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Introduction

The chemostat model describes microbial ecosystems which are continuously fed by nutrients, as it can be found in natural environments, such as lakes, lagoons, wetlands... and in experimental or industrial bioreactors. Being open systems, chemostats are naturally subject to external perturbations such as species invasion.

In this paper, we focus on the classical chemostat model, for which the Competitive Exclusion Principle (CEP) holds [START_REF] Armstrong | Competitive exclusion[END_REF]. For a single limiting resource, the CEP states that no more than one species (generically) survives in the long term under constant fed conditions (input substrate concentration and flow rate of the incoming resource), see, e.g., [START_REF] Harmand | The chemostat, mathematical theory of continuous culture of micro-organisms[END_REF][START_REF] Smith | The theory of chemostat, dynamics of microbial competition[END_REF].

For dynamical systems, resilience is often described as the ability of a system to return to an original state (typically a steady state) after a transient perturbation [START_REF] Martin | Defining Resilience Mathematically: From Attractors To Viability, In "Viability and Resilience of Complex Systems, Understanding Complex Systems[END_REF]. In the present work, we wish to study the resilience of the chemostat model to invasions by other species considered as disturbances. In particular, we are interested in the possibility of extending the resilience domain using time-varying input conditions.

For the chemostat model, it has already been pointed out that non-constant removal rates could allow the coexistence of two species, under some precise integral conditions, see for instance [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF][START_REF] Butler | A mathematical model of the chemostat with periodic washout rate[END_REF][START_REF] Lenas | Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate[END_REF][START_REF] Peng | Global Attractivity in a Periodic Chemostat with General Uptake Functions[END_REF][START_REF] Nakaoka | How can three species coexist in a periodic chemostat? Mathematical and Numerical Study[END_REF][START_REF] Wang | Competition in a chemostat with Beddington DeAngelis growth rates and periodic pulsed nutrient[END_REF] for periodic removal rates or [START_REF] Lobry | Stability loss delay in the chemostat with a slowly varying washout rate[END_REF] for slow varying environments. The idea is to create a time-varying growth environment which alternates the favored species. Recently, the question of quantifying the excursions of the state variables in the chemostat model under periodic removal rates, has been studied in [START_REF] Bayen | Optimal periodic control for scalar dynamics under integral constraint on the input, Mathematical Control and Related Fields[END_REF][START_REF] Bayen | Optimal periodic control of the chemostat with Contois growth function[END_REF], but for the mono-specific case only. To our knowledge, it has not been investigated how to synthesize time-varying removal rates allowing resilience of a mono-specific chemostat system in presence of an invasion by a new species, in such a way that the resident species returns to the same density level than before invasion an infinite number of times. The design of such time-varying removal rate is precisely the matter of the present work.

The paper is structured as follows. In Section 2, we state the resilience problem in the context of the chemostat model with two species. In particular, we show the existence of a threshold on the level of the resident species above which resilience is lost that allows us to introduce a concept of weak resilience in a time varying context. In Section 3, we provide a construction of a time-varying removal rate which guarantees weak resilience in the sense given in Section 2. In Section 4, we show that there exist weakly resilient periodic solutions, and conjecture that there exists an unique periodic solution associated to the time-varying removal rate that we construct. Then, we show that any solution of the system associated with this time-varying removal rate converges to this periodic solution.

Assumptions and definition of weak resilience

We start by recalling the chemostat model with two microbial species of concentrations x 1 , x 2 , respectively, that compete for a single resource of concentration s:

   ṡ = -µ 1 (s)x 1 -µ 2 (s)x 2 + D(s in -s), ẋ1 = (µ 1 (s) -D)x 1 , ẋ2 = (µ 2 (s) -D)x 2 ,
(2.1) in which the yield coefficients are equal to one. Parameters D and s in are respectively the removal rate (imposed by the input flow rate) and the input concentration of the resource. Here, species 1 and 2 play the respective roles of the resident and invasive species, as described in the introduction: the chemostat is considered first with the species 1 (the resident) alone and at some time t 0 (chosen equal to 0 for simplicity), the invasive species 2 appears. In the sequel, we consider that the following assumption on the growth functions

µ i (•), i = 1, 2 in (2.1) is fulfilled. Assumption 2.1. The functions µ i (•) are of class C 1 , monotone increasing with µ i (0) = 0, i = 1, 2.
For i = 1, 2, the break-even concentration for species i (related to the parameter s in ) is defined as

λ i (D) := sup {s ∈ [0, s in ] ; µ i (s) < D} ∈ [0, +∞], i = 1, 2.
When λ i (D) < +∞, and because µ i are strictly monotone, one has

µ i (λ i (D)) = D ⇐⇒ λ i (D) = µ -1 i (D).
Consider now the competition between the two species. The CEP states that only the species that realizes the minimum of the numbers λ i (D), i = 1, 2 (with D > 0) has a non null concentration at steady state. For a given constant D with 0 < D < µ 1 (s in ), this means that species 1 is excluded by an invasion by a species 2 when λ 2 (D) < λ 1 (D), or equivalently that the state of (2.1) converges asymptotically to (λ 2 (D), 0, s in -λ 2 (D)). Let us now consider a situation for which the dominance of one growth function over the other one is alternated with respect to the level of the resource, in the following way.

Assumption 2.2. There exists s ∈ (0, s in ) such that

(µ 1 (s) -µ 2 (s))(s -s) > 0, s ∈ [0, s in ] and s = s. (2.2)
In the rest of the paper, we assume that this assumption holds true. Note that for Monod's growth functions [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF] (which are quite popular in microbiology and bio-processes), one has

µ i (s) = μi s K i + s , i = 1, 2.
Assumption 2.2 then amounts to have the following condition

0 < μ2 K 1 -μ1 K 2 < (μ 1 -μ2 )s in to be fulfilled. From (2.
2), one must have µ 1 (s)µ 2 (s) = 0, therefore we set

D := µ 1 (s) = µ 2 (s).
We formulate the problem of invasion of species 1 by species 2 as follows. Suppose that only species 1 is present in a bioreactor, at the initial time (i.e., x 2 = 0 in (2.1)). For a constant value of D, a straightforward analysis shows that a necessary condition for species 1 to set up at steady state is to have λ 1 (D) < s in . Then, the corresponding steady state is given by (λ 1 (D), s inλ 1 (D)), which is globally asymptotically stable in the (s, x 1 ) positive plane (see for instance [START_REF] Harmand | The chemostat, mathematical theory of continuous culture of micro-organisms[END_REF]). Moreover, if D is less than D, then the concentration of species 1 at steady state, x eq 1 , is necessarily such that x eq 1 ≥ x1 with

x1 := s in -µ -1 1 ( D) = s in -s > 0.
Suppose now that a new species (species 2) that fulfills Assumption 2.2, invades the growth vessel and that the removal rate D is less than D. Then, the new system (2.1) (with x 2 = 0) will not be able to return to the original state (from the CEP cited before, the state of (2.1) converges asymptotically to (λ 2 (D), 0, s in -λ 2 (D))), after this perturbation. This is why, we say that the dynamics is not resilient when the concentration x 1 at steady state, before the invasion, is above the threshold x1 . The question of interest is to investigate if, even so, the system can be resilient with x 1 above the threshold x1 , when considering time-varying removal rate D(•). First, one can easily check that the domain

