerical
simulations (e.g. [9]), have provided a clear picture of the convective flow organization in a rapidly rotating spherical
shell, at least for moderate values of the Ekman number and of the supercritical Rayleigh number (i.e. the ratio
between buoyancy and diffusive forces). One of the most significant outcomes of this research was to demonstrate
that those convective flows in an electrically conducting fluid can generate a dynamo [9]. Today the most advanced
numerical models, supported by asymptotic theory and by a new generation of large-scale experiments, succeed in
addressing the highly non-linear convective regimes (see e.g. [10–12]), where the buoyant flows excited at small scale
build up large vorticity structures, of importance for sustaining the dynamo effect [13].

The convective dynamo model has proven successful to explain the Earth’s magnetic field, its dipolar shape and
amplitude, as well as the existence of polar reversals (see [14] and references therein). The same model has then been
applied to other planetary cores. However, its results are sometimes difficult to reconcile with available observational
data, and its validity can be questioned in lots of planetary configurations. For instance, the evolution of the Earth’s
thermal state is still controversial, and the associated energy budget may appear as difficult to reconcile with a
convective dynamo, especially before the onset of inner core growth [15]. Also, the small size of the Moon and
Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their
past and present magnetic field, respectively [16–18]. Besides, the unusually low amplitude of the magnetic field on



3

Mercury is difficult to explain with the standard scaling laws derived from convective models [19]. More generally,
and even in planets where convection is present, it is of fundamental importance to also explore the role that other
instabilities play in the organization of core flows.

A huge amount of energy is stored in the rotational motion of planets (spin and orbit), and one could thus rely on this
reservoir to sustain intense core flows. For instance, the rotational energy of the Earth-Moon system is approximately
1.7 × 1029J, while the power necessary to sustain the present-day magnetic field of Earth is approximately 1011W.
Hence, less than 8% of the available rotation energy is necessary to sustain the dynamo over the age of Earth. The
question is, How can the system extract energy from its rotation to drive intense fluid flows? If planets were perfectly
non-deformable systems rotating with a perfectly constant rotation vector, their fluid layers would behave rigidly
and rotate as solid bodies. This is never the case. The rotation of a real celestial body is always perturbed by
gravitational interactions with its companions, which generate periodic perturbations of its shape (i.e. tides), of the
direction of its rotational vector (i.e. precession), and of its rotation rate (i.e. libration and length-of-day variation).
Those three types of perturbations are generically called harmonic or mechanical forcings. Malkus [20–22] was the
first to highlight the relevance of those harmonic forcings for planetary core flows, but his work was at that time
largely rejected, owing to a misunderstanding on the associated energy balances, as later elucidated by [23]: critiques
indeed focused upon establishing the energetic irrelevance of the laminar response to mechanical forcing, rather than
considering the fully turbulent case, which is significantly more energetic and thus more relevant for planetary bodies.
The key point is that small mechanical forcings do not provide the energy to drive the flows: they play the role of
conveyers that extract part of the available rotational energy and convert it into intense fluid motions, generated by
rotational fluid instabilities. Since the re-establishment of Malkus’ seminal ideas in the late 90’s, the fluid dynamics
driven by mechanical forcing have been the subject of a growing interest in the fluid dynamics and planetary sciences
communities, combining analytical, experimental and numerical studies (e.g. [24–27]). In this paper, I provide an
overview of some recent research and established results in this domain, followed by a personal prospect of needed
future works, focusing specifically on the elliptical instabilities driven in planetary cores by tides and libration.

II. TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES: WHAT DO WE KNOW?

Planetary cores, like any rotating fluid, support eigenmodes of oscillation called “inertial modes”, whose restoring
force is the Coriolis force and whose frequencies in the rotating frame of reference range between plus and minus
twice the spin frequency. Those modes are usually damped by viscosity; but they can be resonantly excited by the
small, yet regular, harmonic forcings of libration, precession and tides (see e.g. the review [28]). Let us consider for
instance a planet with an orbiting moon along an elliptical orbit (figure 1), both having a solid mantle and liquid core.
Gravitational interactions produce tides on the planet and moon, i.e. give an ellipsoidal shape to all layers, including
surfaces and core-mantle boundaries. Most large planets are non-synchronised, i.e. their spin and the moon’s orbital
rate are different: so the rotation rate of the fluid core and of its tidal distortion are different. As a result, the base
flow in the planet core, in the frame of reference where the elliptical deformation is stationary, consists in a rotation
along two-dimensional elliptical streamlines. On the contrary, most moons are synchronized, i.e. their spin equals
their orbital rate. Hence, they always show the same side to their planet, their tidal distortion is frozen in their
mantle, and the rigid ellipsoidal moon rotates as a whole at a constant rate. But this is only true on average: due to
the eccentricity of its orbit, the moon’s orbital rate varies along the orbit following Kepler’s third law, and a restoring
torque affects the moon’s spin, which actually undergoes small oscillations around its mean value, called librations.
The moon’s core base flow in the frame of reference where the elliptical deformation is stationary then consists
in oscillations along two-dimensional elliptical streamlines. More information about the astrophysical complexities
behind this very schematic view can be found for instance in [29]. Here we simply notice that the two configurations
described above have the basic ingredients for exciting the generic “elliptical instability”, described for instance in
[30]: as is well known for unbounded vortices in various contexts ranging from wakes to turbulence, such elliptical
base flows can non-linearly resonate with two inertial modes of the rotating fluid, giving rise to three-dimensional
flows and turbulence.

From an analytical point of view, the elliptical instability can be tackled by two different approaches. The global
approach consists in decomposing the fluid motions as the elliptical base flow plus some inertial modes, then looking
for resonances. Instability takes place when the non-linear interaction between the base flow and some inertial mode
“A” excites an inertial mode “B”, while the non-linear interaction between the base flow and mode B reinforces
mode A. This is possible only when some resonance conditions are fulfilled: the frequency of the tides or libration
forcing must be equal to the difference between modes A and B frequencies, and the azimuthal wavenumber of the
forcing (i.e. 2 for the elliptical flows considered) must be equal to the difference between modes A and B azimuthal
wavenumbers. Note that the former condition imposes a restriction on the possible range of exciting tide or libration
frequencies, since inertial mode frequencies range between plus and minus twice the spin frequency in the spin frame
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of reference. In complement to the global approach, the local approach quantifies the threshold and growth rate of
the elliptical instability. Following the well-known Wentzel-Kramers-Brillouin method, it consists of looking for short
wavelength, plane wave perturbations on the base flow. Additional complexities of planetary interest, such as the
presence of a stable density profile and/or of an ambient magnetic field, can be straightforwardly introduced. Generic
analytical formulae are obtained, in the range of frequencies where elliptical instability is possible [29]: the growth
rate is proportional to the amplitude of the elliptical forcing (i.e. the product of the streamline ellipticity times
the differential rotation of the fluid v.s. the elliptical distortion), minus the dissipative effects coming from viscous
dissipation, and possibly from Joule dissipation. The effect of a stable density profile is more complex, depending on
the specific shape of gravitational isopotentials and isopycnals: a stratification can then either enhance or inhibit the
elliptical instability.

These analytical results have been validated by experimental investigations, including those based on the two set-
ups presented in figure 2 [31–34]. Figure 2a shows a laboratory model of a rotating planet, tidally deformed by
an orbiting moon. It consists of a hollow sphere of radius 10cm, cast in a silicone gel that is both deformable and
transparent. The sphere is filled with water and set in rotation about its vertical axis at a constant angular velocity,
up to 180rpm. In addition, to generate a tidal deformation on the rotating fluid, two vertical cylindrical rollers are
applied symmetrically on the sphere and rotate independently at a constant angular velocity, up to ±180rpm. With
this system, Ekman numbers down to 5×10−6 can be reached. In order to excite elliptical instability at this (relatively)
large Ekman number in comparison with planets, the amplitude of the tidal deformation β is exaggerated, up to 10−1,
while the corresponding planetary values are on the order of 10−7 − 10−4. Figure 2b shows a laboratory model of a
librating planet. The working tank consists of an hollow ellipsoid of typical radius 10cm, machined cast from acrylic,
and filled with water. Here also, the harmonic forcing is replicated using two motors. The first motor rotates a
turntable and super-structure at a constant angular velocity of 30rpm, while the second superimposes a sinusoidal
oscillation of the working tank. As in the tides experiments, the relatively large value of the Ekman number 2× 10−5

