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Abstract

This paper is concerned with the development of a general methodology for

identifying mechanical sources from prior local information on both their

nature and location over the studied structure. For this purpose, the formu-

lation of the identification problem is derived from the Bayesian statistics,

that provides a flexible way to account for local a priori on the distribution

of sources. Practically, the resulting optimization problem can be seen as a

group generalized Tikhonov regularization, that is solved in an iterative man-

ner. The main features of the proposed identification method are illustrated

with both numerical and experimental examples. In particular, it is shown

that properly exploiting the local spatial information drastically improves

the quality of the source identification.

Keywords: Inverse problem, Force identification, Group generalized

Tikhonov regularization, Local priors.

1. Introduction

In an industrial context, the identification of sources exciting a structure

remains an important topic. It can serve for instance to control vibration at
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sources, identify excitation sources in unmeasured areas, estimate reaction

forces at boundaries or establish excitation models to numerically predict

the response of structures. However, the identification of mechanical sources

from vibration measurements is known to be an ill-posed inverse problem,

meaning that the existence of a unique stable solution is not guaranteed. A

classical approach to bypass this difficulty consists in including in the for-

mulation of the inverse problem some prior information on the noise and the

spatial distribution of sources to identify to constrain the space of solutions.

For this purpose, the Bayesian formalism is generally adopted, since it offers

a rigorous mathematical framework that allows combining both probabilistic

and mechanical data. Among all the methods used for mechanical source

identification and deriving from the Bayesian statistics , the Tikhonov reg-

ularization is certainly the most popular [1, 2, 3, 4]. Unfortunately, this

regularization leads to a systematic smoothing of regularized solutions [5],

which is not a desirable effect when a localized source has to be identified.

To remedy this problem, several approaches also based on the Bayesian in-

ference have been proposed. In particular, it is useful to cite the work of

Renzi et al. [5, 6] in which they apply a Richardson-Lucy deconvolution.

From the Bayesian standpoint, this approach consists in assuming a Pois-

son noise model and a uniform distribution for the source vector to identify

[7]. Practically, this leads to impose a positivity constraint on the excitation

field to identify, which implies the loss of the phase relationships between the

identified sources. Another technique, based on the use of generalized Gaus-

sian laws to reflect prior information on the noise and the sources to identify,

has been proposed in [8]. This approach has the advantage to alleviate the
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positivity constraint and to be flexible enough to identify sources of various

types. However, in the procedures described above, the a priori on the spatial

distribution of the sources remains global. Incidentally, poor identification

can be obtained, if the actual excitation field combines both localized and

distributed sources, since the a priori has to reflect a compromise between

two contradictory distributions. Finally, it is worth citing the work of Zhang

et al. [9] in which they propose to solve the Bayesian force reconstruction

problem with an uncertain model from Monte Carlo Markov Chain (MCMC)

methods. Such an approach has the merit of providing a credible interval on

the reconstructed force, which allows assessing the robustness of the identi-

fied solution.

The present paper aims at showing that one’s prior knowledge of the sys-

tem can be incorporated to aid the identification process. More precisely, the

main objective is to provide a flexible identification methodology, based on

Bayesian statistics, able to take advantage of prior local information available

on both the nature and the location of excitation sources. To this end, the

structure is divided into several identification regions, in which it is assumed

that local priors on the nature of the sources follow generalized Gaussian

distributions. In doing so, prior information can be accurately adapted to

a prescribed zone of the studied structure and, therefore, one can fully ex-

ploit the spatial information that is generally available in practical situations.

From a mathematical point of view, the solution of the problem is defined as

the maximum a posteriori estimate of the posterior distribution. Practically,

one seeks the solution of the dual minimization problem, which is solved in an
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iterative manner using a Generalized Iteratively Reweighted Least-Squares

(GIRLS) algorithm [8, 10].

To highlight the main features of the proposed methodology, the present

article is divided into four parts. In section 2, the formulation of the proposed

source identification problem is introduced. In section 3, the resolution of

the resulting source identification problem is presented. As mentioned pre-

viously, the resolution is performed using the GIRLS algorithm described in

[8]. In order to make this paper clearer and more self-contained, the GIRLS

algorithm is detailed by introducing further insights regarding the choice of

the tuning parameters involved in its definition. Finally, the validity of the

proposed methodology is illustrated both numerically and experimentally in

sections 4 and 5. In particular, the proposed validations reveal that using

local instead of global priors leads to more accurate identifications when a

structure is excited by sources having different spatial distributions.

2. Formulation of the Bayesian source identification problem

This section aims at presenting the derivation of the formulation of the

identification problem and introducing the main tuning parameters involved

in the proposed formulation.

2.1. Problem description

Let us consider the situation where a vibration field X is caused by an

unknown excitation field F. If the structure is linear, its dynamic behavior is

completely defined by the transfer functions matrix H, relating the vibration

field X to the excitation field F. Practically, the vibration field X̃, measured
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over the surface of a structure, is biased by two independent contributions.

