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aLAMA, UMR5127, Université de Savoie Mont-Blanc, CNRS,
73376 Le Bourget-du-Lac, France
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Abstract

A general study of consistent two-equation models for thin film flows is presented. In all models derived by the energy
integral method or by an equivalent method, the energy of the system, apart from the kinetic energy of the mean
flow, depends on the mean velocity. We show that in this case the model does not satisfy the principle of Galilean
invariance. All consistent models derived by the momentum integral method are Galilean invariant but they admit an
energy equation and a capillary energy only if the Galilean-invariant part of the first-order momentum flux does not
depend on the mean velocity. We show that, both for theoretical and numerical reasons, two-equations models should
be derived by a momentum integral method admitting an energy equation leading to the structure of the equations of
fluids endowed with internal capillarity. Among all models fulfilling these conditions, those having the best properties
are selected. The nonlinear properties are tested from the speed of solitary waves at the high Reynolds number limit
while the linear properties are studied from the neutral stability curves and from the celerity of the kinematic waves
along these curves. The latter criterion gives the best consistent way to write the second-order diffusive terms of the
model. Optimized consistent two-equation models are then proposed and numerical results are compared to numerical
and experimental results of the literature.

Keywords: free-surface flows, thin films, capillary flows, solitary waves, interfacial instability

1. Introduction

The practical importance of thin film flows of New-
tonian liquids led to many attempts to derive a suitable
model for the evolution of the film thickness h and often
also for the evolution of the mean velocity or of the dis-
charge, both accurate and easy to solve numerically. A di-
rect numerical simulation of the Navier-Stokes equations
for these flows in real situations having a huge numeri-
cal cost, models of reduced dimensionality must be used.
Many models are derived in the long-wave assumption with
an asymptotic method. Consistency in the implementa-
tion of this method is required for the model to predict in
particular the correct instability threshold of the equilib-
rium flow with a uniform depth and a parabolic velocity
profile.

The definition of the consistency of a model is relative
to a set of hypotheses concerning the order of magnitude
of the dimensionless numbers of the problem which are,
in the case of thin film flows, the Reynolds number, the
Froude number, the Weber number and the slope of the
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bottom wall. In the present case, since the film is thin, it
is possible to define a small parameter ε which is the ratio
of the typical fluid depth hN to the wavelength L:

ε =
hN
L
� 1 (1)

As an asymptotic method is meaningless if there is more
than one small parameter, the order of magnitude of all
dimensionless numbers must be defined in relation to ε.

Then all flow fields, i.e. the pressure and the compo-
nents of the velocity and of the viscous stress tensor, are
expanded as formal power series of the small parameter ε.
These fields are supposed to be the exact solution of the
Navier-Stokes equations. There is only one asymptotic ex-
pansion of each of these quantities depending only on the
fluid depth h and on its derivatives. These expansions are
found by using the Navier-Stokes equations, the bound-
ary conditions and the constitutive relation of Newtonian
fluids (see Richard et al. [1] for more details).

These expansions are then inserted into the equations
of the model. If the leading terms in the model are of O(1)
and if all terms vanish except for a remainder of O(εn+1)
then the model is said to be consistent and n is the order
of consistency of the model. Moreover a quantity is said
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consistent to another one if the relative difference between
them is of O(ε) when using these asymptotic expansions.

The continuity equation averaged over the depth can
be used to obtain models with only one equation for h.
The first one was the Benney equation which is a consis-
tent one-equation model (Benney [2]) but its solutions can
blow up if the equilibrium flow becomes unstable (Pumir
et al. [3]). Attempts to solve this problem led to inaccurate
models (Ooshida [4]). It is therefore widely acknowledged
that at least two variables are needed to describe accu-
rately the dynamics of waves that appear in films on an
inclined plane.

A model with four equations, fully consistent to the
second order and giving very accurate results, was pro-
posed by Ruyer-Quil and Manneville [5] but its complex
mathematical structure makes its numerical resolution dif-
ficult. For a greater resolution easiness, accurate models
with two equations are actively sought for. The two vari-
ables are usually h and the average velocity U (or the flow
discharge q = hU). Shkadov [6] proposed the first two-
equation model with the assumption that the velocity pro-
file remains parabolic even out of equilibrium. Although it
can give accurate results in some situations, the Shkadov
model is not consistent because the deviation from the
parabolic profile cannot be neglected. These deviations
were measured by experiments (Alekseenko et al. [7]) and
calculated by numerical simulations (Bach and Villadsen
[8], Malamataris et al. [9], Malamataris and Balakotaiah
[10]). Consistent two-equation models were then derived
by Ruyer-Quil and Manneville [5], Usha and Uma [11],
Mudunuri and Balakotaiah [12], Abderrahmane and Vatis-
tas [13], Luchini and Charru [14]. All these models come
down to the same family based on the depth-averaged mass
conservation equation and work-energy theorem (or theo-
rem of the kinetic energy) by the energy integral method
(EIM). They differ from each other in the second or third-
order terms but are identical at the first order of approxi-
mation. Another family of models is based on the depth-
averaged mass conservation equation and momentum bal-
ance equation by the momentum integral method (MIM).
Because it is harder to derive a consistent model by this
method than by the EIM (see Luchini and Charru [14]),
there are fewer models in this family. The models derived
in Noble and Vila [15] and in Lavalle et al. [16] are obtained
by the MIM. They are consistent but differ in first-order
terms.

Recently, a three-equation model was derived by Richard
et al. [1] from the mass, momentum and kinetic energy
equations. This approach combines the EIM and the MIM
with the help of a third variable, called enstrophy, equal
to the variance of the fluid velocity divided by h2. This
raises the question of the compatibility between the EIM
and the MIM for two-equation models. One goal of this
paper is to determine whether it is possible to find consis-
tent two-equation models that satisfy both the averaged
momentum and kinetic energy equations, thus reconciling
both the EIM and the MIM, or whether there is an in-

herent theoretical flaw in the two-equation approach that
misses some physical features.

A second goal of this paper is to find what consistent
two-equation model gives the best results. All consistent
models give similar results in the validity domain of the
asymptotic expansion. However, in practice the models
are commonly used beyond this domain and this means
that the models performance must be tested in conditions
where the derivation assumptions are not so well ensured.
In particular, the linear properties of the model can be
tested on the calculation of the neutral stability curves and
the nonlinear properties can be evaluated on the speed of
the solitary waves at the limit of the high Reynolds num-
bers. Note that the performance of two-equation models
can be acceptable to predict the speed of solitary waves
especially at high Reynolds numbers but is significantly
poorer for the prediction of the amplitude (Chakraborty
et al. [17]). The mathematical structure of the equations
is an important aspect to consider in order to solve nu-
merically the equations efficiently. The dispersive capil-
lary terms are by far the most complex terms to handle.
If some conditions are fulfilled they can be treated with
the entropy stable scheme of Noble and Vila [18], later ex-
tended by Bresch et al. [19]. This scheme was successfully
used by Lavalle et al. [16] and by Richard et al. [1]. It
requires the existence of a capillary energy and the math-
ematical structure of the equations of compressible fluids
with internal capillarity. This leads to an extended model
which adds an extra equation relative to the gradient of
the fluid depth.

The physical meaning of the momentum and energy
equations is discussed in §2 as well as the general form
of MIM and EIM models. The problem of the Galilean
invariance of the equations is discussed in §3 and the com-
patibility between the momentum and energy equations
is studied in §4. The existence of a capillary energy and
the possibility to derive an extended model is discussed in
§5. The nonlinear properties are tested in §6 on the speed
of the solitary waves. This allows us to select the optimal
model as regards its hyperbolic part. The linear properties
are tested in §7. The kinematic waves velocity along the
neutral stability curve is used to find an optimized way
to model the diffusive terms. The effect on the neutral
stability curves is presented. Finally the equations are nu-
merically solved in §8 in the conditions of the experiments
of Liu and Gollub [20] and of Dietze et al. [21] and the
results are presented and compared to the experimental
results and to direct numerical simulations.

2. Energy and momentum integral methods

2.1. Physical meaning of the momentum and energy equa-
tions

We study the two-dimensional gravity-driven flow of a
Newtonian liquid thin film on a plane inclined at an angle θ
with respect to the horizontal. In the Ox-direction parallel
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Figure 1: Notations used in the text.

to the plane, the component of the fluid velocity is u. In
the Oz-direction normal to the plane and directed upward,
the velocity component is denoted by w. The fluid depth
is denoted by h. The Figure 1 presents the main notations
in the case of a typical wavy film with a main hump and
several smaller capillary ripples.

The assumption of a thin film allows to define a small
parameter ε as the ratio between the typical fluid depth
and the wavelength L (or equivalently the typical distance
of variations of the variables in the Ox-direction). This
long-wave assumption is classically used to derive several
shallow-water models, such as the Saint-Venant equations,
by a depth-averaging procedure. A justification of the ap-
plicability of these models to describe film flows with large
depth gradients in the region of wave fronts was recently
proposed in Ostapenko [22] with the concept of hydro-
static approximation which generalizes the long-wave ap-
proximation.

Denoting by ρ, µ, ν and p, the fluid density, dynamic
viscosity, kinematic viscosity and pressure respectively, the
constitutive relation of Newtonian fluids is σ = −pI + τ
with τ = 2µD where σ, τ and D are respectively the
Cauchy stress tensor, the viscous stress tensor and the
strain rate tensor and where I is the identity tensor.

The physical governing equations are the mass conser-
vation equation (equation of continuity) and the Navier-
Stokes momentum balance equations. The work-energy
theorem does not give an independent equation but can
be deduced from the Navier-Stokes equations. The fluid is
supposed to be incompressible. Denoting by V the veloc-
ity field and V = ‖V ‖, the continuity equation is

divV = 0 (2)

The momentum balance equation is

∂ρV

∂t
+ div (ρV ⊗ V ) = divσ + ρg (3)

and the work-energy theorem is

∂

∂t

(
1

2
ρV 2

)
+ div

(
1

2
ρV 2V

)
= div (σ · V )− σ : D + ρg · V (4)

The symbol ⊗ represents the tensor product and the colon
denotes the double contraction. The right-hand side of (3)
represents the external forces acting on the fluid particle
while the right-hand side of (4) represents the power of
both the external and internal forces. The latter is ex-
pressed by the term −σ : D.

To build a model of reduced dimensionality, these equa-
tions can be averaged over the depth taking into account
the boundary conditions which are the no-penetration and
no-slip conditions on the bottom

w (z = 0) = 0 , u (z = 0) = 0 (5)

the kinematic boundary conditions at the free surface

∂h

∂t
+ u (z = h)

∂h

∂x
= w (z = h) (6)

and the dynamic boundary condition at the free surface

(σ · n) (z = h) =
γ

R
n (7)

where γ is the surface tension, R the radius of curvature
of the free surface and n the unit normal vector at the
free surface pointing upward. The atmospheric pressure is
supposed to be constant and can be taken equal to zero.

For any variable A, its averaged value over the depth
is defined as

〈A〉 =
1

h

∫ h

0

A dz (8)

The averaged value of u is denoted by U . Averaging the
continuity equation (2) gives the averaged mass equation

∂h

∂t
+
∂hU

∂x
= 0 (9)

The momentum and kinetic equation equations are first
put into dimensionless form and then averaged over the
depth. The characteristic depth and velocity are the depth
hN and average velocity 〈uN 〉 of the equilibrium flow, also
called the Nusselt flow, which has the parabolic velocity
profile

uN (z) =
g sin θ

ν
z
(
hN −

z

2

)
(10)

The expression of its average value over the depth is

〈uN 〉 =
gh2N sin θ

3ν
(11)

The small parameter ε is now defined as

ε =
hN
L

(12)

The Reynolds number Re, Froude number Fr and We-
ber number We are defined as Re = hN 〈uN 〉 /ν, Fr =
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〈uN 〉 /
√
ghN and We = ρhN 〈uN 〉2 /γ. We define also the

dimensionless number

λ =
Re sin θ

Fr2
(13)

It follows from the previous relations that λ = 3. It is
convenient to use the following number (see Richard et al.
[1])

κ =
ε2Fr2

We
(14)

which is supposed to be of O(1) (if second-order terms are
included in the model then κ = O(ε) to avoid unnecessary
complicated capillary terms). The Reynolds number, the
Froude number and the angle θ are assumed to be of O(1).
The components of the viscous stress tensor are defined as
τ = τxxex⊗ex + τxzex⊗ez + τxzez⊗ex + τzzez⊗ez, ex
and ez being the unit vectors in the Ox and Oz directions.
The dimensionless quantities are denoted with a tilde and
defined as follows:

ũ =
u

〈uN 〉
w̃ =

w

ε〈uN 〉
x̃ =

x

L

z̃ =
z

hN
t̃ =

t

L
〈uN 〉 h̃ =

h

hN

Ũ =
U

〈uN 〉
p̃ =

p

ρghN
τ̃xx =

Lτxx
〈uN 〉µ

τ̃zz =
hNτzz
ε〈uN 〉µ

τ̃xz =
hNτxz
〈uN 〉µ

(15)

The equations and the boundary conditions in dimension-
less form are given in Appendix A.