{(s, x 1 , x 2 ) ∈ R 3 + ; s + x 1 + x 2 = s in },
is an invariant and attractive set for the dynamics (2.1) when D(•) is persistently exciting 1 . Assuming that system (2.1) is already at steady state before invasion, we shall consider in the sequel the reduced dynamics on this domain, that is,

ẋ = f (x, D) := (µ 1 (s in -x 1 -x 2 ) -D)x 1 (µ 2 (s in -x 1 -x 2 ) -D)x 2 , (2.3) 
defined on the invariant set

S := {x ∈ R 2 + ; x 1 + x 2 ≤ s in }.
From now on, we consider D(•) as a control variable, i.e., as a measurable function of time taking values within some interval [D m , D M ] where the minimum and maximum dilution rates D m and D M satisfy the inequality:

0 < D m < D < µ 1 (s in ) < D M . (2.4) 
Note that D M is large enough to have the possibility to drive solutions of (2.3) to the washout 2 of both species.

To introduce resilience, we consider a threshold

x r 1 ∈ (x 1 , s in ),
for species 1 aiming at keeping x 1 above x r 1 as much as possible. It is then natural to introduce the subset of S, K(x r 1 ), defined as: K(x r 1 ) := {x ∈ S ; x 1 ≥ x r 1 and x 2 > 0}, and to ask about weak invariance properties of K(x r 1 ) for the dynamics (2.3) in the context of viability theory [START_REF] Aubin | Viability Theory[END_REF]. Recall that given a controlled system ẋ = g(x, u) (with g : R n × R m → R n ) and given a closed subset K ⊂ R n , the viability kernel, denoted by V iab(K), is defined as the largest subset of initial states x 0 ∈ K for which there is an admissible control u(•) such that the unique solution x(•) of the dynamics associated with u and such that x(0) = x 0 , satisfies x(t) ∈ K for any time t ≥ 0 (see [START_REF] Aubin | Viability Theory[END_REF]). We then say that the viability kernel is weakly invariant. Going back to (2.3), we assume in the rest of the paper (in addition to Assumptions 2.1, 2.2) that the following assumption is fulfilled:

Assumption 2.3. The threshold x r 1 satisfies 0 < D m < µ 1 (s in -x r 1 ). (2.5)
Remark 2.1. The choice of the three parameters D m , D M , and x r 1 is crucial throughout this work. In this approach, note that we first chose D m , D M satisfying (2.4), and then we supposed that the threshold x r 1 satisfies (2.5). It is worth to mention that we could alternatively fix x r 1 ∈ (x 1 , s in ) and then choose the minimal and maximal dilution rates in such a way that (2.5) and the inequality µ 1 (s in ) < D M are verified.

One has the following property, in terms of viability analysis (hereafter cl S is the closure of a set S ⊂ R 2 ).

1 By persistently exciting, we mean that the non-negative function D(•) is such that +∞ 0 D(t)dt = +∞, see [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF]. 2 This means that for D M sufficiently large (D M > µ 1 (s in )), solutions of (2.3) converge to the origin.

Lemma 2.4. The viability kernel V iab(cl K(x r 1 )) of the set K(x r 1 ) for

(2.3) satisfies V iab(cl K(x r 1 )) = [x r 1 , s in ] × {0}. Proof. Recall that x r 1 is such that x r 1 ∈ (x 1 , s in -λ 1 (D m
)) (by (2.5)). Assumptions 2.1, 2.2 and (2.4) also imply the inequality 0 < λ 2 (D m ) < λ 1 (D m ) < s. Take an initial condition (x 1,0 , x 2,0 ) in cl K(x r 1 ). If x 2,0 = 0, the solution of (2.3) verifies x 2 (t) = 0 for any t > 0 and any time-varying D(•). From (2.5), we can choose a constant D such that 0 < D m ≤ D < µ 1 (s inx r 1 ), and we observe that (2.3) with D(t) = D satisfies

x 1 = x r 1 ⇒ ẋ1 = (µ 1 (s in -x r 1 ) -D)x r 1 > 0 and x 1 = s in ⇒ ẋ1 = -Ds in < 0. Thus, this constant D prevents x 1 (•) to leave the interval [x r
1 , s in ] over [0, +∞). Assume now that x 2,0 > 0. Then, a solution x(•) of (2.3) associated with an admissible time-varying function D(•) verifies x 2 (t) > 0 for any time t ≥ 0. Suppose by contradiction that x(•) stays in K(x r 1 ) for any time t ≥ 0. Then one has s(t) < s inx r 1 < s for any time t ≥ 0. By Assumption 2.2, one has for any t ≥ 0, µ 1 (s(t))µ 2 (s(t)) < 0 and thus, we deduce the inequality

ṡ(t) > -µ 2 (s(t))x 1 (t) -µ 2 (s(t))x 2 (t) + D m (s in -s(t)) = (D m -µ 2 (s(t)))(s in -s(t)), t ≥ 0. Notice that any positive solution ζ(•) of ζ = (D m -µ 2 (ζ(t)))(s in -ζ(t)) converges to λ 2 (D m ) when t → +∞. From (2.5) one has λ 2 (D m ) < s in -x r
1 , hence there exist t 1 ≥ 0 and s ∈ (0, λ 2 (D m )) such that one has ζ(t) > s for any t ≥ t 1 . From the preceding inequality, we deduce that s(•) satisfies s(t) ≥ ζ(t) for any time t ≥ 0. We thus deduce that for any time t ≥ t 1 , one has

µ 1 (s(t)) -µ 2 (s(t)) ≤ c := min{µ 1 (σ) -µ 2 (σ) ; σ ∈ [s, s in -x r 1 ]} < 0. If we differentiate the function q 1 := x 1 /x 2 w.r.t. t, we find that q1 = µ 1 (s(t)) -µ 2 (s(t)) q 1 , with s(t) = s in -x 1 (t) -x 2 (t).
One then obtains q1 < c q 1 . Therefore q 1 decreases to zero and x 1 as well, leading to a contradiction. We conclude that the only solutions of (2.3) that stay in cl K(x r 1 ) for any time are the ones starting with x 2,0 = 0 as was to be proved. This lemma shows that for any given threshold x r 1 satisfying (2.5), i.e., such that x1 < x r 1 < s inλ 1 (D m ), (or equivalently λ 1 (D m ) < s inx r 1 < s), the dynamics (2.3) is not resilient for the domain K(x r 1 ) in presence of species 2. This is precisely our starting point to introduce the concept of weak resilience.

Definition 2.5. Let x r 1 ∈ (x 1 , s in -λ 1 (D m )). The system (2.
3) is said to be weakly resilient for the set K(x r 1 ) if for any initial condition in K(x r 1 ), there exists a time-varying function D(•) with values in [D m , D M ] such that the corresponding solution of (2.3) satisfies meas {t ≥ 0 ; x(t) ∈ K(x r 1 )} = +∞. Such a function D(•) will be called a weakly resilient removal rate.