The first one is related to measurement errors, since the transducers used to

perform measurements are imperfect. This contribution is generally modeled

by an additive noise. The second one is related to modeling errors, which

reflect that the model used to determine the transfer functions matrix H is

imperfect. If modeling errors are supposed small enough, it is reasonable to

incorporate this bias in the additive noise [9].

As a result, the measured vibration field X̃ is obtained from the following

direct formulation:

X̃ = HF+N, (1)

where the transfer functions matrix H, the excitation field F and the global

noise N are fully determined.

Unlike to the direct problem, the structural source identification problem

consists in estimating the unknown excitation field F acting on a structure

from the vibration field X̃ measured on its surface only. In other words, the

noise N is another unknown of the inverse problem. To deal with such a

problem efficiently, the Bayesian paradigm is well adapted and is adopted in

this work.

The Bayesian paradigm consists in considering all the parameters of the

problem as random variables. Consequently, it is an uncertainty model, in

which the uncertainty on each parameter is modeled by a probability distri-

bution, describing the state of knowledge or the a priori on this parameter.

From the mathematical standpoint, the formulation of the Bayesian source
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identification problem relies on the Bayes’ rule:

p(F|X̃) ∝ p(X̃|F)p(F), (2)

where:

− p(F|X̃) is the posterior probability distribution, representing the prob-

ability of observing F given the measured vibration field X̃. In other

words, it represents what is known on the excitation field after making

vibration measurements;

− p(X̃|F) is the likelihood function, representing the probability of mea-

suring X̃ given an excitation field F. It reflects the uncertainty related

to the measurement of the vibration field, which is itself related to the

noise;

− p(F) is the prior probability distribution, representing the prior knowl-

edge of the excitation field before measuring the vibration field.

From the Bayes’ rule, one seeks the most probable excitation field F̂

given the measured vibration field X̃. Such a solution is a point estimate of

F corresponding to a mode of the posterior probability distribution. Conse-

quently, the solution of the identification problem is sought as the maximum

a posteriori estimate, that is:

F̂ = argmax
F

p(F|X̃) = argmax
F

p(X̃|F)p(F). (3)

Practically, it is generally easier to find the solution of the following dual

minimization problem:

F̂ = argmin
F
− ln p(F|X̃) = argmin

F
− ln p(X̃|F)− ln p(F). (4)
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From Eqs. (2)-(4), it is clear that the more prior information reflects the

nature of the noise and the sources to identify, the more the posterior prob-

ability is high. From this observation, it is expected that proper results can

be obtained if the likelihood function and the prior probability distribution

are properly chosen, since the identification process gives the most probable

solution given prior information on the noise and the nature of the sources

to identify.

2.2. Choice of the likelihood function and prior probability distribution

As suggested in the previous section, the quality of the source identifi-

cation is closely related to the choice of the likelihood function and prior

probability distribution. That is why, this section aims at explaining the

choices made in this paper to have a closed-form expression of the identifica-

tion problem, that allows properly reflecting prior information on the noise

and the sources to identify.

2.2.1. Choice of the likelihood function

As mentioned in section 2.1, the likelihood function reflects the uncer-

tainty related to the measurement of the vibration field X̃. By definition

[see Eq. (1)], this uncertainty is related to the noise N. Consequently, the

likelihood function can be rewritten under the following form:

p(X̃|F) = p(X̃−HF|N), (5)

meaning that the likelihood function can be seen as the probability of obtain-

ing X̃ −HF = 0 given the noise N. In other words, the likelihood function

measures the fidelity of the vibration model, corresponding to the noiseless
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vibration field X = HF, to the measured data. As a result, the likelihood

function is also written:

p(X̃|F) = p(N), (6)

where p(N) is the prior probability distribution of the noise, representing the

a priori of the experimenter on the nature of the noise inducing a discrepancy

between the measured vibration field and its noiseless estimate before any

measurement of the vibration field.

If the noise is supposed spatially white (meaning that the components

of N are independent and identically distributed random variables) and due

to multiple independent causes, then the prior probability distribution of

the noise can be represented by a multivariate normal distribution with zero

mean and variance α2:

p(N) ∝ exp
[
−1

2

‖N‖22
α2

]
, (7)

where ‖ • ‖2 is the L2-norm, also known as the Euclidean norm.

It can be inferred from Eqs. (1), (6) and (7) that the likelihood function

is written:

p(X̃|F) ∝ exp

[
−1

2

‖X̃−HF‖22
α2

]
. (8)

Finally, it is worth mentioning that in practical situations the noise may

not be strictly white or even Gaussian. However, assuming a spatially

Gaussian white noise allows limiting the number of hyperparameters of the

Bayesian model. Consequently, this hypothesis can seem coarse or indeco-

rous, but it is actually relevant as highlighted by the experimental results
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presented in the next of the paper.