In dimensionless form, the averaged mass equation has
the same form as (9). Averaging the momentum balance
equation gives (see Richard et al. [1])

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃
〈
ũ2
〉

+
h̃2 cos θ

2Fr2

)

=
λh̃− τ̃xz (0)

εRe
+

κ

Fr2
h̃
∂3h̃

∂x̃3
+O

( ε

Re

)
(16)

The third derivative is the capillary term and the terms
of O(ε/Re) are diffusive terms. All these terms could be
written in conservative form. Apart from these terms,
the right-hand side of equation (16) represents the ex-
ternal forces acting on the averaged system i.e. the Ox-
component of the weight and the friction on the bottom.
Shearing forces internal to the flow disappeared by the
averaging operation. This was of course expected since
internal forces cancel in accordance with Newton’s Third
Law.

Averaging the work-energy theorem over the depth gives

(see Richard et al. [1])

∂

∂t̃

(
h̃
〈
ũ2
〉

2
+
h̃2 cos θ

2Fr2

)
+

∂

∂x̃

(
h̃
〈
ũ3
〉

2
+
h̃2Ũ cos θ

Fr2

)

=
1

εRe

(
λh̃− 3Ũ

h̃

)
Ũ +

κ

Fr2
h̃Ũ

∂3h̃

∂x̃3
+O (ε) (17)

The right-hand side of this equation, apart from the cap-
illary term, corresponds to the power of both the external
and internal forces acting on the system, in accordance
with the work-energy theorem. More precisely, the two
terms are the power of the Ox-component of the weight
and the dissipative power of the viscous forces internal to
the flow. Note that the Oz-component of the weight is in-
cluded in the left-hand side of this equation as an average
potential energy. Because of the no-slip boundary condi-
tion, the friction force on the bottom does not do work.
Consequently, the physical meaning of the averaged mo-
mentum equation and of the averaged kinetic energy equa-
tion are not equivalent. In the former appears the friction
on the bottom but not the internal viscous forces while it is
the reverse in the latter. It follows that, even if the work-
energy theorem is not an independent equation with re-
spect to the Navier-Stokes equations, after averaging over
the depth, the averaged kinetic equation is an equation
independent of the averaged momentum equation. The
averaged kinetic energy equation (later called simply “en-
ergy equation”) is redundant with the averaged mass and
momentum equations only for the equilibrium (Nusselt)
flow since in this case the bottom friction is equal to the
Ox-component of the weight and the viscous dissipation
is equal to the power of this component. Consequently, at
the equilibrium, τ̃xz(0)Ũ = 3Ũ2/h̃. However, this relation
is not satisfied out of equilibrium.

For models of reduced dimensionality derived with an
averaging procedure over the fluid depth (or any equivalent
method) there are three independent physical equations
for mass, momentum and energy. Two-equation models
are in reality two-variable models. For such a model to be
theoretically coherent, one of the three physical equations
has to be redundant with the two others. If not, an inco-
herence arises from the fact that there is three independent
physical equations for only two independent variables.

In hydraulics of open-channel flows, the Saint-Venant
equations with friction and a flat velocity profile are the-
oretically coherent since the energy equation is redundant
with the mass and momentum equation. In other terms
the averaged kinetic energy equation can be derived from
the averaged mass and momentum equations. This prop-
erty is true as long as the deviations from a flat velocity
profile are negligible (Richard et al. [23]). In the case of
viscous thin films down an inclined plane, assuming no
deviation from a parabolic velocity profile implies that
τ̃xz(0)Ũ = 3Ũ2/h̃ but this leads to models (like Shkadov’s
model) that are not consistent.
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2.2. General form of two-equation models

Existing two-equation models are derived either from
the averaging over the fluid depth of the mass and kinetic
energy equations (energy integral method or EIM) either
from the averaging of the mass and momentum equations
(momentum integral method or MIM). Some models were
not originally presented as derived by a standard depth-
averaging method but turn out to be equivalent. For ex-
ample the two-equation model of Ruyer-Quil and Man-
neville [5] is equivalent to the EIM and gives, at the first
order, the same model as the models of Usha and Uma
[11], Mudunuri and Balakotaiah [12], Abderrahmane and
Vatistas [13] and Luchini and Charru [14].

Taking κ = 0, most consistent two-equation models
write at the first order with the mass equation (9) and one
of the two following equations, the momentum equation
for MIM models, written under the general form

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + F1

(
h̃, Ũ

)
+ α1

h̃2 cos θ

2Fr2

)

=
C1

εRe

(
λh̃− 3Ũ

h̃

)
(18)

or the energy equation for EIM models that can be written

∂

∂t̃

(
h̃Ũ2

2
+ E2

(
h̃, Ũ

)
+ α3

h̃2 cos θ

2Fr2

)

+
∂

∂x̃

(
h̃Ũ3

2
+ F2

(
h̃, Ũ

)
+ α2

h̃2Ũ cos θ

Fr2

)

= C2
Ũ

εRe

(
λh̃− 3Ũ

h̃

)
(19)

In these expressions, F1, E2 and F2 are functions of the
variables h̃ and Ũ but do not depend on θ whereas C1, C2,
α1, α2 and α3 are dimensionless constants. The consis-
tency of equations (18) and (19) with equations (16) and
(17) imposes some relations between these constants and
some conditions on these functions which are examined
below.

The MIM model of Lavalle et al. [16] has

F1 =
2λ2h̃5

225
; C1 = α1 = 1 (20)

whereas the MIM model of Noble and Vila [15] has

F1 =
λ2h̃5

45
; C1 = α1 =

5

6
(21)

Note that the Shkadov model has F1 = h̃Ũ2/5, C1 = α1 =
1 but is not consistent (see for example Richard et al. [1]).

The EIM models (Ruyer-Quil and Manneville [5], Usha
and Uma [11], Mudunuri and Balakotaiah [12], Abderrah-
mane and Vatistas [13] and Luchini and Charru [14]) were

originally written under different forms but it can be shown
that all can be written at the first order of approximation
in the same conservative form with

E2 =
h̃Ũ2

10
; F2 =

19

70
h̃Ũ3 ; α3 = α2 = C2 = 1 (22)

The various EIM models proposed in the literature differs
from each other only in the second-order or even third-
order terms.

To study the consistency of the models the flow vari-
ables are expanded as formal power series of the small
parameter ε:

ũ = ũ0 + εũ1 +O
(
ε2
)

(23)

w̃ = w̃0 + εw̃1 +O
(
ε2
)

(24)

p̃ = p̃0 + εp̃1 +O
(
ε2
)

(25)

τ̃xz = τ̃0 + ετ̃1 +O
(
ε2
)

(26)

The consistent expressions of τ̃xz on the bottom (z = 0)
and of the average velocity U = 〈u〉 can be found by in-
serting these expansions into the dimensionless equations
(A.1)–(A.8). In (A.2), the leading order gives:

∂τ̃0
∂z̃

= −λ (27)

Using the dynamic boundary condition (A.7) τ̃xz(h̃) =
O(ε) which implies that τ̃0(h̃) = 0, the integration of this
relation gives the expression of τ̃xz(0) at order 0:

τ̃0(0) = λh̃ (28)

Then the constitutive relation of Newtonian fluids (A.4)
becomes at order zero

∂ũ0
∂z̃

= τ̃0 (29)

The integration of this relation gives ũ0 = λz̃(h̃ − z̃/2)
which, by taking the average of this expression, leads to
the expression of the average velocity at order 0

3Ũ0

h̃
= λh̃ (30)

The expressions at order 1 are similarly found although
the calculations are much more complicated. Note that the
derivative ∂h̃/∂t̃ is expressed as a function of h̃ and ∂h̃/∂x̃
by using the depth-averaged mass equation (9) which is an
exact equation. This yields

∂h̃

∂t̃
= −λh̃2 ∂h̃

∂x̃
+O (ε) (31)

The expressions at order 1 are

τ̃1 (0) = Re h̃

(
1

3
λ2h̃3 − cos θ

Fr2

)
∂h̃

∂x̃
(32)
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3Ũ1

h̃
= Re h̃

(
2

5
λ2h̃3 − cos θ

Fr2

)
∂h̃

∂x̃
(33)

These expressions show that, while at order zero τ̃0(0) =
3Ũ0/h, at order 1 τ̃1(0) 6= 3Ũ1/h. Since the term in τ̃xz(0)
in equation (16) has a factor 1/ε, τxz(0) must be expanded
to the order 1 in (16) to get an equation consistent at the
first order. The dissipative term in the energy equation
(17) writes consistently −3Ũ2/h̃ without any further cor-
rection but the friction term −τ̃xz(0) in the momentum
equation (16) needs a correction with respect to the cor-
responding zero-order term −3Ũ/h̃. For this reason, as it
was pointed by Luchini and Charru [14], the EIM can pro-
vide consistent models of order one more easily that the
MIM.

Since Ũ = Ũ0 + εŨ1 + O(ε2), the previous expressions
of Ũ0 and Ũ1 imply that the right-hand side of (18) is
consistent to −3C1U1/(Reh) which can be written

∂

∂x̃

(
− 2

25
C1λ

2h̃5 + C1
h̃2 cos θ

2Fr2

)
+O (ε) (34)

We can write that
〈
u2
〉

= U2 +
〈
(u− U)2

〉
and the calcu-

lation gives〈
(ũ0 − Ũ0)2

〉
=
λ2h̃4

45
(35)

Because the relaxation term in the right hand side of (16)
is equal to −τ̃1(0)/Re + O(ε), the general form (18) is
consistent to (16) provided that

∂

∂x̃

(
F1 + C1

2

25
λ2h̃5 + (α1 − C1)

h̃2 cos θ

2Fr2

)

=
∂

∂x̃

(
4λ2h̃5

45

)
+ O(ε) (36)

Given that F1 does not depend on θ, the consistency of
equation (18) implies that

α1 = C1 (37)

The same method is applied to the energy equation. The
right-hand side of (19) is consistent to

∂

∂x̃

(
− 2

105
C2λ

3h̃7 +
1

12
C2λh̃

4 cos θ

Fr2

)
(38)

Given that E2 and F2 do not depend on θ, the consistency
of equation (19) implies that

α2 =
C2 + 3α3

4
(39)

We want to determine whether two-equation models
can satisfy both the averaged momentum equation and the
averaged kinetic energy equation under the general forms

(18) and (19). The additional constraint that the energy
of the system is consistent to the physical energy

e =

〈
ũ2
〉

2
+
h̃ cos θ

2Fr2
(40)

could also be imposed.
The discussion in §2.1 shows that there is no physical

reason to have a redundancy between the averaged mo-
mentum and energy equations. This redundancy is needed
only to get a theoretically coherent two-equation model.

3. Galilean invariance

The principle of Galilean invariance states that the laws
of mechanics are the same in all Galilean reference frames.
We suppose here that the reference frameR0 of the bottom
wall is Galilean. Let’s consider another Galilean reference
frame R which is in a constant rectilinear translation in
the Ox direction at a velocity ve with respect to R0. In R
the bottom wall has a velocity vb = −ve and any velocity
vR is related to the corresponding velocity in R0, denoted
by vR0 , by vR = vR0 + vb. In R, the no-slip boundary
condition at the bottom becomes uR(z = 0) = vb. The
average velocity of the Nusselt flow in R is〈
uRN
〉

=
gh2 sin θ

3ν
+ vb (41)

Defining the Reynolds number by Re = hN 〈uR0

N 〉/ν =

hN (〈uRN 〉−vb)/ν and the Froude number Fr = 〈uR0

N 〉/
√
ghn =

(〈uRN 〉 − vb)/
√
ghn, we get λ = 3. The average velocity

〈uR0

N 〉 is used to define the dimensionless quantities. In
these conditions, the dimensionless average velocity at or-
der 0 in R is〈
ũR0
〉

=
λh̃2

3
+ ṽb (42)

The material derivative Df/Dt of any quantity f is is de-
fined as ∂f/∂t + U∂f/∂x. It is Galilean invariant i.e.
(Df/Dt)R = (Df/Dt)R0 (this property is not true for the
partial derivative with respect to time).