This definition is related to the minimal time crisis of controlled dynamics, studied in [START_REF] Bayen | About Moreau-Yosida regularization of the minimal time crisis problem[END_REF][START_REF] Bayen | About the minimal time crisis[END_REF][START_REF] Bayen | Minimal time crisis versus minimum time to reach a viability kernel : a case study in the prey-predator model[END_REF][START_REF] Doyen | Scale of viability and minimal time of crisis[END_REF], although we do not look in this paper for control functions minimizing the time spent outside the set K(x r 1 ) over a given time period [0, T ].

Construction of a weakly resilient removal rate

The aim of this section is to propose a robust and systematic way to build a time-varying D(•) taking alternatively the values D m and D M , and that is weakly resilient for (2.3), without requiring a precise knowledge of the expressions of the growth functions µ i (•). Recall that we suppose Assumptions 2.1, 2.2, and 2.3 to be fulfilled and that the parameter x r 1 satisfies x r 1 ∈ (x 1 , s inλ 1 (D m )). We begin by giving the main result (in Section 3.1) which gives a construction of a weakly resilient D(•). Next, we provide some properties of the dynamical system(2.3) in the domain S for a constant D (D = D M and D = D m ). Finally, we give the proof of Proposition 3.1 at the end of this section.

D M D m D λ 2 (D m ) λ 1 (D m ) s s in µ 1 µ 2 Figure 1: Illustration of Assumption 2.3.

Synthesis of a weakly resilient removal rate

In the following Proposition, we propose a time-varying D(•) allowing the dynamics (2.3) to be weakly resilient for the set K(x r 1 ). For any ε > 0, we define the set E E := (0, x1 ] × (0, ε].

Proposition 3.1. For ε small enough and any initial condition

x 0 := (x 1,0 , x 2,0 ) ∈ K(x r 1 ) there exists a piecewise constant function D(•) which alternates the values D M , D m on time intervals [T i , T i+1 ), i ∈ N satisfying: T 0 = 0 < T 1 < • • • < T i < T i+1 < • • • and lim i→∞ T i = +∞, (3.1) 
where x(•) is the unique solution of (2.3) associated with the time-varying D(•) such that

(i) if x(T i ) / ∈ E, one has D(t) = D M for t ∈ [T i , T i+1
) with T i+1 is defined as the first next entry time in E.

(ii) if x(T i ) ∈ E, one has D(t) = D m for t ∈ [T i , T i+1
), the trajectory x(•) enters to the set K(x r 1 ) in finite time and T i+1 is defined as the first next exit time from K(x r 1 ). Finally, the time-varying D(•) is a weakly resilient removal rate.

We begin by a lemma which describes the asymptotic behavior of (2.3) when D is constant. Lemma 3.1. Any solution of (2.3) in S with a constant removal rate D converges asymptotically to an equilibrium.

Proof. First, consider an initial condition on the axes that are invariant by (2.3). Then, the variable x i (i equal to 1 or 2) is solution of a scalar autonomous dynamics on the x i -axis. Therefore, either it converges to an equilibrium point on the axis, or it tends to infinity, which is not possible as the domain S is bounded.

Consider now a positive initial condition in the set S. The corresponding solution then remains in the positive orthant, and one can consider the variables

ξ i = ln(x i ), i = 1, 2, whose dynamics is ξi = F i (ξ) := µ i s in -e ξ1 -e ξ2 -D, i = 1, 2. For a constant D, one has divF (ξ) = i=1,2 ∂ ξi F i (ξ) = - i=1,2
µ i s ine ξ1e ξ2 e ξi < 0. By Dulac's criterion, the system has no closed orbit and by Poincaré-Bendixon Theorem (see [START_REF] Perko | Differential equations and dynamical systems[END_REF]). We can then conclude that solutions of (2.3) converge asymptotically to an equilibrium, since trajectories are bounded.

In the sequel, we denote by z(•, ζ, D) the unique solution of (2.3) (over R) for an initial condition z(0) = ζ ∈ S and a constant D ∈ {D m , D M }.

Properties of the reduced dynamics with constant D = D M

We now provide asymptotic properties of (2.3) when D is constant equal to D M , that are illustrated on Fig. Proof. From Assumption 2.3, the system (2.3) has a unique steady state (0, 0) in S. From Lemma 3.1, we deduce that it is globally asymptotically stable on S. Consider a positive initial condition. From the expression of the dynamics (2.3), the solution x(•) = z(•, ζ, D M ) is clearly positive for any t ≥ 0, and by Assumption 2.3, one gets ẋi (t) < 0 for any t ≥ 0, thus z i (•, ζ, D M ) is decreasing for i = 1, 2. Consider then the function q 2 := x 2 /x 1 . A straightforward computation of its derivative yields

q2 = µ 2 (s in -x 1 (t) -x 2 (t)) -µ 1 (s in -x 1 (t) -x 2 (t)) q 2 .
By Assumption 2.2, one has µ 2 (s in )µ 1 (s in ) < 0. Since x(•) converges to 0, we deduce that there exist η > 0 and t M > 0 such that q2 (t) < -ηq 2 (t) for any time t > t M . This proves that q 2 (•) converges asymptotically to 0 and that trajectories are tangent to the x 1 -axis at (0, 0).

We are now in a position to introduce the following notation that will be used hereafter (see Fig. 2):

• Consider the point P r := (x r 1 , s inx r 1 ) on the boundary of S and set

x(•) := z(•, P r , D M ).

• The forward semi-orbit of (2.3) with D = D M passing through P r is denoted by (see Fig. 2):

γ+ := {x(t) ; t ≥ 0}.

• In view of Lemma 3.2, x1 (•) is decreasing and thus reaches x1 in finite time. Hence, there are t > 0 and δ > 0 satisfying: t := inf{t > 0; x1 (t) < x1 } and δ := x2 ( t). 

Properties of the reduced dynamics with constant D = D m

We now turn to asymptotic properties of (2.3) with D = D m . In the sequel, we shall use the notation (i) It admits exactly three equilibria in S : E 0 := (0, 0), E m 1 := (x m 1 , 0) and E m 2 := (0, x m 2 ) which are respectively an unstable node, a saddle point, and a stable node.

x m i := s in -λ i (D m ), i = 1, 2. The scalar product in R 2 is written a • b with a, b ∈ R
(ii) One has x m 1 < x m 2 and the "strip" S m 1,2 defined as S m 1,2 := {x ∈ S ;

x 1 + x 2 ∈ [x m 1 , x m 2 ]} , is invariant (by (2.3) with D = D m ).
(iii) The edge (0, s in ] × {0} is the stable manifold of (2.3)

with D = D m at E m 1 on S. The unstable manifold at E m 1 in the domain S is denoted by W u (E m 1 ): it connects E m 1 to E m 2 and satisfies W u (E m 1 ) ⊂ S m 1,2 .
Proof. Inequality (2.5) and the monotonicity of the functions µ i (•) (Assumption 2.1) imply that there are two equilibria of (2.3) in S that are distinct of the origin and on the axes. They are uniquely defined by E m