2.2.2. Choice of the prior probability distribution

The prior probability distribution reflects the uncertainty related to the

unknown excitation field F. Consequently, it can be seen as the a priori of the

experimenter on the sources to identify. To take advantage of local informa-

tion available a priori on the nature and the spatial distribution of sources,

it is supposed that the structure is excited in N different regions by uncor-

related excitations of various types (localized or distributed). This allows

considering the local excitation fields Fi as independent random vectors and

thus writing the prior probability distribution as the product of local prior

probability distributions p(Fi), that is:

p(F) =
N∏
i=1

p(Fi), (9)

where p(Fi) reflects the prior knowledge of the nature of the sources in the

zone i.

Furthermore, it is assumed that the components of each local excitation

vector Fi are independent and identically distributed random variables (i.e.

uncorrelated but having the same probability distribution) following a gen-

eralized Gaussian distribution with zero mean. As a consequence, each local

excitation field follows a multivariate generalized Gaussian distribution with

zero mean. From the mathematical standpoint, the local prior probability

distributions are thus written:

p(Fi) ∝ exp
[
− 1

qi

‖LiFi‖qiqi
βqii

]
, (10)
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where:

- qi is the shape parameter of the distribution in the zone i. Its value is

defined in the interval ]0,+∞[;

- ‖ • ‖qi is the Lqi
-norm or quasi-norm, if qi ≥ 1 and qi < 1 respectively;

- βi is the scale parameter of the distribution, which defines the disper-

sion of the distribution around the mean. It is therefore a generalized

measure of the variance of the distribution;

- Li is a differentiation matrix controlling the regularity of the solution

in the zone i.

It should be noted that the choice of a multivariate generalized Gaussian

distribution allows a great flexibility for describing prior knowledge of the

sources to identify as it will be made clearer in section 3.2.1. As for the

assumption of a Gaussian white noise, the hypothesis of independence used

to derive the prior probability distribution can be discussed. Actually, this

hypothesis has been introduced here because the correlation between each

component of the force vector is difficult to assess a priori. However, this as-

sumption is typically violated when one tries to identify excitation forces and

forces at boundaries. In this particular situation, forces at boundaries are

functionally dependent on the excitation forces. From a theoretical stand-

point, Tikhonov-like approaches are known in Machine Learning and Data

Mining as naive Bayes classifiers. In these fields, it has been shown that

naive Bayes classifiers works well not only when the parameters involved

in the formulation are completely independent, but also when the parame-
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ters are functionally dependent [11]. For all the aforementioned reasons, the

hypothesis of independence is relevant.

2.3. Practical form of the identification problem

In order to derive the practical form of the identification problem, Eqs. (8)

and (10) are introduced into Eq. (4). In doing so, one obtains the general

formulation of the identification problem given below:

F̂ = argmin
F

1

2

‖X̃−HF‖22
α2

+
N∑
i=1

1

qi

‖LiFi‖qiqi
βqii

. (11)

At this stage, 2N+1 parameters, namely (qi, βi, α), are necessary to math-

ematically describe prior information on the noise and the sources to identify.

However, it can be emphasized that the parameters qi and βi play a similar

role in this formulation. Therefore, only one set of parameters, qi or βi, can

be used. In the present paper, it has been chosen to work with the shape

parameter qi, while setting the values of the parameters βqii to a unique con-

stant value β. Taking this observation into account, one finally gets the final

form of the identification problem, which is a group generalized Tikhonov

regularization :

F̂ = argmin
F

1

2
‖X̃−HF‖22 + λ

N∑
i=1

1

qi
‖LiFi‖qiqi , (12)

where λ = α2/β is the so-called regularization parameter, that controls the

trade-off between prior information on the noise and prior information on

the solution.

Before going any further, it could be interesting to discuss the frequency

limitations of the proposed identification procedure. Actually, for a fully
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determined problem, the limitations are not related to the formulation of

the inverse problem itself, but to the measurement or the calculation of the

transfer functions matrix H and the measurement of the vibration field X̃.

Regarding the calculation of H, the frequency limitation is related to the

model of the structure. If the model is purely analytic, then the limit is

related to the assumptions made to establish the mechanical model. If the

model is obtained by FEM, then the limit is fixed by the assumptions made

to derive the mechanical model and the mesh used to discretize the struc-

tural domain (generally built using 6 nodes per wavelength). Regarding the

measurement of the vibration field, the frequency limitation is mainly related

to the bandwidths and the resolution of the transducers.

It can also be noticed that the proposed formulation includes the stan-

dard Tikhonov regularization, since the latter is recovered if qi = 2 for all

i ∈ [1, N ] in Eq. (12). Furthermore, it is emphasized that the selected zones

can cover only a part of the whole structure, implying that no a priori on

the spatial distribution of sources is assumed in non-selected zones. In these

particular regions, the identification is therefore only based on the fitting to

the experimental data, i.e. on prior information on the noise. Finally, it

is worth noting that the robustness of the proposed method against model-

ing and measurement uncertainties can not be assessed, since the proposed

formulation provides a point estimate of the force vector to identify. Never-

theless, the proposed methodology allows obtaining consistent identifications

as it will be shown in sections 4 and 5.
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3. Resolution of the source identification problem

Although the proposed formulation is highly flexible to describe prior

knowledge of the sources to identify, its solution has generally no closed-form

expression. That is why, the identification problem is solved using an iterative

algorithm, which is a generalized version of the Iteratively Reweighted Least-

Squares algorithm [8, 10, 12]. The proposed algorithm has the advantage

to be easy to implement and general enough to cope with a wide range of

configurations depending on the values of qi. In the next of the paper, it

is referred to as Generalized Iteratively Reweighted Least-Squares (GIRLS)

algorithm.