The mass conservation equation (9) obviously satisfies
unconditionally the Galilean invariance. Since the mass
equation implies that

∂h̃Ũ

∂t̃
+
∂h̃Ũ2

∂x̃
= h̃

DŨ

Dt̃
(43)

the momentum equation (18) is Galilean invariant if F1

is Galilean invariant (provided that the mass conservation
equation is satisfied). In R, equation (18) is written (su-
perscripts R are omitted) with the Galilean-invariant form

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + F1 + α1

h̃2 cos θ

2Fr2

)

=
C1

εRe

[
λh̃− 3

h̃

(
Ũ − ṽb

)]
(44)
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The function F1 is Galilean invariant if it is a function of h̃
only but also if F1 depends on Ũ since (42) implies that in
this case F1 depends in fact on Ũ − ṽb. For example, (20)
and (21) are consistent Galilean invariant MIM models but

F1 =
h̃

5

(
Ũ − ṽb

)2
, C1 = α1 =

5

6
(45)

or

F1 =
2h̃

25

(
Ũ − ṽb

)2
, C1 = α1 = 1 (46)

are also consistent Galilean invariant MIM models. The
dependance on Ũ − ṽb in the models (45) and (46) means
physically that the Galilean-invariant part of the momen-
tum flux depends on the shearing since Ũ 6= ṽb implies a
shearing effect.

Note that the flux in the averaged momentum balance
equation (16) is the sum of a Galilean-invariant term and
a term which is not Galilean invariant. Writing

ũ (x, z, t) = Ũ (x, t) + ũ′ (x, z, t) (47)

where ũ′ is the deviation of the velocity to its average
value, the momentum flux in equation (16) becomes

h̃Ũ2 + h̃〈ũ′2〉+
h̃2 cos θ

2Fr2
(48)

In this expression, h̃Ũ2 is a non-Galilean invariant term
and h̃〈ũ′2〉 + h̃2 cos θ/(2Fr2) is Galilean invariant. The
general form (18) respects the physical distinction between
these two parts. The necessity to find a consistent way
to write the bottom friction −τ̃xz(0), which is Galilean
invariant, explains that F1 is not necessarily consistent to
h̃〈ũ′2〉 and that α1, and thus C1 (see equation (37)), are
not necessarily equal to 1.

We can conclude that all consistent MIM models are
Galilean invariant provided that the mass conservation (9)
is satisfied which is always the case.

In the same way, the energy (40) is the sum of Ũ2/2
which is not Galilean invariant and which assumes the
role of the kinetic energy of the model and of (〈ũ′2〉 +
h̃2Fr−2 cos θ)/2 which is Galilean invariant and which can
therefore be treated as the potential energy (see Gavrilyuk
and Perepechko [24] for a discussion on what are the ki-
netic energy and the potential energy of a system in the
context of a variational method). It follows that, in the
energy of the model Ũ2/2 + E2 + α3h̃

2Fr−2 cos θ/2, E2 is
Galilean invariant. The same discussion as for F1 can be
followed for E2 with the conclusion that E2 should be a
function of h̃ and (Ũ − ṽb)2. This means physically that
the potential energy could depend on shearing i.e. on the
relative velocity of the liquid with respect to the bottom.
A dependance of the potential energy with respect to a
relative velocity is already known for some systems, in par-
ticular in the case of a two-liquid medium (Gavrilyuk and
Perepechko [24]).

However the discussion on the Galilean invariance of
the averaged work-energy theorem is more complex than
for the averaged momentum balance equation. Starting
from the general form (19), we write

F2 = ŨF3 + F4 (49)

where F3 and F4 are Galilean invariant. Let’s assume that
equation (19) is written in R0. The Galilean velocity-
addition formula is ŨR0 = ŨR − ṽb. We have FR0

2 =
ŨR0F3 + F4 and FR2 = (ŨR − vb)F3 + F4. The relations
between the partial derivatives of any quantity G in R0

and R are(
∂G

∂x

)
R0

=

(
∂G

∂x

)
R

=
∂G

∂x
(50)

and(
∂G

∂t

)
R0

=

(
∂G

∂t

)
R

+ vb
∂G

∂x
(51)

The averaged work-energy theorem in R can be written[
∂

∂t̃

(
h̃(ŨR)2

2
+ E2 + α3

h̃2 cos θ

2Fr2

)]
R

+
∂

∂x̃

[
h̃(ŨR)3

2
+ FR2 + α2

h̃2ŨR cos θ

Fr2

]

= C2
ŨR

εRe

[
λh̃− 3

h̃

(
ŨR − ṽb

)]
+ ṽb

{(
∂h̃ŨR

∂t̃

)
R

+
∂

∂x̃

(
h̃(ŨR)2 + F3 − E2 + (2α2 − α3)

h̃2 cos θ

2Fr2

)

− C2

εRe

[
λh̃− 3

h̃

(
ŨR − ṽb

)]}
(52)

Consequently, the averaged work-energy theorem is Galilean
invariant if the expression between brace brackets in (52)
is equal to zero i.e. if the averaged momentum balance
equation (44) is satisfied with the following conditions: F1 = F3 − E2

α1 = 2α2 − α3

C1 = C2

(53)

Taking into account the consistency conditions (37) and
(39) implies that all dimensionless coefficients must be
equal and will be thereafter denoted by C1

C1 = C2 = α1 = α2 = α3 (54)

This is a general result: the work-energy theorem is
Galilean invariant provided that the momentum balance
equation is satisfied, the mass conservation equation be-
ing a prerequisite for the Galilean invariance of both the
momentum and kinetic energy equations. This result was
proved in the case of the Saint-Venant equations and the
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one-dimensional Teshukov equations (Teshukov [25]) by
Ostapenko [26] who established a hierarchy of the con-
servation laws for the Saint-Venant equations: the mass
conservation is unconditionally Galilean invariant; the mo-
mentum balance equation is Galilean invariant provided
that the mass conservation equation is satisfied; the en-
ergy balance equation is Galilean invariant if the mass
and momentum equations are satisfied. A similar result
is obtained.

4. Compatibility between the energy and momen-
tum equations

The conditions of compatibility between the energy
and the momentum equations for two-equation models are
derived in Appendix B. Adding the Galilean-invariance
conditions (54) to the compatibility condition (B.8) leads
to

∂E2

∂Ũ
= 0 (55)

Consequently, E2 depends only on h. In all models where
E2 depends also on U , even under the form U − vb, there
is a contradiction. For example, EIM models (22) are not
Galilean invariant since they are not compatible with the
momentum equation.

The second compatibility condition (B.14) between the
energy and momentum equations added to the Galilean-
invariance conditions (54) writes

∂F1

∂h̃
= h̃

∂2E2

∂h̃2
(56)

Since E2 depends only on h̃, the integration of this relation
yields

F1 = h̃E′2(h̃)− E2(h̃) +K(Ũ) (57)

where dE2/dh̃ is denoted by E′2 and where K is a function
of Ũ that does not depend on h̃. A study of the consistency
shows that F1 is consistent to α4λh̃

5 where α4 is a dimen-
sionless constant. At order 0, Ũ is consistent to λh̃2/3. To
be consistent, K should be on the form α5Ũ

5/2/
√
λ where

α5 is a dimensionless constant. No existing model features
such a term. Accordingly models where the dependency
of F1 with h̃ and Ũ is written as α6h̃Ũ

2, where α6 is a
dimensionless constant, are explicitly excluded.

Further a term in Ũ5/2 behaves badly if U becomes
negative. All these models are derived assuming that the
Nusselt velocity profile is slightly perturbed. In these con-
ditions, the average velocity U has the sign of λ which is
the sign of the slope. Thus a term with the form

√
U/λ

remains positive if the perturbations to the Nusselt profile
are small. In practice however the average velocity can
become negative even with a positive slope. This is the
case with the phenomenon of flow reversal which can be
observed in the first depth minimum of the capillary waves

(Tihon et al. [27], Malamataris et al. [9]). An artificial so-
lution would be to write

√
|U | but otherwise, these terms

must be equal to zero for the model to be acceptable.
In practice, we can assume that K(Ũ) = 0 and thus

∂F1

∂Ũ
= 0 (58)

All models where F1 depends on Ũ are incompatible with
the energy equation. For example, the MIM models (45)
and (46) are Galilean invariant but they don’t admit an
energy equation.

The consistency of the right-hand side of momentum
equation (34) and of the other terms of the momentum
equation (18) combined with the condition (58) leads to

F1 =

(
1

9
− C1

10

)
4

5
λ2h̃5 +O(ε) (59)

The positivity of F1 implies that

C1 <
10

9
(60)

The integration of equation (56) then gives

E2 =

(
1

9
− C1

10

)
λ2h̃5

5
+O(ε) (61)

with the same positivity condition as (60). The two com-
patibility conditions (B.9) and (B.10) reduce to

∂F2

∂h̃
= Ũ

(
∂E2

∂h̃
+
∂F1

∂h̃

)
(62)

and

∂F2

∂Ũ
= h̃

∂E2

∂h̃
(63)

This allows to find the expression of F2

F2 =

(
1

9
− C1

10

)
λ2h̃5Ũ +O(ε) (64)

The conclusion of this study is that consistent Galilean-
invariant two-equation models which are compatible both
with the momentum equation and the energy equation are
MIM models whose E2, F1 and F2 flux terms are of the
form (61), (59) and (64) respectively. This family of MIM
models will be called thereafter momentum integral with
mathematical energy (MIME) models. The general con-
servative form of these models can be obtained by writing

E2 =
λ2h5

4K
; F1 =

λ2h5

K
; F2 =

5λ2h5U

4K
(65)

where the dimensionless number K is

K =
225

20− 18C1
(66)
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The models of Lavalle et al. [16] and of Noble and Vila [15]
are MIME models with respectively

C1 = 1 ; E2 =
λ2h̃5

450
; F1 =

2λ2h5

225
; F2 =

λ2h̃5Ũ

90
(67)

and

C1 =
5

6
; E2 =

λ2h̃5

180
; F1 =

λ2h5

45
; F2 =

λ2h̃5Ũ

36
(68)

If, in addition, we impose the constraint that the en-
ergy of the model is consistent to the physical energy, there
are more conditions to satisfy. The calculation of the con-
sistency of the energy e (40) at order 0 shows that e is
consistent to

2λ2h̃4

30
+
h̃ cos θ

2Fr2
+O (ε) (69)

This implies that E2 is consistent to λ2h̃5/90. From the
expression (61), we get C1 = 5/9. On the other hand, the
consistency of the term in cos θ implies that C1 = 1. These
two results are of course contradictory and no consistent
Galilean-invariant two-equation model has an energy con-
sistent to the physical energy while being compatible with
the momentum and energy equations except for one model
which has inconveniently terms in Ũ5/2 and Ũ7/2 in the
fluxes (see Appendix C).

5. Capillary energy

In this section, all tilde symbols are dropped to lighten
the notations. The conservative hyperbolic part of the
model admits a mathematical entropy if there is a convex
function η of the conservative variables h and q = hU that
satisfies the additional conservation law

∂η

∂t
+
∂Φ

∂x
= 0 (70)

where Φ is a function of h and q. For Galilean-invariant
MIM models which are compatible with the energy equa-
tion, thus which satisfy the condition ∂F1/∂U = 0, the
mathematical entropy is the energy of the system. Other
MIM models admit a mathematical entropy but this en-
tropy is not homogeneous to an energy. For example, a
MIM model with C1 = 5/6 and F1 = hU2/5 admits the
mathematical entropy

η =
q2

h4/5
+

125

198

h11/5 cos θ

Fr2
(71)

which is not an energy (see Appendix D). In the clas-
sical two-equation models of isentropic gas dynamics, the
basic conservation laws are the mass and momentum con-
servation laws and the energy conservation law is a convex
extension of the basic laws which implies that the energy
is the mathematical entropy of the system. In the case of
the two-equation models of thin film flows, this property

is only obtained with the hyperbolic part of MIME mod-
els. From this point of view these MIME models are more
methodologically grounded than the EIM models or other
MIM models.