is compensated for by an exagerated amplitude of harmonic forcing, with an ellipsoidal deformation β = 0.34 and
a libration angle up to 140o. Through a systematic exploration of the accessible parameter range, changing the
amplitude and frequencies of the harmonic forcings, those two set-ups have validated the main conclusions of the
analytical global and local approaches, using simple flow visualization: namely, the existence of a limited range of
excitation frequency, the existence within this range of various flow resonances, and the validity of the threshold
and growth rate formulae [31–35]. Recently, particle image velocimetry measurements in the spin frame of reference
have quantitatively validated the expected analytical base flow as well as the “global” mechanism for resonance by

orbit	

ellipsoidal	
moon	

/dally	deformed	
planet	

torque	inducing	
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<	

<	

<	 >	

FIG. 1. Schematic representation of a planet - moon system with an elliptic orbit (top view), illustrating the tidal distortion of
the planet, the frozen-in ellipsoidal shape of the moon, and the libration induced by the gravitational torque (see more details
in e.g. [31]). All angles and dimensions have been exaggerated for clarity purpose.
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explicitly exhibiting the superimposition of two inertial modes [33, 34].
The drawbacks in experiments are of course the difficulty in data acquisition (e.g. PIV remains up-to-now limited

to two-dimensional measurements in a single equatorial plane), as well as the limitations of accessible geometries
and physics (e.g. how to make a radial gravity field in a spherical geometry in the laboratory?). Hence, laboratory
approaches have been fruitfully complemented by numerical simulations. The great difficulty here stands in the
specific geometry necessary to excite elliptical instability driven either by tides or libration. Indeed, most existing
numerical tools for studying planetary cores dynamics assume an axisymmetry of the system around its rotation axis
in order to use a fast and powerful spherical harmonics decomposition. Accounting for the ellipsoidal shape of flow
streamlines in planetary cores necessitates either tricky boundary conditions [37], “virtual” body forces to locally
deform otherwise circular streamlines [38], or the use of alternative, less efficient, numerical methods. Over the last 6
years, significant results have been obtained using finite elements and spectral elements methods, addressing the full
ellipsoidal geometry of planetary cores with Ekman numbers down to E = 5×10−5 [36, 39, 40] (see figure 3). Beyond
further validating analytical results regarding base flow, mode coupling, threshold and growth rate, those simulations
have tackled configurations of planetary interest, but out of reach of laboratory investigations: for instance, the
existence in real planets of polar flattening [39], of a radial stratification in subadiabatic cores, or of convection driven
by radial gravity in superadiabatic cores [41].

Satisfyingly, none of these additional complexities significantly challenges the existence of the tide and libration
driven elliptical instabilities in planetary configurations: on the basis of the validated scaling laws, extrapolated
towards real planetary values, their presence has thus been quantitatively envisaged in several planets. To cite a few,
elliptical instability is expected in most known Super-Earths [29], since planets detected up to now in extra-solar
systems are especially close to their stars, hence especially deformed elliptically. The same conclusion applies in our
Solar System to Io, significantly deformed by the nearby giant planet Jupiter [42]. The resulting three-dimensional
core flow is then expected to induce a magnetic field from the ambient Jovian magnetic field, if not generating its
own dynamo, hence contributing to the surprising magnetic signature detected by the Galileo space mission [43, 44].
Elliptical instability is also strongly expected in the Moon’s core during the Late Heavy Bombardment (4.1-3.8 Gy
ago), when the meteorites impacts were large enough to desynchronise the Moon, inducing either differential rotation
between the liquid core and the elliptical distortion, or at least large amplitude libration [17]. The resulting three-
dimensional flow is then expected to have produced a lunar dynamo, explaining part of the surprising magnetic

working	tank	

“spin”	motor	

camera	for	
PIV	in	the	

spin	frame	of	
reference	

rollers	mimicking	8des	 “libra8on”	motor	

(a)	 (b)	