3.1. General principle

The core idea of the GIRLS algorithm consists in replacing the direct

resolution of the minimization problem [see Eq. (12)] by an equivalent iter-

ative process having an explicit solution at each iteration. For this purpose,

one has to notice that the Lq-norm to the power of q can be rewritten as a

squared weighted L2-norm as it is shown in Eq. (13):

∀xn, ∀q,
1

q
‖x‖qq =

1

q

∑
n

|xn|q =
1

2

∑
n

w(xn) |xn|2 =
1

2
‖W1/2x‖22, (13)

where w(xn) = 2
q
|xn|q−2 is the weighting coefficient andW = diag[w(x1), . . . , w(xn)]

is the corresponding definite positive weighting matrix.

Since the weighting matrix depends on x, the equality given in Eq. (13)

cannot be verified directly, which justifies the use of an iterative algorithm

to obtain the solution of the identification problem. As part of an iterative
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process, the aim is thus to find the solution x(k+1) at iteration k+1 from

the solution x(k) at iteration k by setting w(xn) = w(x
(k)
n ), so as to recover

the identity given by Eq. (13) when the iterative process has converged.

When applying this idea to the proposed formulation, it can be inferred

that the excitation field F̂
(k+1)

at iteration k+1 is solution of the following

minimization problem:

F̂
(k+1)

= argmin
F

1

2
‖X̃−HF‖22 +

λ(k+1)

2

N∑
i=1

‖W(k)
i

1/2
LiFi‖22, (14)

where λ(k+1) is the regularization parameter at iteration k+1.

For numerical purposes, the definition of the weighting matrix W(k)
i is

slightly modified compared to that given in Eq. (13), since it is defined such

that:

W(k)
i = diag

[
2

qi
Tε

(
LiF

(k)
i

)]
, (15)

with:

Tε

(
x
(k)
j

)
=


∣∣∣x(k)j ∣∣∣qi−2

if
∣∣∣x(k)j ∣∣∣ > ε

(k)
i

ε
(k)
i

qi−2
if
∣∣∣x(k)j ∣∣∣ ≤ ε

(k)
i

, (16)

where x(k)j is the j-th component of the vector x(k) and ε
(k)
i is a small real

positive number acting as a damping parameter. It allows avoiding infinite

weights when
∣∣∣x(k)j ∣∣∣→ 0 and qi < 2.

For implementation purposes, it should be emphasized that Eq. (14) can

be more concisely expressed by introducing two matrices,W(k) and L, defined
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as follows:

W
(k)

=


W(k)

1 0
. . .

0 W(k)
N

 (17)

and

L =


L1 0

. . .
0 LN

 , (18)

if the selected zones entirely cover the studied structure. In all other cases,

L =


L1 0 0

. . . ...
0 LN 0

 . (19)

Introducing W(k) and L into Eq.(14), it readily comes that:

F̂
(k+1)

= argmin
F

1

2
‖X̃−HF‖22 +

λ(k+1)

2
‖W(k)1/2

LF‖22. (20)

3.2. Choice of the tuning parameters

According to Eqs. (14), (15) and (16), 2N + 1 tuning parameters are

involved in the resolution of the identification problem, namely the shape

parameters of the distribution qi, the regularization parameter λ(k+1) and

the damping parameters ε(k)i . In the following subsections, the selection of

each parameter is detailed.

3.2.1. Choice of the shape parameters

To properly choose the value of the shape parameter in each zone, one has

to keep in mind that the shape of the distribution or equivalently the shape
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of the penalty function, i.e. ‖x‖qiqi , has a major influence on the solution of

the identification problem [see Fig. 1]. Indeed, as shown in Fig. 1b, it is clear

that the smaller qi is, the larger is the weight on small values of x. On the

contrary, for large values of x, the smaller qi is, the smaller is the weight on

these values. This difference in the weighting behavior for small and large

values of x can be directly observed in the solutions obtained, since for qi ≤ 1

the solution will tend to have only a few non-zero values, while for qi = 2 the

solution will tend to have only a few very small values.
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Figure 1: Selection of the shape parameter qi - (a) Probability distribution exp
[
−‖x‖

qi
qi

qiβ
qi
i

]
(βqii = 1) and (b) Corresponding penalty function ‖x‖qiqi for (—) qi = 2, (−−) qi = 1 and

(− · −) qi = 0.5

From this observation, it can be inferred that qi can be set to 2 if the

solution sought is supposed to be distributed [13], while qi can be chosen

equal to or less than 1 if the solution is supposed to be localized [14, 15].