The capillary terms in the averaged momentum equa-
tion (16) and in the averaged work-energy theorem (17)
exhibit the structure of an internal capillarity (Casal [28],
Casal and Gouin [29]). The capillary term in (16) can be
written in the conservative form

κ

Fr2
h
∂3h

∂x3
=

κ

Fr2
∂

∂x

[
h
∂2h

∂x2
− 1

2

(
∂h

∂x

)2
]

(72)

and the capillary term in (17) writes

κ

Fr2
hU

∂3h

∂x3
= − ∂

∂t

[
1

2

κ

Fr2

(
∂h

∂x

)2
]
− ∂

∂x

[
U

2

κ

Fr2

(
∂h

∂x

)2
]

+
κ

Fr2
∂

∂x

[
hU

∂2h

∂x2
− U

2

(
∂h

∂x

)2

− h∂h
∂x

∂U

∂x

]
(73)

The fluid depth of the depth-averaged models is analogous
to the density in the equations of compressible fluid me-
chanics. It is then possible to define a capillary specific
energy

ec =
κ

Fr2
1

2h

(
∂h

∂x

)2

(74)

This capillary energy depends on the gradient of h (here
in the one-dimensional case) in exactly the same manner
as the capillary energy of the fluids endowed with inter-
nal capillarity depends on the gradient of the density (the
description of capillarity with such an energy is due to
Korteweg [30]). It is then possible to defined a gener-
alized stress tensor (that reduces to a scalar in this one-
dimensional case) for the internal capillary effects that can
be written

σ =
κ

Fr2

[
h
∂2h

∂x2
− 1

2

(
∂h

∂x

)2
]

(75)

There is an extra term h(∂h/∂x)(∂U/∂x) in the flux of the
energy equation that corresponds to the interstitial work-
ing of Dunn and Serrin [31] although Casal and Gouin [29]
showed that this term appears naturally in the framework
of the theory of the second gradient developed by Germain
[32] (see also Gatignol and Seppecher [33], Seppecher [34]).

The capillary energy can be written W 2/2 by defining
the variable

W =

√
κ

Fr2h

∂h

∂x
(76)

This variable can be treated as an independant variable if
we add an initial condition such that (76) is satisfied at
t = 0 (Gavrilyuk and Gouin [35]). The variable W satis-
fies an equation derived from the mass conservation. This
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is at the basis of an extended model that can be solved by
a numerical scheme for which the nonlinear stability can
be proved in the case of a Rusanov Riemann solver (No-
ble and Vila [18]). Without this treatment, nothing can
be proved for the nonlinear stability and upwind schemes
are always linearly unstable whereas centred schemes are
linearly stable if they are implicit and linearly unstable if
they are explicit (Noble and Vila [18]).

The possibility to derive an extended model for a given
two-equation model and the proof of the nonlinear stability
of the numerical scheme require the existence of a capil-
lary energy. A MIM model admits a capillary energy if and
only if ∂F1/∂U = 0 (see Appendix D). This is the same
condition as the compatibility condition between the mo-
mentum and energy equations (the dubious models with
terms in U5/2 being excluded). In practice, we can assert
that a MIM model admits a capillary energy if and only
if it satisfies the energy equation. The specific capillary
energy is (Appendix D)

ec = C1
κ

Fr2
1

2h

(
∂h

∂x

)2

(77)

This capillary energy is equal to the physical capillary en-
ergy (74) if C1 = 1, which corresponds to the model of
Lavalle et al. [16]. However, even if C1 6= 1, an extended
model can be derived with the extra variable

W =

√
C1κ

hFr2
∂h

∂x
(78)

The equation of W can be derived from the mass equation.
It can be written (Noble and Vila [18])

∂hW

∂t
+
∂hUW

∂x
= − ∂

∂x

(√
C1κ

Fr2
h3/2

∂U

∂x

)
(79)

If ∂F1/∂U 6= 0, the quantity W can be defined as in
(78) and it satisfies the same equation (79) but no capillary
energy can be found. More generally, no function of h and
∂h/∂x corresponding to capillarity can be added to the
mathematical entropy for a MIM model with ∂F1/∂U 6= 0.
The proof is given in Appendix D. This means that not
only the structure of an internal capillarity is lost in the
model but no generalization to a purely “mathematical”
capillary energy can be found. The extended model of
Noble and Vila [18] is not applicable and the theorems of
nonlinear stability cannot be proved. Fulfilling the condi-
tion (58) is thus of major importance for a two-equation
model for a reliable treatment of capillarity.

6. Speed of solitary waves for the hyperbolic sys-
tem

The nonlinear properties of models can be tested on the
calculation of the speed of solitary waves down an inclined
plane (Chakraborty et al. [17]). All consistent models give

approximately the same results when the Reynolds number
is small but they differ widely one from each other if the
Reynolds number becomes high (here “high” can be only of
the order of 30). A direct numerical simulation (DNS) cal-
culation made by Chakraborty et al. [17] allows to compare
the accuracy of each model in the high Reynolds number
limit. The four-equation model of Ruyer-Quil and Man-
neville [5] gives very accurate values whereas some models
do not give any value at all because they do not allow soli-
tary waves solutions beyond a certain limit value of the
Reynolds number (Demekhin et al. [36], Ruyer-Quil and
Manneville [5]).

At a Reynolds number value high enough, the speed
of the system depends only on the hyperbolic part of the
equations of the model. The viscous diffusive terms and
the capillary dispersive terms become negligible if Re is
high. To calculate the speed of solitary waves for high
Reynolds numbers, it is enough to take the first-order
model with κ = 0.

We consider first MIM models. The model is rewrit-
ten in dimensional form. To lighten the notation, we will
write simply F1 in the dimensional equations. Note that,
if F̃1 is the dimensionless form (used in the previous sec-
tions without tilde), then F1 = hN 〈uN 〉2F̃1. The mass and
momentum equations are

∂h

∂t
+
∂hU

∂x
= 0 (80)

∂hU

∂t
+

∂

∂x

(
hU2 + F1 +

C1

2
gh2 cos θ

)
= C1

(
gh sin θ − 3ν

U

h

)
(81)

The study of the solitary waves is done in the spirit of
Dressler’s theory of roll waves (Dressler [37]). We look
for periodic discontinuous solutions which are stationary
in the Galilean reference frame propagating at the speed
c of the waves. A solitary wave is then found as the limit
of these periodic waves when the period goes to infinity.
Thus the solutions depend only on the variable ξ = x− ct.
The mass equation (80) leads to the conservation of the
relative flow discharge m

h (U − c) = m = constant < 0 (82)

Then the momentum equation yields

dh

dξ
= C1

gh sin θ − 3νU/h

∂F1

∂h
+ C1gh cos θ − m

h2
∂F1

∂U
− m2

h2

(83)

Following closely the discussion in Dressler [37], there is a
critical point where the denominator vanishes. The char-
acteristics of the systems are given in Appendix E. The
expression (E.3) shows that if ∂F1/∂U = 0 (condition
(58)), then the characteristic velocities are of the form
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U ± a. The critical point corresponds to the point where
m = −ha or c = U + a where

a =

√
∂F1

∂h
+ C1gh cos θ (84)

is the velocity of the surface waves. The critical point splits
the wave into a region where the flow is subcritical (c <
U+a) and a region where it is supercritical (c > U+a). If
∂F1/∂U 6= 0, the characteristic velocities (E.3) are of the
form U + a′ ± a′′ and the critical point corresponds to the
point where m = −h(a′ + a′′) (or c = U + a′ + a′′) with

a′ =
1

2h

∂F1

∂U
(85)

a′′ =

√
1

4h2

(
∂F1

∂U

)2

+
∂F1

∂h
+ C1gh cos θ (86)

In this case, a′′ is the velocity of the surface waves and
U + a′ (not U) is an effective fluid velocity that depends
on shearing (see §3). A generalized relative Froude num-
ber (in the reference frame of the wave) can be defined as

Fr
∗

= (c−U −a′)/a′′ instead of the usual Fr = (c−U)/a.
This generalized relative Froude number is equal to 1 at
the critical point.

As for Dressler’s roll waves, the numerator must vanish
at the critical point for the slope to remain finite. This
gives the condition, where the subscripts C stand for the
quantities at the critical point

UC =
gh2C sin θ

3ν
(87)

The equation (83) is written in dimensionless form with
the following scaling:

H =
h

hC
X =

ξ

hC
U =

U

UC

C =
c

UC
M =

m

hCUC
F1 =

F1

hCU2
C

(88)

Moreover, we define a critical Reynolds number ReC =
hCUC/ν, a critical Froude number FrC = UC/

√
ghC and

the dimensionless number λC = ReC sin θ/Fr2C . The con-
dition (87) implies that λC = 3. The constant M can be
calculated at the critical point:

M = −1

2

(
∂F1

∂U

)
C

−

√
1

4

(
∂F1

∂U

)2

C

+

(
∂F1

∂H

)
C

+ C1
cos θ

F 2
C

(89)

The dimensionless equation can be written

dH

dX
=

C1

ReC

λCH − 3U/H
∂F1

∂H
+ C1

H cos θ

Fr2C
− M

H2

∂F1

∂U
− M2

H2

(90)

For a solitary wave, when X → −∞, the solution goes to
the fixed point (H∞, U∞) such that λCH

2
∞ = 3U∞. This

reduces to U∞ = H2
∞. From (82), we write U = C+M/H

and C = 1 −M since M is a constant. This yields the
equation H3

∞−(1−M)H∞−M = 0 which has the evident
solution H∞ = 1 which should be discarded. We thus
obtain the equation H2

∞ + H∞ + M = 0. The positive
solution is

H∞ =
1

2

(
−1 +

√
1− 4M

)
(91)

The velocity of the solitary wave c normalized by the speed
of the kinematic waves 3U∞ is equal to C/(3U∞) or C/(3H2

∞).
Its expression is

c

3U∞
=

4

3

1−M(
−1 +

√
1− 4M

)2 (92)

The Froude number defined by Chakraborty et al. [17],
that we will denote by Fr′, is Fr′ = 3Fr∞/

√
cos θ where

Fr∞ = U∞/
√
gh∞. It follows that

Fr′−2 =
1

9

cos θ

Fr2C

1

H3
∞

(93)

A vertical slope corresponds to Fr′−2 = 0 and the instabil-
ity threshold to Fr′−2 = 0.4. The velocity of the solitary
wave c/(3U∞) is calculated for values of Fr′−2 equal to 0
; 0.1 ; 0.2 ; 0.3 and 0.4 (in the latter case, it should be
1). The results are presented in Table 1. The value of
C1 and the expression of F1 are given in each case. The
results of the DNS of Chakraborty et al. [17] and those of
the four-equation model of Ruyer-Quil and Manneville [5]
are given for comparison.

We consider now the EIM model (22). The same ap-
proach is followed. Writing E2 = hE3 and F2 = hUE3 +
F3, we get

dh

dξ
=
gh sin θ − 3νU/h

Ξ
(94)

where

Ξ = gh cos θ +
m

U

∂E3

∂h
+

1

U

∂F3

∂h
− m2

h2U

∂E3

∂U

− m

h2U

∂F3

∂U
− m2

h2
(95)

with E3 = U2/10 and F3 = 6hU3/35. The denominator
vanishes at the critical point for m = −h(a′ + a′′) where:

a′ =
3

14
U ; a′′ =

√
37

196
U2 +

5

6
gh cos θ (96)

The same procedure as for the MIM models is then fol-
lowed to calculate c/(3U∞). The results are presented in
Table 1.