1 and E m 2 . The Jacobian matrix at E m 1 and E m 2 are respectively given by

J(E m 1 ) := -µ 1 (sin -x m 1 )x m 1 -µ 1 (sin -x m 1 )x m 1 0 µ2(sin -x m 1 ) -Dm , J(E m 2 ) := µ1(sin -x m 2 ) -Dm 0 -µ 2 (sin -x m 2 )x m 2 -µ 2 (sin -x m 2 )x m 2 .
The point E m 1 is a saddle point because the eigenvalues of J(E m 1 ) are of opposite sign, E m 2 is a stable node because the eigenvalues of J(E m 2 ) are negative, and E 0 is clearly an unstable node which proves (i). It is worth noting that the unstable manifold

W u (E m 1 ) necessarily connects E m 1 to E m 2 by Lemma 3.1. Let us now prove (ii). From Assumption 2.2, one has x m 1 < x m 2 . When x ∈ S m 1,2 is such that x 1 + x 2 =
x m 1 , one has ẋ1 = 0 and ẋ2 > 0 whereas if

x 1 + x 2 = x m
2 , one has ẋ1 < 0 and ẋ2 = 0. Hence S m 1,2 is invariant. Let us finally prove (iii). The positive half axis x 1 > 0 is clearly the stable manifold of (2.3) with D = D m at E m 1 . Consider a non-null eigenvector v + of J(E m 1 ) associated with the positive eigenvalue µ 2 (s in -x m 1 )-D m , and let n be an outward normal to S m 1,2 at E m 1 . A straightforward calculation yields

v + = -1 1 + µ2(λ1(Dm))-Dm x m 1 µ 1 (λ1(Dm)) , n = -1 -1 , implying that v + • n = - µ 2 (λ 1 (D m )) -D m x m 1 µ 1 (λ 1 (D m )) < 0.
One then concludes that the vector v + points inward S m 1,2 at E m 1 . On another hand, from the Theorem of the stable and unstable manifolds [START_REF] Perko | Differential equations and dynamical systems[END_REF], we know that

W u (E m 1 ) is tangent to v + at E m 1 . Therefore, there is a neighborhood V of E m 1 in S m 1,2 such that W u (E m 1 ) ∩ V ⊂ S m 1,2 , but, as S m 1,2 is invariant, we conclude that W u (E m 1 ) ⊂ S m 1 
,2 as was to be proved. Recall that the unstable manifold W u (E m 1 ) is a trajectory of (2.3) with D = D m , and that (2.3) satisfies ẋ1 < 0 on int S m 1,2 . So, W u (E m 1 ) can be parametrized as a function

x 1 → w u (x 1 ), x 1 ∈ [0, x m 1 ]
. Hereafter, hyp(w u ) stands for the hypograph of w u and let D ⊂ S be defined as (see Fig. 3):

D := hyp(w u ) ∩ S.
Note that the domain D is necessarily forward and backward invariant (for (2.3) with D = D m ) as its boundary is a locus of trajectories. Similarly as with D = D M , let us introduce the following notation (see Fig. 3):

• Since there is a unique intersection point between W u (E m 1 ) and the line {x 1 = x r 1 }, we set: x2 = w u (x r 1 ),

one can also write (

x r 1 , x2 ) = W u (E m 1 ) ∩ {x 1 = x r 1 }.
• From Assumption 2.3, one has x r 1 < x m 1 , thus we can fix a point P r := (x r 1 , x2,0 ) ∈ D such that:

0 < x2,0 < min(δ, x m 1 -x r 1 ), (3.3) 
where x2,0 is small enough to ensure P r ∈ D.

• The backward semi-orbit of (2.3) with D = D m passing though P r is denoted by: γ-:= {x(t) ; t ≤ 0}, where x(•) = z(•, P r , D m ).

• Finally, define a positive parameter η > 0 as η := x m 1x r 1 -x2,0 . 

s in x 2 x 1 x m 1 x m 1 x m 2 W u D s in x r 1 x 2 x 1 x2 x m 1 x m 1 W u γ- x m 2 D P r
(x 1 , x 2 ) ∈ {x ∈ D ; x 1 > 0 and x 1 + x 2 < x m 1 } ⇒ ẋ1 > 0, (x 1 , x 2 ) ∈ {x ∈ D ; x 1 > 0 and x 1 + x 2 > x m 1 } ⇒ ẋ1 < 0. (ii) As W u (E m 1
) is a trajectory, any solution of (2.3) with D = D m crosses the line {x 1 = x r 1 } at some point

(x r 1 , x 2 ) such that x 2 < x2 . (iii) Since D is backward invariant by (2.3) with D = D m and P r ∈ D, the inclusion γ-⊂ D is fulfilled.
The next lemma will be useful to define a small ε > 0 and times T and Ť (see Remarks 3.2 and 3.3 below).

Lemma 3.4. The curves γ+ and γintersect in the domain (0, x1 ) × (0, x2,0 ).

Proof. Consider the variable q1 = x1 /x 2 on the positive orthant. As previously, one has

q1 = µ 1 (s in -x1 (t) -x2 (t)) -µ 2 (s in -x1 (t) -x2 (t)) q1 .
From Assumption 2.2, µ 1 (s in )µ 2 (s in ) > 0. As x(t) → (0, 0) when t → -∞, there exist ť < 0 and c > 0 such that

µ 1 (s in -x1 (t) -x2 (t)) -µ 2 (s in -x1 (t) -x2 (t)) > c , t ≤ ť,
which shows that q1 (t) tends to 0 when t tends to -∞. Therefore γ-is tangent to the x 2 -axis at E 0 . As γ+ is tangent to the x 1 -axis at E 0 (Lemma 3.2), we deduce that the curve γ-is above the curve γ+ , in a neighborhood of the point E 0 in S. Since x1 (0) = x r 1 > x1 and x1 (t) tends to 0 when t tends to -∞, there exists t < 0 such that x1 ( t) = x1 with t = sup{t < 0; x1 (t) = x1 }.

This means that x1 (t) > x1 for all t ∈ ( t, 0]. As x2 (•) is increasing on D (cf. Remark 3.1), one has x2 ( t) < x2 (0) and from the choice of x2,0 = x2 (0) < δ (see condition (3.3)), one gets x2 (t) < δ, for all t ≤ 0 and in particular at t = t. The point (x 1 , x2 ( t)) of γ-is thus below (x 1 , δ), which belongs to γ+ . Therefore, γ+ and γ-have to cross at some point x( Ť ) with Ť < t, which verifies 0 < x1 ( Ť ) < x1 and 0 < x2 ( Ť ) < x2,0 .

Remark 3.2. Since γ-⊂ D (cf. Remark 3.1), the intersection between γand γ+ is also contained in D.

Lemma 3.4 implies that for each choice of the point P r , there is an intersection point

P ε := (x 1 , ε) ∈ D,
between γ+ and γ-such that 0 < x 1 < x1 and 0 < ε < x2,0 , see Fig. 4. By construction, there are T > 0 and Ť > 0 such that

P ε = x( T ) = x(-Ť ). Recall that E is by definition E := (0, x1 ] × (0, ε].
Since x1 < x r 1 and ε < x2,0 , the corner point (x 1 , ε) of E is below the curve γ-. Thus, one has also the inclusion E ⊂ D (because γ-⊂ D), see Fig. 4.