FIG. 2. Pictures of (a) the tides set-up at IRPHE, France and (b) the libration set-up at UCLA, USA ( c©A. Grannan). Typical
radius of both tanks is 10cm, typical spin velocity is 30 − 180rpm.
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signature recorded in rock samples, brought back by Apollo space missions and recently re-analysed (see e.g. [45]).
On Mars, an innovative scenario has been proposed by [46], where a large asteroid captured on a retrograde orbit may
have excited a tide driven elliptical instability, hence a dynamo, during hundreds of millions of years before colliding
with the planet.

The situation for the Earth is more controversial, because present estimates of its core deformation place it at the
edge of instability threshold, in the absence of magnetic field. Two points are however worth being mentioned: the
early Earth, which rotated faster and was more deformed by the then closer Moon, was clearly unstable to the tide
driven elliptical instability; and evidence suggesting that Earth’s magnetic field already existed 4Gy ago [47], i.e.
largely before the onset time of inner core crystallisation, is difficult to explain through a convectively driven dynamo
alone [15, 48]. A tidal instability in the Earth’s core, responsible for the geodynamo, is conceivable, and the global
energy budget of the Earth’s rotational dynamics provides an additional argument for this. Indeed, models supported
by “lunar laser ranging” measurements indicate that 3.7TW is continuously injected from the Earth-Moon-Sun orbital
system into the Earth, while 0.2TW is dissipated into the Earth’s atmosphere and mantle, 1TW in the deep ocean,
and 1.5 to 2TW in shallow seas [49]. Hence, 0.5 to 1TW of the dissipated rotational power is still missing in the
current energy budget: it may very well be continuously injected into the outer core by the excitation of a tide driven
elliptical instability, where it can fulfill or can have fulfilled the energy requirements of the geodynamo estimated to
range between 0.1 to 2TW [50].

III. TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES: WHAT DO WE NEED TO
KNOW?

Schematically, one can claim today that the mechanisms and thresholds of elliptical instabilities driven by tides
and libration are well known (see [28] and references therein). But at least two very challenging points remain to be
tackled to validate those mechanically driven flows for planetary applications.

First, the saturation process of the excited elliptical instability remains unknown, giving rise either to large cycles
of growth, saturation and collapse (as first reported by [22]), or to sustained bulk-filling turbulence (see e.g. [33]).
Explaining these complex behaviors is very challenging and reflects in several aspects the intense research activity
in rotating turbulence [51, 52]: it is clearly beyond the scope of this paper. But without claiming exhaustivity or
mathematical rigor, one can suggest here, from very simple considerations, two plausible physical mechanisms in
connection with the two observed types of saturation. In the first mechanism, excited inertial modes, once reaching
a sufficient amplitude, can non-linearly self-interact and give rise to a quasigeostrophic flow, which perturbs the
rotating base flow and detunes the excited modes, inducing the collapse of the whole resonant scaffolding. In the
second mechanism, each of the first resonating inertial modes, once reaching a sufficient amplitude, could act as
a seed to non-linearly excite two additional inertial modes, hence priming an energy cascade of triadic resonances.
Such a cascade has been described recently around internal-wave attractors [53], in the closely related context of
the parametric subharmonic instability of internal gravity waves [54], another vivid research area in geophysical fluid
mechanics (e.g. [55–57]).