The MIM model with C1 = 5/6 and F1 = hU2/5 gives
the right values of the velocity of the solitary wave for all
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Type C1 F1 Fr′−2

0 0.1 0.2 0.3 0.4

MIM
5

6

hU2

5
2.556 2.218 1.848 1.437 1

MIM 1
2hU2

25
5.449 4.668 3.771 2.645 1

MIME
5

6

λ2h5

45
1.745 1.592 1.423 1.229 1

MIME 1
2λ2h5

225
2.819 2.492 2.117 1.654 1

MIME
31

30
−
√

6

45

λ2h5

315− 90
√

6
2.556 2.269 1.941 1.541 1

Compatible 1
2λ2h5

45
− 8

25

√
3

λ
U5/2 1.639 1.515 1.376 1.211 1

EIM 2.738 2.352 1.934 1.474 1

RQM4 2.564 2.237 1.866 1.444 1

DNS 2.560 2.235 1.860 1.438 1

Table 1: Values of c/ (3U∞) for five values of Fr′−2 ranging from 0 (vertical wall) to 0.4 (instability threshold) for various types of models
[Momentum integral method (MIM), momentum integral with mathematical energy (MIME), momentum-energy compatible models (Com-
patible) (see Appendix C), energy integral method (EIM), four-equation model of Ruyer-Quil and Manneville [5] (RQM4)] and for a DNS.
The RQM4 and DNS values are taken from Chakraborty et al. [17]. For the MIM, MIME and Compatible models, the values of C1 and F1

are given.

slopes with an excellent precision, taking the DNS values
as reference. For a vertical wall, the velocity of the soli-
tary wave calculated with this model is (Ruyer-Quil and
Manneville [38])

c

3U∞
= 1 +

1√
6

+

√
1

2
+

√
2

3
' 2.556 (97)

For this model, the shape factor defined by

αS =

〈
u2
〉

U2
(98)

is constant and equal to 6/5 which is the value of a parabolic
velocity profile. This model is consistent while being rem-
iniscent of the Shkadov model. It will be called thereafter
the corrected Shkadov model. Its major drawback is
that, condition (58) being unfulfilled, it does not satisfy
the energy equation and does not admit a capillary energy.
Consequently, it does not admit an extended model in the
manner of Noble and Vila [18] and nothing can be proved
about the nonlinear stability of the numerical scheme.

A MIME model gives exactly the same value (97) of
c/(3U∞) for a vertical wall if

C1 =
31

30
−
√

6

45
' 0.9789 (99)

The value of K is then K = 315 − 90
√

6 ' 94.55. This
model will be called thereafter the equivalent MIME
model. For non-vertical walls, the velocities calculated

with the equivalent MIME model are slightly less precise
because the dependance of the velocity on cos θ in the ex-
pression (89) is the same in all MIM models except for
the value of C1. The difference between the equivalent
MIME model and the corrected Shkadov model with re-
gard to the non-vertical walls lies only in the difference
between the values of C1. The relative deviation on the
velocity reaches 7.2% for Fr′−2 = 0.3. On the other hand,
the equivalent MIME model satisfies the energy equation
and admits a capillary energy and an extended model to
treat capillarity. It has thus a better mathematical struc-
ture and its numerical resolution is more reliable. For this
model, the shape factor is not constant.

Other variants give values which deviate more or less
from the DNS results. The Galilean-invariant compatible
model (see Appendix C) predicts velocities which are far
too low. The EIM model gives values slightly too high
with a relative deviation compared to the DNS of 7% for
a vertical slope, decreasing to 2.5% for Fr′−2 = 0.3. The
MIME model with C1 = 1 (Lavalle et al. [16]) has a relative
deviation of 10% on a vertical wall, increasing to 15% for
Fr′−2 = 0.3 due to the high value of C1 in the term in cos θ.
In practice, most applications of thin film flows pertaining
to vertical walls, the accuracy on the value of the velocity
on a vertical wall is the most important. Therefore, the
corrected Shkadov model and the equivalent MIME model,
which give exactly the same value for a vertical wall, will
be favoured in the following.

It can be noted that the values of the velocities are very
sensitive to small variations of C1. These velocities are

12



calculated outside the validity domain of the asymptotic
methods used to derive the models. As a consequence,
these values depend on the extrapolation of the models
outside their validity domain, which explains the huge dif-
ferences between a model and another.

7. Diffusive terms and linear properties

The viscous terms, particulary the diffusive terms, are
important to consider for laminar flows of viscous thin
films. These diffusive terms can be written in different
ways. In the averaged momentum balance equation (16),
the linear terms of O(ε/Re) are consistent to (see Richard
et al. [1])

ε

Re

∂

∂x

(
15

4
h
∂U

∂x

)
(100)

In this section, all tilde symbols are dropped to lighten the
notations. In the averaged energy equation (17), the linear
terms of O(ε/Re) are consistent to (Richard et al. [1])

ε

Re

∂

∂x

(
9

2
hU

∂U

∂x

)
(101)

In the EIM model of Ruyer-Quil and Manneville [5] and
of Usha and Uma [11], the linear diffusive terms can be
written (neglecting all nonlinear terms)

ε

Re

∂

∂x

(
27

5
hU

∂U

∂x

)
− ε

Re

∂

∂x

(
9

5
U2 ∂h

∂x

)
(102)

This expression is consistent to (101). Mudunuri and Bal-
akotaiah [12] wrote these linear terms in a different but
still consistent way

ε

Re

∂

∂x

(
1347

280
hU

∂U

∂x

)
− ε

Re

∂

∂x

(
143

560
U2 ∂h

∂x

)
− ε

Re

∂

∂x

(
41

112
h2U

∂h

∂x

)
(103)

Note that the last two terms of this expression write the
same way if the equations are linearized. For the linear
properties, the linear diffusive terms can be written either
with one term having a second derivative of U or with two
terms, one having a second derivative of U and another one
having a second derivative of h. In a general way, both for
MIM or for EIM models, we can replace consistently

∂

∂x

(
h
∂U

∂x

)
(104)

by

α
∂

∂x

(
h
∂U

∂x

)
+ 2 (1− α)

∂

∂x

(
U
∂h

∂x

)
(105)

where α is a number. In the second term of the right-hand
side of this expression, λh2/3 (or h2 by taking λ = 3) can

replace U without any effect on the linear properties. In
the energy equation, these expressions are multiplied by
U .

We consider first MIME models. The general form of
the momentum equation of these models can be written

∂hU

∂t
+

∂

∂x

(
hU2 +

λ2h5

K
+ C1

h2 cos θ

2Fr2

)
=

C1

εRe

(
λh− 3U

h

)
+ C1

κ

Fr2
h
∂3h

∂x3

+
ε

Re

9

2
C1

[
α
∂

∂x

(
h
∂U

∂x

)
+ 2 (1− α)

∂

∂x

(
U
∂h

∂x

)]
+

ε

Re
C1

3U

h

(
∂h

∂x

)2

(106)

The equations are linearized around the Nusselt flow
solution considering small perturbations h′ and U ′ around
the equilibrium values:[
h
U

]
=

[
1
1

]
+

[
h′

U ′

]
(107)

The perturbations are taken of the form[
h′

U ′

]
=

[
B1

B2

]
eik(x−ct) (108)

where B1, B2 are amplitudes, k is the wavenumber and c
the phase velocity.

The linearized equations (taking ε = 1) can be written

h′ (1− c) + U ′ = 0 (109)

h′
[
ik

(
45

K
+
C1 cos θ

Fr2

)
−6C1

Re
+

9C1

Re
(1− α) k2 + C1

κ

Fr2
ik3
]

+ U ′
[
ik (1− c) +

3C1

Re
+

9

2

C1

Re
αk2

]
= 0 (110)

The determinant of the system is equal to zero in order
to get a non-trivial solution. This leads to the dispersion
equation

3C1

Re

[
3− c− 3k2 +

3

2
k2α (3− c)

]
+ i

[
k

(
1− 45

K
− 2c+ c2

)
−3C1

Re

(
k cot θ +

κk3

sin θ

)]
= 0 (111)

The solution can be written

c = 3 + ik

(
6

5
Re− cot θ

)
+O

(
k2
)

(112)
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This solution implies that, at the long-wave limit (k → 0),
the celerity of the kinematic waves is c = 3. The Nusselt
flow is stable if Im(c) < 0. For k → 0, the stability occurs
if Re < Rec where Rec is the critical Reynolds number.
Equation (112) gives the same critical value as that calcu-
lated from the Orr-Sommerfeld equation by Benjamin [39]
and Yih [40], which is

Rec =
5

6
cot θ (113)

For Re > Rec, the neutral (or marginal) stability condition
is Im(c) = 0. With this condition, the curve k as a function
of Re is the neutral stability curve. On this curve, c is
real and the dispersion relation yields two real equations
corresponding to the real and imaginary parts. The real
part gives the expression of the velocity of the kinematic
waves along the neutral stability curve

c = 3− 6k2

2 + 3αk2
(114)

For k = 0, we get c = 3 as expected. If k → ∞, then
c→ clim where

clim = 3− 2

α
(115)

This limit value depends only on α i.e. the way the linear
diffusive terms are written.

We calculated this limit value for the Orr-Sommerfeld
equations with the AUTO software (Doedel [41]) for three
fluids: water, alcohol and castor oil. The Kapitza number
is defined by

Ka =
γ

ρ

(
gν4
)−1/3

(116)

The three fluids were chosen because they have widely dif-
ferent Kapitza numbers, respectively 3 500, 529 and 0.45,
and thus very different capillary properties. The calcula-
tions were done for several slopes ranging from θ = 6.4◦ to
θ = 90◦. Some results are given in Figure 2. The graphs
of the kinematic velocity as a function of the wavenumber
along the neutral stability curve form a batch of curves
very close one from each other whatever the slope or the
Kapitza number (Figure 2a). The common limit value is
clim = 3/2. Figure 2(b) giving ln(c− 3/2) as a function of
ln(k) shows that, for k � 1, c− 3/2 = O(k−2).

The only solution giving the same limit value clim =
3/2 as the Orr-Sommerfeld equations when k →∞ is

α =
4

3
(117)

However, along the neutral stability curve, for a two-equation
model, the wavenumber k does not tend towards infinity
when Re → ∞ but to a finite value k∞ and the velocity
of the kinematic waves tends toward c∞. These values
can be found from the dispersion relation (111). We find
c∞ = 1 +

√
45/K, or

c∞ = 1 + 2

√
1− 9C1

10
(118)

# Model α clim c∞ k∞

1 CS/EqMIME 1 1 1.690 1.125

2 CS/EqMIME 6/5 4/3 1.690 1.429

3 CS/EqMIME 4/3 3/2 1.690 1.857

4 EIM [5] 6/5 4/3 1.649 1.543

5 EIM [12] 449/420 507/449 1.649 1.273

Table 2: Limit values of the kinematic waves velocity when k →∞,
clim, and of this velocity and of the wavenumber when Re → ∞,
c∞ and k∞ respectively (see text). Corrected Shkadov model or
equivalent MIME model: CS/EqMIME

The positivity condition (60) applies to this expression.
This limit does not depend on α i.e. not on how the diffu-
sive terms are written. The limit value of the wavenumber
is

k2∞ =
6C1

10− 9αC1 + 10
√

1− 9C1/10
(119)

A similar study was conducted for the corrected Shkadov
model (see §6) and for the EIM models of Ruyer-Quil and
Manneville [5] (α = 6/5) and Mudunuri and Balakotaiah
[12] (α = 449/420). As in §6, the corrected Shkadov model
gives exactly the same results as the equivalent MIME
model. For these models, the cases α = 1, α = 6/5 and
α = 4/3 were considered. The value of clim depends only
on α and thus it is the same for all MIM and EIM mod-
els that share the same value of α. The values for the
different studied models are presented in Table 2. The
curves of the velocity of the kinematic waves as a func-
tion of the wavenumber along the neutral stability curve
for each studied model are presented in Figure 3. These
curves are limited to the limit value k∞ which is different in
each case. The curve calculated from the Orr-Sommerfeld
equation has no limit value of k.

We can wonder whether it is possible to find a model
giving the same values of clim, c∞ and k∞ as the Orr-
Sommerfeld equation i.e. clim = 3/2, c∞ = 3/2 and
k → ∞ if Re → ∞. The first condition implies that
α = 4/3 whereas the two last conditions are satisfied if and
only if C1 = 25/24. For this model, the curve of the kine-
matic wave velocity on Figure 3 would not be interrupted
prematurely and would follow closely the Orr-Sommerfeld
curves for high values of k. Unfortunately, the nonlinear
properties of this model are disappointing. The velocity
c/(3U∞) calculated for this model as in §6 is 2+

√
3 ' 3.73

on a vertical wall and 2.09 for Fr′−2 = 0.3 which are both
too high than the DNS values with a relative deviation of
about 45%. Further, values of k on the neutral stability
curve higher than the value k∞ = 1.857 of the equiva-
lent MIME model with α = 4/3 can be reached only for
very high Reynolds numbers that are usually outside the
domain of application of these models.