Remark 3.3. Given D m , D M and x r
1 that fulfill Assumption 2.3, the parameter ε can be chosen arbitrarily small taking the parameter x2,0 in the definition of P r small enough (recall (3.3)). 

x m 1 ε K(x r 1 ) x1 x 1 γ+ γ- W u x m 1 x r 1 x 1 x 2 s in s in

Proof of Proposition 3.1

To help the reader, we provide in Appendix 1 a list of the notations used in Section 3. We start by giving the following definition.

Definition 3.5. The "southeast" order in R 2 (denoted by ) is defined as

∀(x, y) ∈ R 2 , x y ⇐⇒ {x 1 ≤ y 1 , x 2 ≥ y 2 }.
Notice that the dynamics (2.3) is competitive, and therefore (2.3) preserves the order (see [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF]): for any admissible time-varying function D(•), one has:

∀(ζ 1 , ζ 2 ) ∈ S, ζ 1 ζ 2 =⇒ z(t, ζ 1 , D(t)) z(t, ζ 2 , D(t)), ∀t ≥ 0.
(3.4)

We have now given the necessary definitions and properties so that we can give to the proof of Proposition 3.1.

Proof. For clarity, we present the proof in several steps.

Step 1. Fix an initial condition x 0 ∈ K(x r 1 ) with x 2,0 < s inx r 1 . As x 0 / ∈ E, we set D = D M . Accordingly to Lemma 3.2, x(•) converges asymptotically to E 0 and thus T 1 := inf{t > 0 ; x(t) ∈ E} is well defined. Notice that there are two ways to reach E:

(i) x 1 (T 1 ) = x1 and x 2 (T 1 ) < ε, (ii) x 1 (T 1 ) ≤ x1 and x 2 (T 1 ) = ε.
Let us show that in both cases one has x 1 (T 1 ) > x 1 . As x1 > x 1 (recall Lemma 3.4), we get x 1 (T 1 ) > x 1 in case (i). In case (ii), one can also write T 1 = inf{t > 0 ; z 2 (t, x 0 , D M ) ≤ ε}. The order property (3.4) then implies that z(t, P r , D M ) z(t, x 0 , D M ), t ≥ 0.

As z( T , P r , D M ) = x( T ) = 1 , ε), we deduce that

z 1 ( T , x 0 , D M ) ≥ x 1 , z 2 ( T , x 0 , D M ) ≤ ε.
From the definition of T 1 , one has T 1 < T (one gets T 1 = T if x 0 = P r ) and thus

x 1 (T 1 ) = z 1 (T 1 , x 0 , D M ) ≥ x 1 . If x 1 (T 1 ) = x 1 , one should then have x 2 (T 1 ) = ε, that is, z(•, x 0 , D M ) = z(•, P r , D M )
which is not true. Hence, we obtain as well x 1 (T 1 ) > x 1 as was to be proved. In addition, notice that P ε x(T 1 ). Since E ⊂ D, the point x(T 1 ) necessarily satisfies x(T 1 ) ∈ D.

Step 2. At t = T 1 , we set D = D m . We use again the order property (3.4):

P ε x(T 1 ) =⇒ z(t, P ε , D m ) z(t, x(T 1 ), D m ), ∀t ≥ 0, (3.5) 
and, as we have shown that x 1 (T 1 ) > x 1 , we obtain the inequalities

z 1 ( Ť , x(T 1 ), D m ) > z 1 ( Ť , P ε , D m ) = x r 1 , z 2 ( Ť , x(T 1 ), D m ) ≤ z 2 ( Ť , P ε , D m ) = x2,0 .
Therefore one has x(T 1 + Ť ) = z( Ť , x(T 1 ), D m ) ∈ int K(x r 1 ). One can then define a time T1 as:

T1 := inf{t > T 1 ; x 1 (t) > x r 1 },
which is such that T1 ∈ (T 1 , T 1 + Ť ). From the monotonicity of x 2 (•) in the set D (cf. Remark 3.1), one obtains

x 2 ( T1 ) < x 2 (T 1 + Ť ) = z 2 ( Ť , x(T 1 ), D m ) ≤ x2,0 .
As x(T 1 ) belongs to the set D with x 1 (T 1 ) > 0, z(•, x(T 1 ), D m ) converges asymptotically to the equilibrium E m 2 that lies on the x 2 -axis (cf. Remark 3.1). The time

T 2 > T 1 + Ť such that x 1 (T 2 ) = x r 1 , where x(t) := z(t -T 1 , x(T 1 ), D m ), t ≥ T 1 , is thus well defined. Moreover one has x(T 2 ) ∈ K(x r 1 ) and x(T 2 ) ∈ D as D is invariant by (2.3) (for D = D m ).
Step 3. At time T 2 , we have shown that x(T 2 ) belongs to the set K(x r 1 ), and also to the set D which implies that x 2 (T 2 ) < s inx r 1 . Therefore, we can consider x(T 2 ) as a new initial condition and apply iteratively the results of steps 1 and 2, defining an increasing sequence of times (T i ) i∈N . For i = 2k + 1 (with k ∈ N), one has x(T 2k+1 ) ∈ E and, as in step 2, we can define T2k+1 ∈ (T 2k+1 , T 2k+1 + Ť ) such that

x 1 ( T2k+1 ) = x r 1 with T2k+1 := inf{t > T 2k+1 ; x 1 (t) > x r 1 }. (3.6) 
As shown in step 2, we necessarily have

x 2 ( T2k+1 ) < x2,0 . (3.7) 
Because T 2k+2 > T 2k+1 + Ť , we get that lim i→+∞ T i = +∞ which concludes that property (3.1) is fulfilled.

Note that if we chose x 0 = P r then one obtains T 1 = T (and then by the unicity of the solution x(T 1 ) = P ε ). Furthermore, in this case, the time T1 is such that T1 = T 1 + Ť with x( T ) ∈ K(x r 1 ), since x(T 1 ) = x(-Ť ). The time T 2 > T1 that is the first exit time from K(x r 1 ) is well defined with x 2 (T 2 ) < s inx r 1 .