This rule of thumb essentially holds if the differentiation matrices Li cor-

respond to the identity matrix. Indeed, if ones tries to identify a piecewise
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continuous excitation field in a zone i, one has to promote a solution for which

the first derivative contains only a few non-zero values. In this situation, the

differentiation matrix differs from the identity matrix. As an example, for a

one dimensional structure, it is then recommended to choose qi ≤ 1 and use

a differentiation matrix of the form:

Li =


−1 1

−1 1
. . .

−1 1

 . (21)

3.2.2. Choice of the regularization parameter

The value of the regularization parameter can be chosen automatically

from various selection methods, such as the Morozov’s discrepancy principle

[16], the Generalized Cross Validation [17], the Bayesian estimator [18] or

the L-curve principle [19]. In the present paper, the regularization parame-

ter λ(k) is obtained using the L-curve principle at each iteration.

For the sake of completeness, it can be reminded that the L-curve principle

consists in plotting, in a log-log scale, the L2-norm of the regularization

term (i.e. ‖W(k)1/2

LF‖2) versus the L2-norm of the data fidelity term (i.e.

‖X̃−HF‖2) for various values of the regularization parameter. Generally, the

resulting curve exhibits an L-shape. The optimal value of the regularization

parameter is the value for which the curvature of the L-curve is maximal, i.e.

corresponding to the corner of the L-curve. To illustrate the selection of the

regularization parameter from the L-curve principle, an example extracted

from the experimental validation presented in section 5 is proposed in Fig. 2.
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Figure 2: Illustration of the L-curve principle - (a) Plot of the L-curve and (b) Curva-

ture of the L-curve versus regularization parameter λ(k) - (◦) Location of the optimal

regularization parameter

However, the computation of the regularization parameter at each itera-

tion is intensive. Accordingly, it is interesting to determine whether a unique

value can be used throughout the iterative process. As pointed out in [8],

a series of numerical experiments has shown that using λ(k) = λ(0) allows

obtaining similar results to those obtained from updated λ(k) within a com-

parable number of iterations. The logical outcome of this numerical study is

that the choice of the regularization parameter can be performed once for all

during the initialization step of the iterative process.

3.2.3. Choice of the damping parameters

The damping parameter ε(k)i can be chosen automatically for each zone

from the cumulative histogram of |LiF̂
(k)

i | [20], meaning that the value of the

damping parameter is chosen so that a fixed percentage p of the values of
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|LiF̂
(k)

i | are less than or equal to ε(k)i [see Fig. 3]. From our own numerical

tests, it has been found that using p = 5% leads to satisfying results.
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Figure 3: Illustration of the choice of the damping parameter - Cumulative histogram of

|LiF̂
(k)

i |

As for the regularization parameter, accurate solutions can be obtained

using a fixed value of the damping parameter. Indeed, from a set of numerical

experiments, it has been noticed that using the value computed during the

initialization step throughout the iterative process (i.e. ε
(k)
i = ε(0)) has no

significant influence on both the quality and the time-performance of the

algorithm.

3.3. Choice of the initial guess and stopping criterion

Since the proposed resolution algorithm is iterative, another crucial issue

is the choice of the initial guess as well as that of the stopping criterion.
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3.3.1. Choice of the initial guess

Choosing a good initial guess is one of the keys for a successful identifi-

cation, since the proposed formulation is non-convex when qi < 1. In such

a situation, the existence of a unique minimizer is not guaranteed. Conse-

quently, the identified solution F̂ strongly depends on the initial guess F̂
(0)
.

A good initial guess can be defined as a coarse solution of the problem, easy

to compute, but sufficiently close to the solution sought to ensure the conver-

gence of the iterative process. A possible choice that fulfills this requirement

is the solution of the standard Tikhonov regularization, that is:

F̂
(0)

= argmin
F

1

2
‖X̃−HF‖22 +

λ(0)

2
‖F‖22. (22)

3.3.2. Choice of the stopping criterion

As an iterative process, the GIRLS algorithm requires the definition of

a practical test that allows determining when to stop the algorithm. In the

present paper, the stopping criterion is related to the relative variation of

the functional J(F̂
(k)
) = 1

2
‖X̃ − HF̂

(k)
‖22 + λ(k)

2
‖W(k−1)1/2

LF̂
(k)
‖22 between

two successive iterations. As classically done in the literature, the relative

variation δ of the functional J is defined such that:

δ =

∣∣∣J (F̂(k+1)
)
− J

(
F̂

(k)
)∣∣∣

J
(
F̂

(k)
) . (23)

From there, the iterative process is stopped when the relative variation δ

is less than or equal to some tolerance. Experimentally, it has been found that

setting the tolerance to 10−8 allows obtaining consistent identified solutions,

while preserving the time-performance of the GIRLS algorithm.
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3.4. Summary

To clearly highlight each step of the resulting iterative process, a compre-

hensive overview of the proposed version of the GIRLS algorithm is given in

table 1.