The examination of Figure 3 shows that the value α =
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Figure 2: (a) Velocity of the kinematic waves as a function of the wavenumber along the neutral stability curve for the Orr-Sommerfeld
equations. Thick solid curve: water θ = 6.4◦; thin dashed curve: alcohol θ = 6.4◦; thick dashed curve: alcohol θ = 90◦; dotted curve : castor
oil θ = 90◦; thin solid curve: castor oil θ = 6.4◦. (b) Logarithmic plot of c− 3/2 as a function of the wavenumber along the neutral stability
curve. Thick solid curve: castor oil θ = 90◦: thin solid curve; castor oil θ = 6.4◦; The dashed line and the dotted line have a slope of −2.
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Figure 3: Variations of the kinematic waves velocity with the
wavenumber along the neutral stability curve. Corrected Shkadov
model and equivalent MIME model with α = 1: thin solid curve;
α = 6/5: thick dashed curve; α = 4/3: thick solid curve. EIM model
of Ruyer-Quil and Manneville [5]: thin dashed curve. EIM model of
Mudunuri and Balakotaiah [12]: thin dotted curve. Orr-Sommerfeld
for water at θ = 6.4◦: thick solid grey curve; Orr-Sommerfeld for
castor oil at θ = 6.4◦: thick grey dashed curve.

4/3 gives the best result followed closely by α = 6/5. Note
that the curves calculated from the Orr-Sommerfeld equa-
tion depends slightly on the Kapitza number whereas the
curves calculated from the models do not depend on sur-
face tension at all. They do not depend on the slope either
whereas the Orr-Sommerfeld curve depends also slightly
on the slope.

The neutral stability curves are presented in Figure
4 along with the Orr-Sommerfeld curve. The effect of
the value of α is studied in Figure 4(a) for the equiva-
lent MIME model in the case of water on a vertical wall
and in Figure 4(b) in the case of a glycerin-water solution
for θ = 6.4◦ (as in Liu and Gollub [20]). Three values of α
are studied: 1, 6/5 and 4/3. The value α = 4/3 gives the
best results in all cases. The effect of the value of C1 for
α = 4/3 is then shown in Figure 4(c) in the case of water
on a vertical wall with the values C1 = 1, C1 = 25/24 and
the value (99) of the equivalent MIME model. The value
C1 = 1 together with α = 4/3 gives a very good agreement
with the Orr-Sommerfeld curve while the curve is too high
with C1 = 25/24 and slightly too low for the equivalent
MIME model. This trend is also observed with other fluids
and slopes (not presented here). The corrected Shkadov
model and the equivalent MIME model both for α = 4/3
and the EIM models of Ruyer-Quil and Manneville [5] and
Mudunuri and Balakotaiah [12] are compared in Figure
4(d). The equivalent MIME model (α = 4/3) is slightly
better than the corrected Shkadov model with the same
value of α which, in turn, is better than the EIM models.
The fluid parameters are given in Table 3.

The models of Usha and Uma [11] and of Abderrah-
mane and Vatistas [13] are not studied here because they
add only third-order terms to the model of Ruyer-Quil and
Manneville [5] that change very little the neutral stability
curve (see Richard et al. [1]).

All models being consistent, the instability threshold
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Figure 4: Neutral stability curves. Dashed curve: Orr-Sommerfeld. (a), (c) and (d) water for θ = 90◦; (b) glycerin-water solution for θ = 6.4◦;
(a) and (b) equivalent MIME model with α = 1 (thin solid curve), α = 6/5 (dotted curve), α = 4/3 (thick solid curve). (c) MIME model with
α = 4/3 and C1 = 1 (thin solid curve), C1 = 25/24 (dotted curve) and for the equivalent MIME model (thick solid curve). (d) equivalent
MIME model with α = 4/3 (thick solid curve); corrected Shkadov model with α = 4/3 (thin solid curve); EIM model of Ruyer-Quil and
Manneville [5]: dotted curve; EIM model of Mudunuri and Balakotaiah [12]: dot-dashed curve.

ρ ν γ Ka
kg·m−3 mm2 ·s−1 mN·m−1 –

Glycerin-water 1134 6.28 67.0 238

Water (20◦C) 998 1.007 72.8 3375

Castor oil 961 440 31.0 0.45

Table 3: Fluid properties (density, kinematic viscosity, surface ten-
sion and Kapitza number) used in the present study. The values for
the glycerin-water solution are taken from Liu and Gollub [20] and
the values for castor oil are taken from Kliakhandler et al. [42].

at k = 0 is equal to the value calculated from the Orr-
Sommerfeld equation. The curves are nearly identical to
the Orr-Sommerfeld equation when k is small i.e. in the
validity domain of the asymptotic method used to de-
rive them. When k (which is of the order of ε) and Re
become bigger, differences arise between models because
these values are beyond the validity range of the asymp-
totic method. Note that the curves presented in Figure 4
extend to values of the Reynolds number which are unusu-
ally high for this kind of models (until Re = 800 for water
on a vertical wall and until Re = 400 for the glycerin-
water solution at θ = 6.4◦). This allows to show clearly
the differences between the models but for more usual val-
ues of the Reynolds number, the deviations are much more
moderate.

Writing the diffusive terms as in (105) with α = 4/3
leads to a clear improvement of all linear properties of the
models and this will be kept thereafter. The best neutral
stability curves are then obtained with a MIME model
and C1 = 1 but the nonlinear properties, estimated from
the velocity of a solitary wave (see §6), are better with
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the equivalent MIME model and even better with the cor-
rected Shkadov model. On the other hand, as pointed out
in §6, the mathematical structure and thus the reliabil-
ity of the numerical resolution are better with a MIME
model than with the corrected Shkadov model. It follows
that, while none of these three models is clearly superior
to the others on all points, the equivalent MIME model
with α = 4/3 seems to be the best compromise: it gives
the right solitary wave velocity on a vertical wall and ac-
ceptable linear properties and it has a good mathematical
structure which allows to derive an extended model for the
numerical resolution.

8. Numerical results

Since the MIME models admit a capillary energy, an
extended MIME model including the variable W (78) can
be written and the results of Noble and Vila [18] and
Bresch et al. [19] apply. It can be proved that this nu-
merical scheme is nonlinearly stable in the case of a Ru-
sanov Riemann solver. An explicit scheme is nonlinearly
stable under a Courant-Friedrichs-Levy (CFL) condition
(Noble and Vila [18]) and a semi-implicit scheme is un-
conditionally nonlinearly stable (Bresch et al. [19]). This
consideration and the previous sections show that the two-
equation models which are the most suited to a numerical
resolution both for the expected accuracy of the results and
for the reliability of the numerical scheme are the MIME
model with C1 = 1 and the equivalent MIME model. On
the other hand, while it is expected that the corrected
Shkadov model gives accurate results, no extended model
can be written for lack of a capillary energy and conse-
quently no proof of the nonlinear stability of the numerical
scheme can be found.

The equations of the extended MIME model are writ-
ten in dimensional form in order to make comparisons with
experimental results. The viscous terms are optimized by
taking α = 4/3 (see §7). These equations can be written

∂h

∂t
+
∂hU

∂x
= 0 (120)

∂hU

∂t
+

∂

∂x

(
hU2 +

g2h5sin2θ

Kν2
+
C1

2
gh2 cos θ

)
= C1

(
gh sin θ − 3ν

U

h

)
+ 6C1ν

∂

∂x

(
h
∂U

∂x

)
− 3C1ν

∂

∂x

(
U
∂h

∂x

)
+ 3C1ν

U

h

(
∂h

∂x

)2

+

√
γC1

ρ

∂

∂x

(
h3/2

∂W

∂x

)
(121)

∂hW

∂t
+
∂hUW

∂x
= −

√
γC1

ρ

∂

∂x

(
h3/2

∂U

∂x

)
(122)

where the quantity W writes in dimensional form

W =

√
γC1

ρh

∂h

∂x
(123)

From the previous sections, the parameters giving the best
results are

C1 = 1 ; K =
225

2
(124)

or

C1 =
31

30
−
√

6

45
; K = 315− 90

√
6 (125)

More details on the numerical scheme are given in Ap-
pendix F.

The numerical resolution of these MIME models was
used to simulate the experiments of Liu and Gollub [20].
The fluid used is a glycerin-water solutions whose physical
properties are ν = 6.28× 10−6 m2 · s−1, ρ = 1070 kg ·m−3
and γ = 6.7 × 10−2 N · m−1. The inclination angle is
θ = 6.4◦ and the Reynolds number is Re = 19.3. A small
perturbation was applied at the channel’s inlet with a forc-
ing frequency of 1.5 Hz. The Nusselt flow being unstable,
waves appear and grow. After a transient evolution, a pe-
riodic train of waves is reached. The final periodic solution
depends only on the frequency of the inflow perturbation
and not on its amplitude albeit the length of the transient
evolution does depend on its amplitude.

The numerical results for these two MIME models are
presented in Figure 5(a) with the experimental measures
of Liu and Gollub [20]. Although there is no similar nu-
merical scheme, the corrected Shkadov model was solved in
the particular case of a periodic regime with TRIFLOW,
a Python solver for partial differential equations (Cellier
[43]). This solver uses a second-order finite difference method,
an implicit centred scheme and the method of lines. The
EIM model was solved in exactly the same way for com-
parison purpose. The result obtained for the corrected
Shkadov model is compared to the equivalent MIME model
solved with the numerical scheme of Appendix F in Fig-
ure 5(b). The equivalent MIME model, the EIM model of
Ruyer-Quil and Manneville [5], the direct numerical simu-
lation (DNS) of Malamataris et al. [9], the version of the
three-equation model of Richard et al. [1] and the exper-
imental measures of Liu and Gollub [20] are presented in
Figure 5(c).

A difficulty arises because there is a marked discrep-
ancy between the experimental measures and the DNS.
The wavelength and thus the wave velocity predicted by
the DNS is smaller than the experimental values and the
wave amplitude calculated by the DNS is significantly greater.
The amplitudes calculated by all models are smaller than
the DNS value. The wave velocity of the corrected Shkadov
model is the same as that of the DNS while the equivalent
MIME model predicts a velocity slightly higher although
the difference seems negligible. This was expected since it

17



(a)

120 130 140 150 160
0.6

0.8

1.0

1.2

1.4

1.6

x (cm)

h
˜

(b)

-0.1 0.0 0.1 0.2 0.3
0.6

0.8

1.0

1.2

1.4

1.6

x (m)

h
˜

(c)

0 50 100 150 200
0.6

0.8

1.0

1.2

1.4

1.6

x/hN

h
˜

Figure 5: Depth profiles in the conditions of the experiments of Liu and Gollub [20]. The abscissa origins are arbitrary. (a) Thick solid curve:
equivalent MIME model; thin solid curve: MIME model with C1 = 1; dashed curve: experimental measures of Liu and Gollub [20]. (b) Thick
curve: equivalent MIME model; thin curve: corrected Shkadov model. (c) Thick solid curve: equivalent MIME model; thin curve: DNS; thin
dotted curve: EIM model of Ruyer-Quil and Manneville [5]; thick dashed curve: experimental measures of Liu and Gollub [20]; thin dashed
curve: three-equation model of Richard et al. [1].

was shown in §6 that the corrected Shkadov model gives
the same wave velocities as the DNS and that the equiva-
lent MIME model gives the same velocity on a vertical wall
but slightly greater velocities for non-vertical slopes. The
even higher velocity of the EIM model and of the MIME
model with C1 = 1 agrees also with the results of §6. Com-
pared to the experimental values, the equivalent MIME
model gives a smaller wave velocity and a slightly higher
wave amplitude. The version of the three-equation model
proposed in Richard et al. [1] gives the closest agreement
with the experimental measures and the highest difference
with the DNS. The capillary ripples are correctly predicted
for all models.

