Shantanu Das
email: shantanu.das@lis-lab.fr

Giuseppe A Di Luna
email: giuseppe.diluna@lis-lab.fr

Leszek A Gasieniec
email: l.a.gasieniec@liverpool.ac.uk

Patrolling on Dynamic Ring Networks

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

In recent years patrolling is gaining on popularity in the area of algorithms and in particular algorithmics of mobile agents and applications. Patrolling naturally occurs in daily routines requiring regular visits to specific (possibly mobile) objects and areas. It can also refer to monitoring of complex network processes or systems behaviour. Typical applications of patrolling include safety or security related surveillance, regular updates, data gathering, and other perpetual tasks.

We consider the patrolling problem in networks (graphs) with the objective of visiting all nodes of the graph perpetually, optimizing the idle time -the maximum time period during which any node is left unvisited. Unlike all previous results on the patrolling problem, we study the problem on dynamic graphs where some links of the graph may be missing for certain duration of time. This complicates the problem and requires a strong coordination between the agents, in order to reduce the idle time, even in simple networks. We restrict our attention to dynamic ring networks, in this paper. In the case of a static ring network, the simple strategy of periodically cycling the nodes of the ring, is known to provide the optimal idle time. However, for patrolling dynamic rings, more involved strategies are required depending on the number of the agents, the capabilities of the agents and whether or not the dynamic structure of the network is known to the agents. Among various known dynamic graph models, we consider interval connected dynamic networks which ensures that the network is connected at any time interval. We distinguish between the KNOWN setting, where the agents know in advance about the changes in the graph structure, from the UNKNOWN setting, where such information is not available to the agents. We show a clear separation between the two cases, in terms of the minimum idle time for patrolling. For both cases, we provide lower bounds and almost matching upper bounds on the idle time for patrolling, supported by deterministic algorithms for collaborative patrolling.

Related Work

Patrolling. The problem of patrolling is a close relative to several classical algorithmic challenges which focus on monitoring and mobility. These challenges include the Art Gallery Problem [START_REF] Ntafos | On gallery watchmen in grids[END_REF], where one is interested in determining the smallest number of inert guards and their location to constantly monitor all artefacts, and its dynamic alternative referred to as the k-Watchmen Problem [START_REF] Carlsson | Finding the shortest watchman route in a simple polygon[END_REF][START_REF] Chin | Ntafos. Optimum watchman routes[END_REF]. In further work on fence patrolling [START_REF] Collins | Optimal patrolling of fragmented boundaries[END_REF][START_REF] Czyzowicz | Boundary patrolling by mobile agents with distinct maximal speeds[END_REF][START_REF] Kawamura | Fence patrolling by mobile agents with distinct speeds[END_REF] the authors focus on monitoring vital (possibly disconnected) parts of a linear environment where each point is expected to be visited with the same frequency. A similar approach is adopted in [START_REF] Czyzowicz | When patrolmen become corrupted: Monitoring a graph using faulty mobile robots[END_REF] where we find studies on monitoring of a linear environment by agents prone to faults. The problem of patrolling objects which require different frequencies of visits was first considered in [START_REF] Gasieniec | Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors)[END_REF], where the authors assume availability of a single mobile agent. They also showed a close relationship between these type of patrolling and the Pinwheel scheduling problem [START_REF] Chan | Schedulers for larger classes of pinwheel instances[END_REF]. In a more recent work [START_REF] Gasieniec | Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors)[END_REF] the authors consider monitoring by two agents of n nodes located on a line and requiring different frequencies of visits. The authors provide several approximation algorithms concluding with the best currently known √ 3-approximation. Patrolling of segments and circles (equivalent to static ring) by many agents have been studied in [START_REF] Collins | Optimal patrolling of fragmented boundaries[END_REF].

Dynamic networks and mobile agents. The field of dynamic networks is an hot and active research topic [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF][START_REF] Harary | Dynamic graph models[END_REF][START_REF] Kuhn | Dynamic networks: Models and algorithms[END_REF][START_REF] Michail | An introduction to temporal graphs: An algorithmic perspective[END_REF]. In the message passing model a lot of attention has been devoted to classic problems such as agreement [START_REF] Augustine | Fast byzantine agreement in dynamic networks[END_REF][START_REF] Biely | Agreement in directed dynamic networks[END_REF][START_REF] Kuhn | Coordinated consensus in dynamic networks[END_REF], information dissemination [START_REF] Awerbuch | Efficient and reliable broadcast is achievable in an eventually connected network[END_REF][START_REF] Clementi | Information spreading in stationary markovian evolving graphs[END_REF][START_REF] Kuhn | Distributed computation in dynamic networks[END_REF][START_REF] Dell | Information dissemination in highly dynamic graphs[END_REF], and counting [START_REF] Di Luna | Brief announcement: Investigating the cost of anonymity on dynamic networks[END_REF][START_REF] Kowalski | Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations[END_REF]. Surprisingly, the investigation of mobile agents on dynamic networks started only recently. In the centralised setting (when agents know the dynamic of the graph apriori) the problem of exploring a graph in the fastest possible way has been studied in several papers [START_REF] Aaron | Dmvp: Foremost waypoint coverage of time-varying graphs[END_REF][START_REF] Erlebach | On temporal graph exploration[END_REF][START_REF] Michail | Traveling salesman problems in temporal graphs[END_REF]. The task is NP-hard on general graphs and it becomes polynomial on special topologies [START_REF] Aaron | Multi-robot foremost coverage of timevarying graphs[END_REF][START_REF] Ilcinkas | Exploration of constantly connected dynamic graphs based on cactuses[END_REF]. Notably, in the case of interval connected ring the exploration can be done in O(n) rounds [START_REF] Ilcinkas | Exploration of the t-interval-connected dynamic graphs: the case of the ring[END_REF].