Table 1: Generic GIRLS algorithm

Proposed GIRLS Algorithm

Inputs: Transfer functions matrix: H, Measured vibration field X̃,

Selected zones {i}, Differentiation matrix for each selected zones: Li,

Tolerance: tol

Output: Estimated force vector: F̂

Initialization: Compute λ(0) from the L-curve principle

Compute F̂
(0)

from Eq.(22)

Compute ε(0) from the cumulative histogram of |F̂
(0)
|

Initialize δ to 1

Iteration:

while δ > tol

Compute W(k)
i from Eq. (15) using ε(k)i = ε(0)

Construct W
(k)

from Eq. (17)

Construct L from Eq. (18) or Eq.(19)

Compute F̂
(k+1)

from Eq. (14) using λ(k+1) = λ(0)

Update δ using Eq. (23)

k ← k + 1

end

return F̂← F̂
(k)
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4. Numerical validation

In general, forces and moments can be applied on a structure or exists

at boundaries. However, the identification of moments requires a careful

attention [4], since rotations are difficult to measure directly. For this reason,

the proposed numerical validation is restricted to the identification of forces

only, in order to focus on the particular interest of including local prior

information in the identification process, which is the originality of the paper.

4.1. Description of the test case

In the present numerical validation, one seeks to identify a mechanical

point force acting on a thin simply supported steel plate. In such a configu-

ration, the excitation field exhibits two types of spatial distribution over the

structure, namely a smooth distribution of the reaction forces at boundaries

and a singular distribution around the location of the point force. The main

simulation parameters of the proposed test case are listed in table 2.

The exact vibration displacement fieldXexact is computed from a FE mesh

of the plate made up of 567 linear quadrilateral shell elements, assuming

that only bending motions are measurable. In practical situations, the exact

vibration field is corrupted by noise. This phenomenon is modeled by adding

to the exact displacement field an additive Gaussian white noise as suggested

by Eq. (1), that is:

X̃ = Xexact +N, (24)

where the noise vector N is such that [21]:

N = βae
jφa , (25)
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Table 2: Simulation parameters

Parameters Values

Plate length Lx = 2 m

Plate width Ly = 1.5 m

Plate thickness h = 0.017 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Structural damping η = 0.01

Amplitude of the force F0 = 1 N

Location of the force (x0, y0) = (1.04 m, 0.93 m)

Studied frequency f0 = 450 Hz

where βa = pnM
−1/2‖Xexact‖2Z and φa = U, with pn the noise percentage,

M the number of measurable dofs, Z a Gaussian random vector and U a

random vector uniformly distributed over the interval [0, 2π]. In what fol-

lows, the noise percentage pn is set to 2%.

Furthermore, as suggested in [4], a FE model of the plate with free bound-

ary conditions is used to compute the transfer functions matrix H, which is

dynamically condensed over the measurable dofs only [8, 22]. The main in-

terest in using free boundary conditions to model dynamic behavior of the

plate is to allow the identification of external excitations acting on the struc-

ture as well as reaction forces at boundaries. Finally, one can notice that the

proposed FE model of the plate is theoretically valid up to 650 Hz, corre-

sponding to the frequency for which the structure is discretized with 6 nodes
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per bending wavelength.

4.2. Application

The reference force vector Fref is obtained from the transfer functions

matrix H and the exact displacement field Xexact thanks to the following

equation:

Fref = H−1Xexact. (26)

Fig. 4 presents the reference force vector to identify at 450 Hz. As ex-

pected, a unit point force appears at (x0,y0) = (1.04 m,0.93 m) as well as

smooth reaction forces at boundaries of the plate.
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Figure 4: Reference force vector Fref at 450 Hz

Replacing naively the exact displacement field by the corrupted one in

Eq. (26), one obtains the identified excitation vector F̂ presented in Fig. 5.
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Obviously, the source identification fails, since the reconstructed excitation

field is highly dominated by the noise. This result is easily explained by

the ill-conditioning of the transfer function matrix H. In the present case,

the condition number of H is equal to 2×104. This indicates the presence of

small singular values, which are responsible for the amplification of the terms

related to the noise and consequently cause the identification to fail [23].
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Figure 5: Naive identification of the force vector F̂ at 450 Hz

As done in Ref. [8], the first idea to stabilize the identification problem

consists in using a global a priori on the spatial distribution of sources. In

such a configuration, it is clear that a compromise has to be found between

the smoothness of the reaction forces at boundaries and the singularity of

the point force. Considering explanations given in section 3.2.1, a relevant

compromise is obtained after 31 iterations for q = 1.1 and L = I as pre-
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sented in Fig. 6. With this value of the shape parameter, the identified force

amplitude F̂0 is equal to 0.72 N instead of 1 N.
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Figure 6: Identification of the force vector F̂ at 450 Hz from corrupted data when using a

global prior on the spatial distribution of sources - q = 1.1 and L = I

However, the a priori on the spatial distribution of sources being perfectly

adapted neither to localized sources nor to distributed sources, the identified

sources do not perfectly match with the actual ones. An even better result

can be obtained by using properly our prior knowledge of the location and the

nature of the sources acting on the structure. Indeed, as presented in Fig. 4,

the force vector to identify is sparse except in the vicinity of the boundaries

of the plate. This observation leads to divide the structure into two iden-

tification regions: (i) a central region associated to the shape parameter q1

and containing the point force only, in which a sparsity-promoting prior is

required, and (ii) a region associated to the shape parameter q2 and corre-
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sponding to the boundaries of the plate, in which a prior promoting smooth

solutions has to be employed [see Fig. 7].
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Figure 7: Definition of the selected zones - (◦) zone 1 (sparse), (×) zone 2 (smooth) and