In addition to this question of flow saturation, a better knowledge of the statistics of the excited turbulence is nec-
essary to understand the energy repartition between the various time and length scales in planetary applications: is066601-7 Favier et al. Phys. Fluids 27, 066601 (2015)

FIG. 3. Volume rendering of the enstrophy in the bulk of the ellipsoid (the boundary layers are removed from the
visualization) for case A6. We visualize the flow just during the exponential growth of the instability (left, t = 68, see I
in Figure 2), during the first collapse (middle, t = 75, see II in Figure 2), and during the quasi-steady saturated state (right,
t = 200). A first movie is available as a supplement showing the collapse of the inertial modes from t ≈ 68 to t ≈ 78 in
the librating frame. It can be compared with a similar movie (presented in the frame rotating at constant rate Ω0 and
not in the librating frame) corresponding to case V in Grannan et al.22 A second movie showing the quasi-steady regime
(186 < t < 196) is also available. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4922085.1] [URL: http://dx.doi.org/
10.1063/1.4922085.2]

where Ub is the base flow defined by Eq. (6) and ⟨.⟩bulk denotes the volume average over the bulk
of the flow. Similar to Cébron et al.,33 the bulk is obtained by removing the contribution from the
viscous boundary layer by assuming that their thickness is of order13

δ =


2E
f
. (12)

First, a large-scale Reynolds number, based on the semi-major axis of the ellipsoid and the root-
mean-square velocity, is defined using our dimensionless units as

ReL =
Urms

E
. (13)

In addition, we also quantify the small-scale Reynolds number based on the fluctuations generated
by the instability. In order to measure the typical length scales associated with the fluctuations, we
defined the correlation length scale of the vertical velocity in the bulk of the domain as

l0 =

 r0

0

⟨uz(x)uz(x + rei)⟩bulk

u2
z(x)

�
bulk

dr, (14)

where the integral of the correlation function is carried out up to the first zero-crossing only. We
only consider the transverse correlations (where we average over both horizontal directions) of
the vertical velocity since the horizontal components are dominated by the presence of large-scale
inertial modes (see Sec. V D). The small-scale Reynolds number is then defined as

Rel =
Urmsl0

E
. (15)

Finally, the Rossby number associated with the instability is given in our dimensionless units by

Ro =
Urms

2l0
. (16)

The values of these dimensionless numbers, time-averaged during the quasi-steady saturated phase,
are gathered in Table I. In all cases, the large-scale Reynolds number is very large, but note that
for all cases considered in this section, we did not observe a destabilization of the boundary layers
due to centrifugal instabilities, for example. The small-scale Reynolds number is however much
smaller, which explains why the unstable cases A2 and A3 remain laminar even in the presence
of the instability. As the Ekman number is decreasing further, Rel is rapidly increasing up to 136
for case A7 which implies that the small-scale flow is in a developed turbulent state. Finally, the
Rossby number is gradually increasing as the Ekman number decreases but is always smaller than
unity. This indicates that the fluctuations associated with the instability are significantly affected by
rotation in all the cases considered here.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
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FIG. 3. Volume rendering of the enstrophy in the bulk of a librating ellipsoid, unstable to the libration driven elliptical
instability. From left to right: inertial modes excited during the initial exponential growth of the instability; first saturation
of the flow; and quasi-steady saturated turbulent state. For this numerical simulation, the libration frequency is equal to four
times the spin frequency and the Ekman number Enum,lib = 10−4. Reprinted from [36] with the permission of AIP Publishing.
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this mechanically forced turbulence of rotating turbulence type, of Kolmogorov turbulence type, or of wave turbulence
type? Only the latest experimental investigations with quantitative flow measurements [33, 34] and the latest numer-
ical simulations reaching low enough Ekman number [34, 36] have begun to quantitatively investigate the asymptotic
time and space spectra of the tide and libration driven turbulence. Strong signatures of triadic resonance cascade
have been exhibited, as well as some possible universal behaviors coincident with rotating turbulence, with a spatial
and temporal energy spectra scaling approaching k−3 and ω−3, respectively (see e.g. figure 4). Nevertheless, present
investigations are inherently limited for planetary applications by the relative large values of the accessible elliptical
deformations and Ekman numbers. Indeed, for studying the threshold and initial growth of the instability, it was
sufficient to reproduce in experiments and simulations the ratio between elliptical forcing and dissipation: the trick
then consisted in artificially increasing the forcing to compensate for the overestimated dissipation. But the study
of non-linear effects a priori necessitates tackling the planetary relevant limit of small ellipticity, hence of very small
Ekman number. “Local” numerical approaches then offer a nice way to reach these limits, considering only a small
rectangular domain within the rotating ellipsoidal body, with periodic boundary conditions [58]. Such models allow
high and reasonably fast resolution of the full non-linear dynamics without solving the complex boundary layers, the
ellipsoidal flow being imposed as a background. In their first study, Barker and Lithwick [58] showed that the nonlin-
ear outcome of the resonant flow leads to the formation of long-lived geostrophic vortices, shutting off the elliptical
instability. But questions remain regarding the realistic attenuation of these vortices, ending up being the size of the
considered box following an inverse cascade mechanism. For instance, adding Joule dissipation from a weak initial
magnetic field prevents those large-scale vortices from forming, promoting a quasi-steady state of dissipation [59].
Clearly, the non-linear fate of the elliptical instability in a planetary context deserves additional investigations in the
near future, combining not only experiments and numerical tools, but also theoretical analyses.