A second simulation was done in the conditions of the
experiments of Dietze et al. [21]. A liquid film of dimethyl-
sulphoxide (DMSO) (kinematic viscosity : ν = 2.85 ×
10−6m2 · s−1, density ρ = 1098.3 kg · m−3 and surface
tension γ = 48.4 mN · m−1) is falling on a vertical wall
(θ = 90◦). The Reynolds number is Re = 15.0 and the
frequency of the inflow perturbation is 16 Hz. In this ex-
periment, the air was subjected to an aerostatic pressure
drop so that the effect of the gas on the film was negligible.

The results of the equivalent MIME model and the
MIME model with C1 = 1 are compared with the exper-
imental measures of Dietze et al. [21] in Figure 6. Both
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Figure 6: Depth profile in the conditions of the experiments of Dietze
et al. [21]. Thick curve: equivalent MIME model; thin curve: MIME
model with C1 = 1; squares: experimental measures of Dietze et al.
[21].
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models predict wave amplitudes significantly smaller than
the experimental values. The overall curves are slightly
shifted towards the smaller depths. The result of the DNS
of Dietze et al. [21] (not reproduced in this paper) shows
a good agreement with the experimental measures. The
wave amplitude predicted by the DNS is slightly higher
than the measures but the difference seems negligible.

9. Conclusion

Many consistent two-equation models lack theoretical
coherence. The EIM models do not satisfy the averaged
momentum equation and are not Galilean invariant. The
MIM models are Galilean-invariant but only the MIME
models satisfy the averaged work-energy theorem and in-
clude a capillary energy, which is needed to write an ex-
tended model in the manner of Noble and Vila [18] and
to prove the nonlinear stability of the numerical scheme.
However the energy of the MIME model is not consistent
to the physical energy and is thus called a mathematical
energy.

The linear and nonlinear properties of consistent two-
equation models were studied in order to find an optimized
model. It was found that no two-equation model is better
than all others in every respect. For all models, the viscous
diffusive terms can be written in an optimized form by the
choice (117). This value improves the neutral stability
curves and the variations of the kinematic waves velocity
along these curves. The three following models are clear
improvements of two-equation models:

– The corrected Shkadov model is a consistent version
of the well-known Shkadov model. It gives wave ve-
locities in very good agreement with the DNS for all
slopes but it lacks a capillary energy and does not
satisfy the energy equation.

– The equivalent MIME model gives the same wave
velocity as the corrected Shkadov model on a vertical
wall but slightly faster ones on non-vertical walls.
On the other hand, it satisfies the energy equation
and admits a capillary energy. It is well suited to
numerical resolutions since an extended model can
be derived.

– The MIME model with C1 = 1 gives neutral sta-
bility curves in excellent agreement with the Orr-
Sommerfeld curve. The predicted wave velocities
are a little bit too fast but, as the equivalent MIME
model, it is well suited to numerical resolutions. This
is the model of Lavalle et al. [16] improved by the
choice (117) for the viscous terms.

All these models are Galilean invariant. It is assumed
that the viscous terms are written in the optimal way as
described in §7. A common drawback of these models is
that the predicted wave amplitudes are not always accu-
rate. This problem cannot be solved within the scope of

two-equation models. This justifies the interest of more
complicated models that could improve the accuracy on
the wave amplitudes. On the other hand, the simplicity
of the MIME models and the existence of an extended
model with the variable W (78) allow an easy and reliable
numerical resolution.
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Appendix A. Equations and boundary conditions
in dimensionless form

Continuity equation:

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0 (A.1)

Navier-Stokes momentum balance equation in the Ox-di-
rection:

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃

=
λ

εRe
− 1

Fr2
∂p̃

∂x̃
+

ε

Re

∂τ̃xx
∂x̃

+
1

εRe

∂τ̃xz
∂z̃

(A.2)

Navier-Stokes momentum balance equation in the Oz-di-
rection:

ε2Fr2
(
∂w̃

∂t̃
+
∂ũw̃

∂x̃
+
∂w̃2

∂z̃

)
= − cos θ − ∂p̃

∂z̃
+
εFr2

Re

∂τ̃zz
∂z̃

+
εFr2

Re

∂τ̃xz
∂x̃

(A.3)

Constitutive relation of Newtonian fluids:

τ̃xz =
∂ũ

∂z̃
+ ε2

∂w̃

∂x̃
; τ̃xx = −τ̃zz = 2

∂ũ

∂x̃
(A.4)

No-penetration and no-slip conditions at the bottom:

w̃ (z̃ = 0) = 0 ; ũ (z̃ = 0) = 0 (A.5)

Kinematic boundary condition at the free surface:

∂h̃

∂t̃
+ ũ

(
h̃
) ∂h̃
∂x̃

= w̃
(
h̃
)

(A.6)

Dynamic boundary conditions:

τ̃xz

(
h̃
)

+

[
εRe

Fr2
p̃
(
h̃
)
− ε2τ̃xx

(
h̃
)] ∂h̃

∂x̃

+ κ
εRe

Fr2
∂h̃

∂x̃

∂2h̃

∂x̃2

1 + ε2

(
∂h̃

∂x̃

)2
− 3

2

= 0 (A.7)

p̃
(
h̃
)

+
εFr2

Re

∂h̃

∂x̃
τ̃xz

(
h̃
)
− εFr2

Re
τ̃zz

(
h̃
)

+ κ
∂2h̃

∂x̃2

1 + ε2

(
∂h̃

∂x̃

)2
− 3

2

= 0 (A.8)

Work-energy theorem :

∂

∂t̃

(
ũ2

2
+ ε2

w̃2

2

)
+

∂

∂x̃

[
ũ

(
ũ2

2
+ ε2

w̃2

2
− x̃ sin θ

εFr2
+
z̃ cos θ

Fr2

)
+
p̃ũ

Fr2
− ε

Re
(τ̃xxũ+ τ̃xzw̃)

]
+

∂

∂z̃

[
w̃

(
ũ2

2
+ ε2

w̃2

2
− x̃ sin θ

εFr2
+
z̃ cos θ

Fr2

)
+
p̃w̃

Fr2
− 1

εRe
τ̃xzũ−

ε

Re
τ̃zzw̃

]
= − 4ε

Re

(
∂ũ

∂x̃

)2

− 1

εRe

(
∂ũ

∂z̃

)2

− 2ε

Re

∂ũ

∂z̃

∂w̃

∂x̃
− ε3

Re

(
∂w̃

∂x̃

)2

(A.9)

Appendix B. Conditions of compatibility between
the momentum and energy equations
for two-equation models

The energy equation (19) can be written

U

[
∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + α3

h̃2 cos θ

2Fr2

)]
+
∂E2

∂t̃
+
∂Fr2
∂x̃

+ (α2 − α3)
∂

∂x̃

[
h̃2U cos θ

Fr2

]
=
C2Ũ

εRe

(
λh̃− 3Ũ

h̃

)
(B.1)

On the other hand, the momentum equation (18) is written

∂h̃Ũ

∂t̃
+

∂

∂x̃

(
h̃Ũ2 + α3

h̃2 cos θ

2Fr2

)
=

C1

εRe

(
λh̃− 3Ũ

h̃

)

− ∂F1

∂x̃
+ (α3 − α1)

∂

∂x̃

(
h̃2 cos θ

2Fr2

)
(B.2)

A compatibility condition between the momentum and en-
ergy equation is thus

∂E2

∂t̃
+
∂F2

∂x̃
− Ũ ∂F1

∂x̃
+
C2 − α3

4

h̃2 cos θ

Fr2
∂Ũ

∂x̃

+
C2 + α3 − 2C1

2

h̃Ũ cos θ

Fr2
∂h̃

∂x̃
=
C2 − C1

εRe
Ũ

(
λh̃− 3Ũ

h̃

)
(B.3)

Given that E2, F2 and F1 are functions of the two variables
h̃ and Ũ , this condition writes

∂E2

∂h̃

∂h̃

∂t̃
+
∂E2

∂Ũ

∂Ũ

∂t̃
+
∂F2

∂h̃

∂h̃

∂x̃

+
∂F2

∂Ũ

∂Ũ

∂x̃
− Ũ ∂F1

∂h̃

∂h̃

∂x̃
− Ũ ∂F1

∂Ũ

∂Ũ

∂x̃

+
C2 − α3

4

h̃2 cos θ

Fr2
∂Ũ

∂x̃
+
C2 + α3 − 2C1

2

h̃Ũ cos θ

Fr2
∂h̃

∂x
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=
C2 − C1

εRe
Ũ

(
λh̃− 3Ũ

h̃

)
(B.4)

The derivative of the depth with respect to the time is
given by the averaged mass equation (9)

∂h̃

∂t̃
= −h̃∂Ũ

∂h̃
− Ũ ∂h̃

∂x̃
(B.5)

The derivative of the average velocity with respect to the
time is given by the averaged momentum equation (18)

∂Ũ

∂t̃
= −Ũ ∂Ũ

∂x̃
− 1

h̃

∂F1

∂h̃

∂h̃

∂x̃
− 1

h̃

∂F1

∂Ũ

∂Ũ

∂x̃

− C1
cos θ

Fr2
∂h̃

∂x̃
+

1

εRe

C1

h̃

(
λh̃− 3Ũ

h̃

)
(B.6)

The compatibility condition can then be written

∂h̃

∂x̃

[
−Ũ ∂E2

∂h̃
− 1

h̃

∂E2

∂Ũ

∂F1

∂h̃
− C1

cos θ

Fr2
∂E2

∂Ũ
+
∂F2

∂h̃

−Ũ ∂F1

∂h̃
+
C2 + α3 − 2C1

2

h̃Ũ cos θ

Fr2

]

+
∂Ũ

∂x̃

[
−h̃∂E2

∂h̃
− Ũ ∂E2

∂Ũ
− 1

h̃

∂F1

∂Ũ

∂E2

∂Ũ
+
∂F2

∂Ũ

−Ũ ∂F1

∂Ũ
+
C2 − α3

4

h̃2 cos θ

Fr2

]
+
∂E2

∂Ũ

C1

εReh̃

(
λh̃− 3Ũ

h̃

)

=
C2 − C1

εRe
Ũ

(
λh̃− 3Ũ

h̃

)
(B.7)

This implies firstly that

∂E2

∂Ũ
=
C2 − C1

C1
h̃Ũ (B.8)

and then the two following relations

∂F2

∂h̃
= Ũ

∂E2

∂h̃
+ Ũ

C2

C1

∂F1

∂h̃
+
C2 − α3

2
h̃Ũ

cos θ

Fr2
(B.9)

∂F2

∂Ũ
= h̃

∂E2

∂h̃
+
C2 − C1

C1
h̃Ũ2

+ Ũ
C2

C1

∂F1

∂Ũ
− C2 − α3

4
h̃2

cos θ

Fr2
(B.10)

Writing

∂

∂Ũ

(
∂F2

∂h̃

)
=

∂

∂h̃

(
∂F2

∂Ũ

)
(B.11)

leads to

−h̃∂
2E2

∂h̃2
+
C2

C1

∂F1

∂h̃
= (α3 − C2)

h̃ cos θ

Fr2
(B.12)

Since E2 and F1 do not depend on θ, this relation implies
that

C2 = α3. (B.13)

Then equation (39) gives α2 = C2. Consequently we ob-
tain the condition

h̃
∂2E2

∂h̃2
=
C2

C1

∂F1

∂h̃
(B.14)

Appendix C. Consistency to the physical energy

We want to derive all consistent models compatible
with the momentum and energy equations and with an
energy consistent to the physical energy. The energy e
(40) is consistent to

2λ2h̃4

30
+
h̃ cos θ

2Fr2
+O (ε) (C.1)

The consistency of the term in cos θ implies that α3 =
1. The compatibility condition (B.13) gives then C2 = 1
and the consistency condition (39) yields α2 = 1. The
integration of the relation (B.8) gives

E2 =

(
1

C1
− 1

)
h̃Ũ2

2
+K1

(
h̃
)

(C.2)

where K1(h̃) is a function of the one variable h̃. The con-
sistency of the physical average energy (C.1) implies that
E2 is consistent to λ2h̃5/90. We can thus calculate the
expression to whom K1 is consistent. Since K1 depends
only on h̃, there is only one solution, which is

K1

(
h̃
)

=
6C1 − 5

90C1
λ2h̃5 (C.3)

From equation (B.14), we find

∂F1

∂h̃
=

2

9
(6C1 − 5)λ2h̃4 (C.4)

and then, by integration

F1

(
h̃, Ũ

)
=

2

45
(6C1 − 5)λ2h̃5 +K2

(
Ũ
)

(C.5)

where K2(Ũ) is a function of the one variable Ũ . Calcu-
lating that F1 is consistent to

2

25
λ2h̃5

(
10

9
− C1

)
(C.6)

and since K2 depends only on Ũ , there is only one solution

K2

(
Ũ
)

=
2

5

√
3

λ
Ũ5/2

(
7− 39

5
C1

)
(C.7)
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Finally, F2 can be found with the relations (B.9) and
(B.10):

F2

(
h̃, Ũ

)
=

2

C1

√
3

λ

(
1− 39

35
C1

)
Ũ7/2

+
1

2
h̃Ũ3

(
1

C1
− 1

)
+
λ2h̃5Ũ

3

(
1− 5

6C1

)
(C.8)

The terms in Ũ5/2 and Ũ7/2 can be cancelled by taking
C1 = 35/39 but this model does not satisfy the Galilean
invariance since C1 6= C2. The only one Galilean-invariant
model has C1 = 1 but retains the undesirable terms in
Ũ5/2 and Ũ7/2.