(♦) location of the point force

Following the considerations described in section 3.2.1, one sets (q1, q2) =

(0.5, 2). When choosing these values, one obtains the identified force vector

presented in Fig. 8. It is noteworthy that the identified force vector is very

similar to the reference one, meaning that chosen values are well adapted to

describe the spatial distribution of sources in each selected zones. From a

numerical standpoint, the immediate consequence of the accordance of the

local priors with the actual local spatial distribution of sources is the decrease

in the number of iteration of the GIRLS algorithm [8]. Indeed, only 11 it-
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erations have been required to reach the tolerance and the identified force

amplitude F̂0 is equal to 0.995 N instead of 1 N.
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Figure 8: Identification of the force vector F̂ at 450 Hz from corrupted data when using

local priors on the spatial distribution of sources - (q1,q2) = (0.5,2) and L = I

This result can easily be explained by adopting the Bayesian paradigm.

From this particular point of view, it can be noticed from Eq. (2) that the

more prior information on the noise and the nature of the sources is meaning-

ful, the more the confidence in the reconstruction is high. Numerically, this

implies that the convergence of the GIRLS algorithm to a reliable solution is

faster when choosing proper values of the shape parameters qi.

The analysis presented above has been performed for a frequency that do
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not correspond to a natural frequency of the plate. However, it should be

noted that source identification at natural frequencies of a lightly damped

structure is generally far more difficult, since at these frequencies the shape

of the vibration response of the structure is close to that of the corresponding

mode shapes. Consequently, the nearfield information is somewhat masked.

From the standpoint of the identification process, this can be regarded as an

increase of the noise level. To assess the ability of the proposed approach to

perform consistent identification at the natural frequencies of the structure,

the identification procedure is applied on the test case described previously,

but for resonances of the plate, namely 85 Hz, 278 Hz and 572 Hz. The

corresponding identifications are presented in Fig. 9. Obtained results show

that for each natural frequency the shape of the identified force vectors are

consistent with the reference ones. However, one has to noticed that the

amplitude of the identified point force F̂0 is generally underestimated. In-

deed, the identified amplitude is around 0.83 N instead of 1 N for the three

cases. Nevertheless, these results show that the proposed method allows hav-

ing credible information on the sources acting on the structure at resonance

frequencies.

5. Experimental validation

The structure of interest is a steel parallelepiped box, excited on one of its

faces by a shaker supplied by a white noise and equipped with a force sensor,

as presented in Fig. 10. The main features of the proposed experimental

validation are listed in table 3.

In this experiment, the source identification is performed on the excited
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Figure 9: Identification of the force vector F̂ at resonance frequencies of the structure - (a)

Reference at 85 Hz, (b) Identification at 85 Hz, (c) Reference at 278 Hz, (d) Identification

at 278 Hz, (e) Reference at 572 Hz and (f) Identification at 572 Hz - (q1,q2) = (0.5,2) and

L = I
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Figure 10: Experimental set-up

Table 3: Experiment parameters

Parameters Values

Length of the parallelepiped Lx = 0.45 m

Width of the parallelepiped Ly = 0.3 m

Height of the parallelepiped Lz = 0.35 m

Wall thickness h = 0.005 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Location of the force (y0, z0) = (0.10 m, 0.09 m)

Studied frequency f0 = 600 Hz
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surface only [see Fig 10]. Measurements of the vibration field were carried

out with a scanning laser vibrometer on a grid of 19×22 points along y and

z directions respectively using the signal as phase reference. In all the subse-

quent identifications, the measured vibration velocity field is normalized to

the force signal delivered by the force sensor. By doing so, the amplitude of

the identified point force F̂0 should be equal to 1. Regarding the FE mesh

used to model the dynamic behavior of the excited surface, it has been de-

signed so as to perfectly match the measurement mesh. Hence, it is made

up of 378 linear quadrilateral shell elements, making the model theoretically

valid for frequencies below 5000 Hz. The corresponding FE model with free

boundary conditions has then been used to compute the transfer functions

matrix H, considering that transverse motions are the only available data.

As for the numerical validation, let us start by identifying the force vec-

tor F̂ using a global prior on the nature of the sources to identify. In the

present case, it can be noticed that the analysis of the experimental set-up

suggests that the spatial distribution of sources acting on the studied part of

the structure is similar to that of the numerical test case. Consequently, it

is natural to choose q = 1.1 and L = I. After 85 iterations, one obtains the

identified force vector presented in Fig. 11. It can be noticed that the spatial

distribution of the point force is spread around its actual location, indicating

that the global a priori is not perfectly adapted to identify localized sources.