The second challenging prospect in my opinion concerns the magnetohydrodynamics of flows driven by tides and
libration, which is still largely unknown. In particular, while dynamo action from elliptical instability has been
assumed in several planetary applications [15, 17], it has up to now effectively been realized only twice, in numerical
simulations of limited dynamical regimes. The reason for this stands in the huge numerical challenge in solving flows
in fully three-dimensional geometries with the addition of the induction equations (see e.g. [60]). The first numerical
realization of a libration driven dynamo dates back to 2013 [61], considering the kinematic dynamo of an unstable
flow at E = 3 × 10−3 for a simplified geometry, where the planetary core is spheroidal and librating about an axis
perpendicular to its symmetry axis. The first tidal dynamo was shown the following year by [38], considering aGrannan et al. Tides and Libration 35
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Figure 8. a) The time-averaged power-spectrum of the saturated turbulent flow in the current tidal studies

where ftide “ 4 and β “ 0.09. The laboratory case, LT 8, where E “ 1.5 ˆ 10´5 is shown in blue. The

numerical case, NT 4, where E “ 5 ˆ 10´5 is shown in red. b) The time-averaged power-spectrum of the

saturated turbulent flow in the libration studies where εlib “ 0.8 and flib “ 4. The laboratory case, V from

Grannan et al. (2014), where E “ 2.7ˆ10´5 is shown in blue. The DNS case, A6 from Favier et al. (2015)

where E “ 10´4, is shown in red.

FIG. 4. Power-spectrum of the saturated turbulent flow in (a) tidal experimental and numerical studies and (b) libration
experimental and numerical studies. In all cases, the forcing frequency is equal to four times the spin frequency. Ekman
numbers are respectively equal to Eexp,tide = 1.5 × 10−5, Enum,tide = 5 × 10−5, Eexp,lib = 2.7 × 10−5, Enum,lib = 10−4.
Reproduced from [34].
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spherical geometry where a “virtual” body force locally transforms circular streamlines into ellipsoidal streamlines.
A magnetic field with a dominant dipolar component was obtained from a self-consistent dynamo calculation at
E = 5 × 10−3, as shown in figure 5. In addition to these studies, [59] also exhibited dynamo action in their local
numerical model, for a much more turbulent tidal flow; but again the extension of local computations towards global
conclusions still deserves investigations. In short, those three seminal studies have opened the way for a systematic
exploration of the parameter space and for a systematic characterization of the obtained magnetic field, similarly to
what has been done since the first convective dynamo realization in 1995 [62]. Among the exciting questions to be
answered for planetary applications, one can mention the typical shape of the generated magnetic field (i.e. dipolar
or not, with an amplitude fixed by energy balances [63]), as well as the existence of magnetic field reversals. Here
also significant progress is expected in the next years, through a thoughtful use of the various numerical tools and
analytical approaches, and even laboratory experiments.