Step 4. We now show that the time spent by x 1 (•) above the threshold x r 1 is of infinite measure. For each k ∈ N, one has, from the definition of

T 2k+2 : meas{t ∈ [T 2k+1 , T 2k+2 ] ; x 1 (t) > x r 1 } = T 2k+2 -T2k+1 .
From Remark 3.1, one has ẋ1 (t) > 0 when s(t) = s inx 1 (t)x 2 (t) > λ 1 (D m ). At time T2k+1 , the inequality (3.7) implies that s( T2k+1 ) > s inx r 1 -x2,0 . We deduce that

s( T2k+1 ) -λ 1 (D m ) = s( T2k+1 ) -(s in -x r 1 -x2,0 ) + η > η > 0. (3.8) 
Next, let us define

τ k := sup{θ > 0 ; s( T2k+1 + θ) > λ 1 (D m )}.
Then, one has necessarily x 1 (t) > x r 1 for any t ∈ [ T2k+1 , T2k+1 + τ k ] and one obtains the inequality

T 2k+2 -T2k+1 > τ k .
Let us now give a lower bound on the value of τ k . From equations (2.3), the following properties hold true:

x 1 > x r 1 , s > λ 1 (D m ) ⇒    s = s in -x 1 -x 2 < s in -x r 1 , x 1 = s in -s -x 2 < s in -λ 1 (D m ) = x m 1 , x 2 = s in -s -x 1 < s in -λ 1 (D m ) -x r 1 = x m 1 -x r 1 ,
from which one can obtain a lower bound on the speed at which the variable s decreases (as long as s is above λ 1 (D m ) and x 1 above x r 1 ):

ṡ = -µ 1 (s)x 1 -µ 2 (x)x 2 + D m (s in -s) ≥ -µ 1 (s in -x r 1 )x m 1 -µ 2 (s in -x r 1 )(x m 1 -x r 1 ) := -c .
Notice that c > 0. By integrating the above inequality, one can conclude that s stays above λ 1 (D m ) for a duration larger than (s( T2k+1 )λ 1 (D m ))/c . Thanks to (3.8), we can thus write

τ k > M := η c > 0,
where M > 0 does not depend on k. Finally, we have shown that for each k ∈ N, one has

meas{t ∈ [0, T 2k+2 ] ; x 1 (t) > x r 1 } > kM,
which shows that the time-varying D(•) is a weaky resilient removal rate as was to be proved. 

x 2 ( T2k+1 ) < x 2 (T 2k+2 ) < x2 < x m 2 -x r 1 .
(3.9)

Convergence to periodic solutions

The goal of this section is to show that the weakly resilient removal rate defined by Proposition 3.1 generates asymptotically positive periodic solutions of system (2.3). Before addressing this point, we shall first prove the existence of a periodic solution of (2.3) associated with the time-varying D(•) given by Proposition 3.1.

To this end, let us introduce an operator O as

O : (0, s in -x r 1 ] → (0, s in -x r 1 ] x 2,0 → x 2 (T 2 )
where x(•) = (x 1 (•), x 2 (•)) is the unique solution of (2.3) for the initial condition (x r 1 , x 02 ) and the timevarying D(•) given by Proposition 3.1, parameters D m , D M , and P r being fixed. Notice that times T i , i ≥ 1, introduced in Proposition 3.1 depend on x 2,0 (in particular T 2 ). Hence, this operator slightly differs from the Poincaré map used for instance in [START_REF] Mottoni | Competition systems with periodic coefficients: a geometric approach[END_REF][START_REF] Smith | The theory of chemostat, dynamics of microbial competition[END_REF] for finding periodic solutions of dynamical systems, for which the period is fixed beforehand. We shall next examine properties of the operator O. Doing so, let us introduce the following notation (see Fig. 5):

• Denote by γ and γ, the orbits of (2.3) with D = D m passing respectively by (x r 1 , x m 1x r 1 ) and Pr . • Observe that γ is tangent to the segment {x

1 = x r 1 } ∩ S at (x r 1 , x m 1 -x r 1 ). Because x(•) converges to E m 2 (Lemma 3.
3), there are exactly two intersection points between γ and {x 1 = x r 1 } ∩ S, namely Pr and Qr :

= (x r 1 , x 2 ) with x 2 > x m 1 -x r 1 . (4.1) 
• In the sequel, we denote by J the interval J 

:= [x 2 , x2 ] (recall (3.2)). γ γ x m 1 x 2 x r 1 x m 1 x 2 s in Qr x 1

Properties of the operator O

In this section, we prove that O is continuous and decreasing. The continuity of O will follow from the continuity property of the first entry time into a set, that is related to Petrov's condition (see Appendix 2). For initial condition (x r 1 , x 2,0 ) with x 2,0 ∈ (0, S inx r 1 ], we denote T 1 (x 2,0 ), T 2 (x 2,0 ) the times T 1 , T 2 given by Proposition 3.1. Proof. For a given x 2,0 ∈ (0, s inx r 1 ], denote by x(•) the unique solution of (2.3) for the initial condition (x r 1 , x 02 ) and the time-varying D(•) given by Proposition 3.1.

Let us prove (i). For t ∈ [0, T 1 ], one has D(t) = D M and T 1 is defined as the first time that x(•) reaches the set T 1 := {x ∈ S ; x 1 ≤ x1 and x 2 ≤ ε}.

For t ∈ (T 1 , T 2 ), one has D(t) = D m . We know that there exists T1 ∈ (T 1 , T 1 + Ť ) such that x(•) crosses the line {x 1 = x r 1 } at time T1 with x 2 ( T1 ) < x2,0 (see step 2 of the proof of Proposition 3.1). Therefore, the state x( T1 ) is below the point P r . As x(•) cannot cross the orbit of P r (denoted γ) on ( T1 , T 2 ), x(•) crosses the line

{x 1 = x r 1 } at some time T 2 such that x 2 (T 2 ) > x 2 . (4.2)
Hence, T 2 can be defined as the first time t > T 1 + Ť such that x(•) reaches the set

T 2 := {x ∈ S ; x 1 ≤ x r 1 and x 2 ≥ x 2 },
at time t. On the positive set S + := {x ∈ S ; x 1 > 0 ; x 2 > 0}, that is invariant by (2.3), we are in a position to introduce the first entry time functions:

R 1 (x 0 ) := inf {t ≥ 0 ; z(t, x 0 , D M ) ∈ T 1 } , R 2 (x 0 ) := inf {t ≥ 0 ; z(t, x 0 , D m ) ∈ T 2 } ,
with x 0 ∈ S + . Then, for x 2,0 ∈ (0, s inx r 1 ], Proposition 3.1 allows to write the composition

O(x 2,0 ) = z 2 (T 2 -T 1 -Ť , x(T 1 + Ť ), D m ), (4.3) with        T 1 := R 1 (x r 1 , x 2,0 ), x(T 1 ) := z(T 1 , (x r 1 , x 2,0 ), D M ), x(T 1 + Ť ) := z( Ť , x(T 1 ), D m ), T 2 := T 1 + Ť + R 2 (x(T 1 + Ť )),
thanks to the definitions of T 1 , T 2 , and Ť . From the continuous dependency of an ODE w.r.t. initial conditions, (see, e.g., [START_REF] Perko | Differential equations and dynamical systems[END_REF]), the maps x 0 → z(t, x 0 , D) (for a fixed t) and t → z(t, x 0 , D) (for a fixed Lipschitz continuity of R 1 . Observe first that T 1 is convex, hence the (convex) normal cone to T 1 at some point x ∈ S + of its boundary is given by the expression

N T1 (x) =    R + × {0}, x 1 = x1 , x 2 < ε, {0} × R + , x 1 < x1 , x 2 = ε, R + × R + , x 1 = x1 , x 2 = ε.
Then, we can easily check that

{x 1 = x1 , x 2 ≤ ε} ⇒ f 1 (x, D M ) < φ 1 := (µ 1 (s in ) -D M )x 1 < 0, {x 1 ≤ x1 , x 2 = ε} ⇒ f 2 (x, D M ) < φ 2 := (µ 2 (s in -ε) -D M )ε < 0.
From the preceding inequalities, we deduce that for any point x on the boundary of T 1 in S + , one has

f (x, D M ) • ν < min(φ 1 , φ 2 ) ν , ν ∈ N T1 (x) \ {0}.
This allows us to conclude that R 1 is Lipschitz continuous over S + , thanks to Theorem 4.1.