Appendix D. Mathematical entropy and capillary
energy

The conservative hyperbolic part of the model admits a
mathematical entropy if there is a convex function η of the
conservative variables h and q that satisfies the additional
conservation law

∂η

∂t
+
∂Φ

∂x
= 0 (D.1)

where Φ is a function of h and q. This conservation law
can be written

∂η

∂h

∂h

∂t
+
∂η

∂q

∂q

∂t
+
∂Φ

∂h

∂h

∂x
+
∂Φ

∂q

∂q

∂x
= 0 (D.2)

The model’s equations are

∂h

∂t
+
∂q

∂x
= 0 (D.3)

and

∂q

∂t
+

∂

∂x

[
A
q2

h
+ P (h)

]
= 0 (D.4)

The characteristic velocities of this system are λ = AU ±√
(A2 −A)U2 + a2 with a2 = dP/dh. The system is un-

conditionally hyperbolic if A > 1. This condition is thus
supposed to be satisfied in the following. Equation (D.2)
becomes

∂h

∂x

[(
A
q2

h2
− a2

)
∂η

∂q
+
∂Φ

∂h

]
+
∂q

∂x

[
−∂η
∂h
− 2A

q

h

∂η

∂q
+
∂Φ

∂q

]
= 0 (D.5)

This implies that
∂Φ

∂h
=

(
a2 −Aq

2

h2

)
∂η

∂q

∂Φ

∂q
=
∂η

∂h
+ 2A

q

h

∂η

∂q

(D.6)

The compatibility condition yields(
a2 −Aq

2

h2

)
∂2η

∂q2
=
∂2η

∂h2
+ 2A

q

h

∂2η

∂h∂q
(D.7)

It can be proved that η depends on q only as

η = hmq2 + ηp(h) (D.8)

where the function ηp depends only on h and m is any ex-
ponent. With this expression, the compatibility condition
gives

d2ηp
dh2

= 2a2hm (D.9)

and

m =
1

2

[
1− 4A±

√
(1− 4A)

2 − 8A

]
(D.10)

The function η is a convex function of h and q if and only
if −1 6 m 6 0. If A > 1, the root m+ with the plus
sign in the above expression always satisfies this condition
whereas the root m− with the minus sign never satisfies
it. The model thus admit a mathematical entropy with
the exponent m+. For a model with A = 6/5 and a2 =
5h cos θ/(6Fr2), we get m+ = −4/5 and the expression of
the mathematical entropy is

η =
q2

h4/5
+

125

198

h11/5 cos θ

Fr2
(D.11)

The system admits a capillary energy if there is a func-
tion ηc depending on h and ∂h/∂x such that, by including
capillarity, the additional conservation law becomes

∂

∂t
(η + ηc) +

∂

∂x
(Φ + Φc) = 0 (D.12)

where Φc is a function of h, q, ∂h/∂x, ∂q/∂x and ∂2h/∂x2.
The second equation of the model is now

∂q

∂t
+

∂

∂x

[
A
q2

h
+ a2(h)

]
= C1

κ

Fr2
h
∂3h

∂h3
(D.13)

It follows that ηc and Φc satisfy

∂ηc
∂t

+
∂Φc
∂x

+ C1
κ

Fr2
h
∂3h

∂h3
∂η

∂q
= 0 (D.14)

Taking

ηc = r(h)

(
∂h

∂x

)n
(D.15)

where n is an exponent and r a function of h only, we find
the following condition

dr

dh

∂q

∂x

(
∂h

∂x

)n
+ nr(h)

∂2q

∂x2

(
∂h

∂x

)n−1
− 2C1

κ

Fr2
hm+1q

∂3h

∂x3

=
∂Φc
∂hx

∂2h

∂x2
+
∂Φc
∂qx

∂2q

∂x2
+
∂Φc
∂h

∂h

∂x
+
∂Φc
∂q

∂q

∂x
+
∂Φc
∂hxx

∂3h

∂x3

(D.16)
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where hx, qx and hxx denote ∂h/∂x, ∂q/∂x and ∂2h/∂x2

respectively. This implies that

∂Φc
∂hxx

= −2C1
κ

Fr2
hm+1q (D.17)

and

∂Φc
∂qx

= nr(h)

(
∂h

∂x

)n−1
(D.18)

Consequently the expression of Φc can be written

Φc = −2C1
κ

Fr2
hm+1q

∂2h

∂x2

+ nr(h)

(
∂h

∂x

)n−1
∂q

∂x
+ Ψ(hx, h, q) (D.19)

where Ψ is another unknown function depending on hx, h
and q only. The condition (D.16) becomes

∂q

∂x

[
(n− 1)

dr

dh

(
∂h

∂x

)n
+ n(n− 1)r(h)

∂2h

∂x2

(
∂h

∂x

)n−2
−2C1

κ

Fr2
hm+1 ∂

2h

∂x2
+
∂Ψ

∂q

]
= − ∂Ψ

∂hx

∂2h

∂x2

+ 2C1
κ

Fr2
(m+ 1)hmq

∂2h

∂x2
∂h

∂x
− ∂Ψ

∂h

∂h

∂x
(D.20)

Since Ψ does not depend on hx nor on hxx, we get the
conditions

n(n− 1)r(h)

(
∂h

∂x

)n−2
= 2C1

κ

Fr2
hm+1

∂Ψ

∂q
+ (n− 1)

dr

dh

(
∂h

∂x

)n
= 0

∂Ψ

∂hx

∂2h

∂x2
+
∂Ψ

∂h

∂h

∂x
= 2C1

κ

Fr2
(m+ 1)hmq

∂2h

∂x2
∂h

∂x

(D.21)

The first condition can be fulfilled only if n = 2. Then
r(h) = C1κh

m+1/Fr2 and the second condition yields

Ψ = −(m+ 1)C1
κ

Fr2
hmq

(
∂h

∂x

)2

+ Υ(hx, h) (D.22)

where Υ is an unknown function of hx and h. The third
condition leads to

∂Υ

∂hx
= 4C1

κ

Fr2
(m+ 1)hmq

∂h

∂x
(D.23)

This condition can be satisfied only if m = −1 i.e. if A = 1.
There is no solution in the case A = 6/5. If A = 1, we get
finally r(h) = C1κ/Fr

2,

ηc = C1
κ

Fr2

(
∂h

∂x

)2

(D.24)

and

Φc = 2C1
κ

Fr2

(
−q ∂

2h

∂x2
+
∂h

∂x

∂q

∂x

)
(D.25)

If additionally C1 = 1 the capillary terms (73) of the aver-
aged work-energy theorem (17) are recovered. This is the
case of the MIME model with C1 = 1 and F1 = 2λ2h5/225
(which implies that A = 1 and m = −1) used by Lavalle
et al. [16].

Appendix E. Hyperbolicity

Taking κ = 0, at the first order of approximation there
is no dispersive and no diffusive terms. The model should
then be unconditionnally hyperbolic. The mass (9) and
momentum (18) equations of MIM models can be written
in dimensional form

∂U

∂t
+A1

∂U

∂x
= S1 (E.1)

where U = [h, U ]T , S1 = [0, C1(g sin θ − 3νU/h2)]T and

A1 =

[
U h

1

h

∂F1

∂h
+ C1g cos θ U +

1

h

∂F1

∂U

]
(E.2)

Here F1 is written in dimensional form. The characteristics
of system (E.1) are

U +
1

2h

∂F1

∂U
±

√
1

4h2

(
∂F1

∂U

)2

+
∂F1

∂h
+ C1gh cos θ (E.3)

The system (E.1) is unconditionally hyperbolic if

∂F1

∂h
> 0 (E.4)

Both the MIM models (20) and (21) fulfil this condition.

Appendix F. Numerical scheme

An explicit numerical scheme is used. It is nonlinearly
stable under CFL condition. The hyperbolic part of the
equations is solved by a classical finite volume method. If
X is any one of the variables h, U , q = hU , W , hW , qW
or if it is the flux

F = hU2 +
g2h5sin2θ

Kν2
+
C1

2
gh2 cos θ (F.1)

then the value of X at cell i and at iteration n is denoted
by Xn

i . The intercell fluxes are denoted by Xn
i+1/2 and

Xn
i−1/2. They are calculated by the Rusanov Riemann

solver. Note that for the hyperbolic system

∂

∂t

 h
hU
hW

+
∂

∂x

 hU

hU2+ g2h5sin2θ
Kν2 + C1

2 gh
2 cos θ

hUW

= 0 (F.2)

23



the characteristics are

U ; U ±

√
5g2h4 sin2 θ

Kν2
+ C1gh cos θ (F.3)

and the shock relations would be

[[h (U − c)]] = 0 ; [[W ]] = 0 (F.4)

and[[
m2

h
+
g2h5 sin2 θ

Kν2
+
C1

2
gh2 cos θ

]]
= 0 (F.5)

where c is the shock velocity, m is h(U − c) which is con-
stant through the shock and where [[X]] denotes the jump
through the shock of the quantity X i.e. the difference
X2 − X1 between the values of X on both sides of the
shock. Since the third equation is a transport equation for
W which is totally separated from the two other equations,
the shock wave amplitude has no theoretical upper bound.
Of course because of the diffusive terms, there will be no
shock in the whole system.

The viscous terms are handled by a finite difference
method. The notations X

n

i+1/2 and X
n

i−1/2 refer to the av-

erage values
(
Xn
i+1 +Xn

i

)
/2 and

(
Xn
i +Xn

i−1
)
/2 respec-

tively. The time step is denoted by ∆t and the cell width
by ∆x. The numerical scheme can be written

hn+1
i = hni +

∆t

∆x

(
qni−1/2 − q

n
i+1/2

)
(F.6)
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∆x

(
Fni−1/2 − F

n
i+1/2

)
+ ∆t

[
C1

(
ghni sin θ − 3ν

Uni
hni

)]
+6C1ν

∆t

(∆x)
2

[
h
n

i+1/2

(
Uni+1 − Uni

)
− hni−1/2

(
Uni − Uni−1

)]
− 3C1ν

∆t

(∆x)
2

[
U
n

i+1/2

(
hni+1 − hni

)
− Uni−1/2

(
hni − hni−1

)]
+ 3C1ν

∆t

4(∆x)
2

Uni
hni

(
hni+1 − hni−1

)2
+

∆t

(∆x)
2

√
γC1

ρ

[(
h
n

i+1/2

)3/2 (
Wn
i+1 −Wn

i

)
−
(
h
n

i−1/2

)3/2 (
Wn
i −Wn

i−1
)]

(F.7)

(hW )
n+1
i = (hW )

n
i +

∆t

∆x

[
(qW )

n
i−1/2 − (qW )

n
i+1/2

]
− ∆t

(∆x)
2
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rhéologie, CNRS VI 3 (1961) 31–37.

[29] P. e. Casal, H. Gouin, Relation entre l’équation de l’énergie et
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larité, Comptes-rendus des séances de l’Académie des sciences.
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[32] P. Germain, La méthode des puissances virtuelles en mécanique
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l’Académie des sciences. Série 2, Mécanique, Physique, Chimie,
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