IV. BEYOND TIDE AND LIBRATION DRIVEN ELLIPTICAL INSTABILITIES

In conclusion, research in core fluid dynamics lives in a very exciting time today, in the context of an intense activity
in planetary exploration, involving past, current and future space missions: see for instance the paleomagnetic re-
analyses of Moon’s Apollo samples (e.g. [45]); the ongoing Dawn mission around asteroid Vesta and dwarf planet
Ceres (e.g. [1]); the forthcoming Juice mission, which will spend at least three years making detailed observations
of the giant gaseous planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa; and the ongoing
NASA and ESA extrasolar systems explorations. The analysis and interpretation of available and forthcoming data
necessitate innovative fundamental models, providing alternative mechanisms to the standard convective models in
explaining the variety of behaviors and magnetic fields observed in planets, both in our Solar System and in extrasolar
ones. For the specific case of tide and libration driven elliptical instabilities, combined theoretical, numerical, and
experimental approaches have led to significant progress. Yet many open questions remain, regarding especially the
non-linear saturation and turbulent state of the flows, as well as the shape and intensity of the corresponding dynamo.
Beyond tide and libration driven elliptical instabilities, other routes towards core turbulence and dynamos have also
been recently explored. For instance, the nonlinear self-interaction of an excited inertial mode, directly forced by
harmonic forcing, drives an intense and localized axisymmetric jet that becomes unstable at low Ekman number
because of a shear instability [64]; the characteristics of the excited turbulence and the dynamo capability of this flow
remain to be studied. Also, the precession driven flow has recently been reinvestigated, showing the prevalence of a
shear-driven parametric instability [65]; an inverse cascade then sets in, leading to the formation of large scale cyclones
capable of dynamo action [66]. Besides, other types of mechanical forcing, like nutation and latitudinal libration [67],
are present at the planetary scale, but their study is still in its infancy. Finally, it is worth mentioning that while

The Astrophysical Journal Letters, 789:L25 (5pp), 2014 July 1 Cébron & Hollerbach

Figure 3. Top: time evolution of the magnetic energy Emag for equilibrated
fully coupled dynamos: from the bottom to the top, the parameters (ε;Pm)
are (12; 7.5), (13; 5), (11; 10), and (12; 10). Middle: magnetic field lines and
velocity magnitude (equatorial slice) for the last time step (t = 150) of the
simulation (ε; Pm) = (13; 5) shown above. Bottom: evolution of the Elsasser
number Λ with the dynamo threshold distance.

(A color version of this figure is available in the online journal.)

multipolar instabilities (Cébron et al. 2014), could be tackled
using the same approach.

This work originates from an initial idea of M. Le Bars and
P. Le Gal, which was first tackled by J. Leontini; D.C. is grateful
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Figure 4. Spectra of time-averaged kinetic energy and magnetic energy in
function of the degree l of spherical harmonics (ε = 12, Pm = 10).

(A color version of this figure is available in the online journal.)

to all of them for illuminating discussions about this approach.
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the various mechanical forcings should be first studied separately, several of them are present simultaneously in each
real planet; non-linear interactions are then to be expected, as highlighted in [68] and [69]. Mechanical forcings may
also superimpose on an existing turbulent convective field, and the subsequent non-trivial couplings deserve in-depth
investigation, following [70]. There is no doubt that the interdisciplinary research area of rotating core fluid dynamics
will remain vibrant in the next years, benefiting from the simultaneous advances in fluid metrology, non-standard
numerical methods, and planetary exploration.
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[11] Céline Guervilly, David W Hughes, and Chris A Jones, “Large-scale vortices in rapidly rotating rayleigh–bénard convec-

tion,” Journal of Fluid Mechanics 758, 407–435 (2014).
[12] S Stellmach, M Lischper, K Julien, G Vasil, JS Cheng, A Ribeiro, EM King, and JM Aurnou, “Approaching the asymptotic

regime of rapidly rotating convection: Boundary layers versus interior dynamics,” Physical Review Letters 113, 254501
(2014).
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