Let T i be the sequence of times given by Proposition 3.1 for the initial condition x 0 = (x r 1 , x 2,0 ) and posit

F (t, x) = f (x, D M ), t ∈ [T 2k , T 2k+1 ) f (x, D m ), t ∈ [T 2k+1 , T 2k+2 ) (k ∈ N)
Clearly, on has T i+2 = T i + T 2 i.e. F is a T 2 -periodic dynamics.

We define now the following functions

F (τ, x) = T i+1 -T i T i+1 -T i F (τ, x), τ ∈ [T i , T i+1 ) g(t) = T i + T i+1 -T i T i+1 -T i (t -T i ), t ∈ [t i , T i+1 )
Clearly, the solution x(•) of ẋ = F (t, x) satisfies x(t) = x(g(t)) for any t ≥ 0, where x(•) is solution of Then, one has

lim i→+∞ T i+1 -T i T i+1 -T i = 1
and deduce that F is an asymptotically periodic dynamics with F as limit (see Definition 4.2 in Appendix 3). Moreover, one has lim k→+∞ x(kT 2 ) = x(T 2k ) = x 0 .

Therefore, we can apply the Theorem 4.3 (from [START_REF] Zhao | Asymptotic behavior for asymptotic periodic semiflows with applications[END_REF], recalled in Appendix 3) which gives lim t→+∞ x(t)x (t) = 0 and we have obtained thus the following limit lim t→+∞ x(t)x (g(t)) = 0.

We show now that the time shift σ(t) := tg(t) admits a limit σ. Notice that one has δ(T i ) = T i -T i for any i. Therefore, it is enough to prove that the sequence u k = T 2k -T 2k converges.

As O is contractive on J, there exists α ∈ (0, 1) such that As α < 1, on obtains that |u n+ku n | tends to 0 when n tends to ∞ uniformly in k. We conclude that the Cauchy sequence u k admits a limit, which gives the asymptotic shift σ.
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 232 Lemma Any solution z(•, ζ, D M ) of (2.3) with ζ ∈ S converges asymptotically to the origin. Moreover, for any positive initial condition ζ in S, z 1 (•, ζ, D M ) and z 2 (•, ζ, D M ) are decreasing functions and the trajectory converges to the origin tangentially to the x 1 -axis.

Figure 2 :

 2 Figure 2: Phase portrait of (2.3) with constant D = D M and plot of the points P r , (x 1 , δ), and the semi-orbit γ+ .

2 Lemma 3 . 3 .

 233 and a denotes the euclidean norm of a vector a ∈ R 2 . The system (2.3) with D = D m possesses the following properties.

Figure 3 :

 3 Figure 3: Left: phase portrait of (2.3) with constant D = D m in the domain D whose boundary is the unstable manifold W u (E m 1 ). Right: plot of the point P r and the semi-orbit γ-.

Figure 4 :

 4 Figure 4: Plot of the set E := (0, x1 ] × ε] (in red) and the intersection point P ε = (x 1 , ε) between γ+ and γ-. The set K(x r 1 ) is depicted in blue.

Remark 3 . 4 .

 34 (i) In the proof of Proposition 3.1 (step 1), we have seen that x 1 (T 2k+1 ) > x 1 for any k ∈ N. Therefore, Proposition 3.1 remains valid if the set E is replaced byẼ := (x 1 , x1 ] × (0, ε].(ii) Notice also that the trajectory given by Proposition 3.1 reaches the set D at some time t ≤ T 1 , and then remains in this set for any future time. Indeed, from Remark 3.1, the trajectory belongs to D on any time interval [T 2k+1 , T 2k+2 ] (with D = D m ). On a time interval [T 2k+2 , T 2k+3 ], we have set D = D M , and we have seen in Lemma 3.2 that x 1 (•) and x 2 (•) are decreasing (with D = D M ). So, the trajectory also remains in D for t ∈ [T 2k+2 , T 2k+3 ]. One then concludes that the trajectory remains in D as well as in {x 1 > x 1 } (thanks to point (i) above) over [T 1 , +∞) (iii) Finally, note that at times T2k+1 and T 2k+2 , one has x 1 ( T2k+1 ) = x 1 (T 2k+2 ) = x r 1 and

Figure 5 :

 5 Figure 5: Plot of the orbits γ and γ and the point Qr .
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 41 The time-varying D(•) contructed in Proposition 3.1 fulfills the following continuity properties:(i) Times T 1 and T 2 are Lipschitz continuous functions of initial x 2,0 .(ii) The operator O is Lipschitz continuous and takes values in J.

  x 0 ) are Lipschitz continuous, given a constant D ∈ [D m , D M ]. Therefore, proving the Lipschitz continuity of T 1 and T 2 w.r.t x 2,0 essentially requires to prove the Lipschitz continuity of R 1 and R 2 over the set S + . Notice first that for constant D = D M , resp. D = D m , any solution in S + converges asymptotically to a steady state that belongs to the interior of T 1 , resp. T 2 . Therefore, the targets T 1 and T 2 can be reached in a finite horizon from any initial condition in S + , and thus, R 1 , R 2 are well defined with finite values in S + . To prove their Lipschitz continuity, we shall use Theorem 4.1 recalled in Appendix 2, showing that the inward pointing condition (4.8) is fulfilled on the boundary of T 1 and T 2 in S + .

  = F (τ, x(τ )), x(0) = x(0).Thanks to the continuity property of T i (see Proposition 4.1 and Remark 4.1) and (4.5), one concludes thatlim k→+∞ T 2k+i -T 2k = lim k→+∞ T i (x 2 (T 2k )) = T i (x 2,0 ), i = 1, 2, (4.6) which gives lim k→+∞ T 2(k+1) -T 2k = T 2 (x 2,0 ) = T 2 ,(4.7)and lim k→+∞ T 2k+i+1 -T 2k+i = T i+1 (x 2,0 ) -T i (x 2,0 ), i = 0, 1.

|x 2 ( 1 i=0α

 21 T 2(k-1) )x 2,0 | = |O(x 2 (T 2(k-2) )x 2,0 | ≤ α k-1 |x 2,0x 2,0 |, k > 1As the map x 2,0 → T 2 is Lipschitz continuous (cf Proposition 4.1), say of rank L, one obtains|u ku k-1 | = |T 2 (x 2 (T 2(k-1) ) -T 2 | ≤ Lα k-1 |x 2,0x 2,0 |and let us finally show that u k is a Cauchy sequence. For any n > 1 and k > 1, one has|u n+ku n | ≤ L k-n+i |x 2,0x 2,0 | = Lα n 1α k | 1α |x 2,0x 2,0 |
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Lipschitz continuity of R 2 . Observe that T 2 is also convex, hence the (convex) normal cone to T 2 at some point x ∈ S + of its boundary is given by the expression

One can easily that the following properties are fulfilled:

As a consequence of (3.9), (4.1) and (4.2), note that one has x m 1x r 1 < x 2 < x m 2x r 1 . This allows us to conclude that ψ 1 < 0 and that ψ 2 > 0 yielding the inequality

for any x on the boundary of the set T 2 in S + . This proves the Lipschitz continuity of R 2 on S + using again Theorem 4.1. We conclude that both T 1 and T 2 are Lipschitz continuous w.r.t x 2,0 .