On the contrary, the spatial distribution of reaction forces is consistent with

what is expected when analyzing the experimental set-up. It should however

be noted that the identified forces at boundaries are the sum of pure reaction
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forces and equivalent forces due to the potential existence of boundary mo-

ments, because a force-only model of the structure is adopted here. As for

the point force, one can, nevertheless, suspect that the identified amplitudes

are underestimated, since the global a priori tries to reflect the compromise

between the singularity of the point force and the smoothness of the reaction

forces at boundaries.
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Figure 11: Experimental identification of the force vector F̂c at 600 Hz using a global

prior on the spatial distribution of sources - q = 1.1 and L = I

As observed in the numerical validation, a better identification can be

obtained by using properly our a priori on the nature and the location of

sources acting on the structure. From a careful analysis of the experimental

set-up, one can infer that the target force vector is very sparse except in the

vicinity of the boundaries of the studied plate, where the spatial distribution
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of the reaction force is likely to be smooth. Accordingly, two identification

regions can be distinguished as illustrated in Fig. 12. The selected regions

have the same characteristics as those defined in the numerical validation.

This observation allows assuming that (q1, q2) = (0.5, 2).
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Figure 12: Definition of the selected zones - (◦) zone 1 (sparse), (×) zone 2 (smooth) and

(♦) location of the point force

As shown in Fig. 13, the normalized amplitude and the location of the

point force are well identified since F̂0 = 0.93 and (ŷ0, ẑ0) = (0.1026 m, 0.0875 m).

Similarly, the reaction forces at boundaries remain consistent with our ex-

pectations. Finally, it can be noticed in passing that only 26 iterations have

been necessary to reach the tolerance, confirming that properly exploiting

the spatial information on the nature and the location of sources allows im-

proving both the quality of the identification and the performance of the
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GIRLS algorithm.
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Figure 13: Experimental identification of the force vector F̂c at 600 Hz using local priors

on the spatial distribution of sources - (q1, q2) = (0.5, 2) and L = I

As for the numerical validation, the previous analysis has been performed

outside natural frequencies of the structure. Nevertheless, this analysis is

not sufficient to validate the proposed methodology in an experimental con-

text, since identifying sources outside resonance frequencies is not the more

challenging case. To have better insights on the identification ability of the

approach, identifications are performed at resonance frequencies of the struc-

ture, namely 86.25 Hz, 212.5 Hz and 453.75 Hz. The results presented in

Fig. 14 clearly show that the corresponding identifications are qualitatively

consistent with our expectations. Furthermore, it should be noted that the

location of the point force is still well identified, while its normalized ampli-
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tude is underestimated since it is around 0.75 for the three cases presented

here.

Finally, to give a comprehensive overview of the proposed identification

strategy, the force spectra identified at the point force location is given in

Figure 15. In an ideal situation, the identified force amplitude should be

equal to 1 at each studied frequency. It is obviously not the case in the

present validation. However, one can notice that the identified force spectra

is reasonably close to the target value, as the discrepancy varies from −5 dB

to 2 dB over the entire frequency range and the frequency-averaged force

amplitude is approximately equal to 1.02. Consequently, all these results are

encouraging since credible results are obtained even with a model that does

not strictly correspond to the actual structure.

6. Conclusion

In the present paper, a general methodology has been presented for iden-

tifying mechanical sources acting on a structure. The initial motivation of

this study was to develop a method able to fully exploit the spatial informa-

tion on the nature and the location of sources. Indeed, in the vast majority of

the methods available in the literature, such an information remains unused,

whereas it is generally roughly known in practical situations. To remedy this

problem, we have used the Bayesian paradigm to derive a group generalized

Tikhonov regularization, that allows introducing local a priori on the spatial

distribution of sources. In doing so, the identification procedure is expected

to be more flexible and accurate, since the a priori can be precisely adapted
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Figure 14: Experimental identification of the force vector F̂ at resonance frequencies of the

structure - (a) Identification at 86.25 Hz, (b) Identification at 212.5 Hz, (c) Identification

at 453.75 Hz - (q1,q2) = (0.5,2) and L = I
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Figure 15: Force spectra identified at the point force location between 80 Hz and 2000 Hz

to each zone of the studied structure. From a numerical standpoint, a Gen-

eralized Iteratively Reweighted Least-Squares (GIRLS) algorithm has been

used to efficiently deal with both convex and non-convex problems, that can

arise with such a formulation. Proposed numerical and experimental valida-

tions have highlighted the benefits of defining local priors instead of a global

prior. In particular, it has been pointed out that properly exploiting the

spatial information on the nature and the location of sources significantly

improves the quality of identifications.

Two extensions of the identification strategy developed in this paper could

be considered. First, the application of the proposed approach to non-linear

structures by linearizing the problem around a certain state of the system and

apply the GIRLS algorithm. Second, the implementation of a full Bayesian
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approach based on MCMC techniques for which the point estimates obtained

with the proposed methodology could be considered as a valuable starting

point.
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