Let us prove now (ii). Recall that O can be written as function of T 1 and T 2 (see (4.3)). As T 1 and T 2 are Lipschitz continuous w.r.t x 2,0 then O as well. Combining (3.9) and (4.2) gives that O(x 2,0 ) ∈ J as was to be proved. Proof. Take two points x ± 2,0 ∈ (0, s inx r 1 ] such that x - 2,0 < x + 2,0 , and let us show that O(x - 2,0 ) > O(x + 2,0 ). Denote by x + (•), x -(•) the solutions generated by the time-varying D(•) given by Proposition 3.1 and for the initial conditions x + (0) = (x r 1 , x + 2,0 ) and x -(0) = (x r 1 , x - 2,0 ) respectively. One can then write x + (0) x -(0). For convenience, we denote by T + 1 , T + 2 and T - 1 , T - 2 the times T 1 , T 2 (as in Proposition 3.1) associated with x + (•) and x -(•) respectively, and let us set

First, let us note that the time-varying removal rate given by Proposition 3.1 satisfies D(t) = D M for both trajectories in a neighborhood of t = 0. Using the order property (3.4), one can then write

Thanks to this property, we must have

implying a contradiction with (4.4)). Therefore one gets (recall that trajectories with D = D M decrease), we obtain the inequality

Since the orbits of (2.3) with D = D M do not intersect, we also obtain that

, the time needed by x + (•) to reach the liner

We now consider x + (T + 1 ) and x -(T - 1 ) as initial conditions for (2.3) with D = D m . Then one gets

In the same way as previously, we deduce the inequality:

Since the orbits of (2.3) with D = D m do not intersect, one necessarily has x + 2 ( T + 1 ) > x - 2 ( T -1 ) (and also

). Finally, D is constant equal to D m for both trajectories until the first instant at which one of the two trajectory leaves the set K(x r 1 ). Since

Existence and attractivity of periodic solutions

In this section, we study how for any initial condition, the time-varying removal rate D(•) given in Proposition 3.1 allow system (2.3) to synchronize with a periodic solution (i.e. any solution of (2.3) associated with D(•) converges asymptotically to a periodic solution).

Existence of periodic solutions

The existence of a weakly resilient periodic trajectory follows from the previous results about the operator O. given by Proposition 3.

From Propositions 4.1 and 4.2, ϕ(•) is continuous and decreasing. Moreover, it verifies ϕ(x 2 ) > 0 for x 2 < x 2 and ϕ(x 2 ) < 0 for x 2 > x2 (because O is with values in J). We can then conclude that ϕ(•) possesses a unique zero in the interval (0, s inx 1,r ], or equivalently that there exists a unique fixed point x 2,0 of O. The solution x (•) for the initial condition (x r 1 , x 2,0 ) verifies x (T 2 ) = x (0), where T -2 is equal to the time T 2 generated by the time-varying D(•) given in Proposition 3.1, and is thus T 2 -periodic. We conclude that x (•) is the unique periodic solution such that x 1 (0) = x r 1 and O(x 2 (0)) = x 2 (0).

Attractivity of the periodic solution

Due to the particular structure of the non-autonomous dynamics (the times T i are not known explicitly), it appears that determining explicitly a bound on the Lipschitz rank of O is quite difficult. However, in all the simulations we performed, the operator O appears to be contractive, providing ε to be sufficiently small. We thus posit the following conjecture.

Conjecture 4.1. For ε sufficiently small, the operator O is contractive on J.

Proposition 4.3. Under the conjecture, for ε sufficiently small an any initial condition in K(x r 1 ), the solution x(•) generated by the time-varying D(•) given in Proposition 3.1 converges asymptotically to the periodic solution x (•) up to a time shift σ: lim

Proof. Fix an initial condition in K(x r 1 ). From Proposition 3.1 we know that the solution x 1 (•) reaches x r 1 in finite time. Let t 0 be the first time t for which x 1 (t 0 ) = x r 1 and let x 2,0 = x 2 (t 0 ). We can then consider, without any loss of generality, (x r 1 , x 2,0 ) as initial condition. Let T i be the sequence of times given by Proposition 3.1. The trajectory x(•) is then solution of the non-autonomous dynamics ẋ = F (t, x) with

As O is contractive, ona has the following limit

Appendix 1: list of notations

We remind in the next table all the parameters used in Section 3 and 4.

Appendix 2: Petrov's condition

We recall here a result about the continuity of the first entry time function (see Theorem 8.25 in [START_REF] Cannarsa | Semi-concave Funcions, Hamilton Jacobi Equations and Optimal Control[END_REF]), that is stated here for a non-controlled dynamics. Let g : R n → R n be a mapping of class C 1 with linear growth, and denote by y(•, y 0 ) the unique solution of the Cauchy problem: ẏ = g(y), y(0) = y 0 , defined over R + . Hereafter, we are given a non-empty compact subset T of R n and for y ∈ T , the set N p T (y) stands for the proximal normal cone to the set T at the point y (see [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]). The standard inner product is written a • b for a, b ∈ R n , and a denotes the euclidean norm of the vector a. Theorem 4.1. Suppose that the Petrov condition

is fulfilled. Then, the first entry time function

If T is convex, the set N p T (y) coincides with the convex normal cone (see, e.g., [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]) defined for y ∈ T as:

Appendix 3: Asymptotically periodic systems

We recall first the definition of asymptotically periodic semi-flows in R n .

Definition 4.2. A non-autonomous semiflow Φ: {(t, s); 0 ≤ s ≤ t < ∞}×R n → R n is asymptotically periodic with limit ω-periodic semi-flow T (t): R n → R n , t ≥ 0 if Φ(t j + n j ω, n j ω, x j ) → T (t)x, j → ∞ for any sequences t j → t, n j → ∞, x j → x when j → ∞, with x, x j in R n .

The following result can be found in [START_REF] Zhao | Asymptotic behavior for asymptotic periodic semiflows with applications[END_REF] (Theorem 3.1).

Theorem 4.3. Let Φ: {(t, s); 0 ≤ s ≤ t < ∞} × R n → R n be an asymptotically periodic semi-flow with limit ω-periodic semi-flow T (t): R n → R n , t ≥ 0. Denote T n (x) = φ(nω, 0, x) and S(x) = T (ω)x, n ≥ 0, x ∈ R n . If A 0 is a compact subset of R n invariant by the semi-flow S and y ∈ R n is such that d(T n (t), A 0 ) → 0 when n → ∞ then lim t→+∞ d(Φ(t, 0, y), T (t)A 0 ) = 0.