The distributed setting (when agents do not know the dynamic of the graph) has been mostly overlooked, or limited to restrictive dynamic assumptions, such as periodic [START_REF] Flocchini | On the exploration of time-varying networks[END_REF][START_REF] Ilcinkas | On the power of waiting when exploring public transportation systems[END_REF] or recurrent [START_REF] Ilcinkas | Exploration of the t-interval-connected dynamic graphs: the case of the ring[END_REF] graphs. The exploration with termination of interval connected rings has been studied in [START_REF] Di Luna | Live exploration of dynamic rings[END_REF]. For rings that are connected over time, a perpetual self-stabilizing exploration algorithm has been proposed in [START_REF] Bournat | Self-stabilizing robots in highly dynamic environments[END_REF]. Finally, the gathering problem on interval connected rings has been studied in [START_REF] Di Luna | Gathering in dynamic rings[END_REF]. To the best of our knowledge there is no previous work studying the patrolling of a dynamic network.

Our Contributions

We show, first of all, in Section 4, that when the agents have local visibility, limited to the current node, then patrolling has an idle time of nα • k rounds, where α = 1 when the agents may be arbitrarily placed by an adversary (and α = 2 b for uniform initial placement when the agents have b-bits of persistent memory). This means that using multiple agents reduces the idle time by only an additive factor. In contrast, for a static ring, the idle time for patrolling with k agents is n k , achieving a multiplicative factor efficiency over single agent patrolling.

Thus, for the rest of paper, we consider agents having global visibility, allowing them to see the current configuration of the ring with the set of available links. We start with team size of k = 2 agents in Section 5 and then generalize these results to k > 2 agents in Section 6. The results of these two sections are summarized in Table 1. The bounds denoted here are for the stable idle time, after a stabilization time that is at most O(n). These results show a clear distinction between the case of KNOWN adversary (where the dynamic structure of the network is known apriori) and the case of UNKNOWN adversary when the agents do not have prior knowledge of the dynamic network.

Model

A set of agents, A : {a 0 , . . . , a k-1 }, operates on a dynamic graph G. Each agent follows the same algorithm (all agents are identical) executing a sequence of Look,Compute, Move cycles. In the Look phase of each cycle, the agent acquires a snapshot of the environment. In the Compute phase the agent uses the information from the snapshot and the contents of its local persistent memory to compute the next destination, which may be the current node or one of its neighbors. During the Move phase an agent traverses an edge to reach the destination node. The information contained in the persistent memory is the only thing that is preserved among cycles.

Synchronous system. The system is synchronous, that is the time is divided in discrete units called rounds. Rounds are univocally mapped to numbers in N, starting from round 0. In each round, each agent in A executes exactly one entire Look,Compute, Move cycle.

Interval connected ring.

A dynamic graph G is a function mapping a round r ∈ N to a graph G r : (V, E(r)) where V : {v 0 , . . . , v n-1 } is a set of nodes and E : N → V × V is a function mapping a round r to a set of undirected edges. We restrict ourselves to 1-interval-connected rings. A dynamic graph G is a 1interval-connected ring when the union of the graph instances

G ∞ = (V, E ∞) = (V, ∪ +∞ r=0 E(r)
) is a ring graph, and at each round r, the graph G r is connected (in other words, at each round at most one edge is missing). The graph G is anonymous, i.e. all nodes are identical to the agents. The endpoints of each edge are labelled as either clockwise or counter-lockwise, in a consistent manner (i.e the ring is oriented).

Local versus Global Snapshot.

-Local Snapshot: the snapshot obtained by an agent at a node v in round r contains only information about the node v, i.e. the number of agents in v and the set of available edges incident to node v at round r. -Global Snapshot: the snapshot obtained by an agent contains the graph G r (where the current location of the agent is marked), and for each node in V the number of agents present in that node at round r.

Knowledge of G. We examine two different settings: the one with known G (KNOWN) and the one without such knowledge (UNKNOWN). In the KNOWN setting during the Compute phase agents have access to the dynamic graph G.

In this case, the decision taken by the agent depends on the snapshot, on the content of its local memory, and on the knowledge of the past history and future structure of dynamic graph G. On the contrary in the UNKNOWN setting, during the Compute phase, an agent uses only the snapshot and its local memory (no other information is available). Another way to see the UNKNOWN setting is to imagine that G is adaptive to the strategy of algorithm A: there exists an adversarial entity, namely the scheduler, that decides the graph G according to the strategy of algorithm A.

Configurations and initial placement of agents. Given a graph G r and the set of agents A, a configuration at round r is a function C r : A → V that maps agents in A to nodes of V where agents are located. We say that there is a uniform initial placement, if C 0 is such that the segments of consecutive rings nodes not occupied by agents have size n k or n k . We say that there is an arbitrary initial placement if the configuration C 0 is injective (no two agents may start on the same node).

Idle time. An algorithm A running on a graph G, generates an execution E, which is an infinite sequence of configurations {C 0 , C 1 , C 2 . . .}, one for each round r. Given a node v and an execution E, the set S E,v : {r 1 , r 2 , r 3 , . . .} of visits of v, is a set containing all rounds in which v has been visited by some agent in execution E; more formally, r j ∈ S E,v if and only if C rj (a) = v for some a ∈ A. The idle set I E,v of node v is a set containing all the intervals of time between two consecutive visits of node v in execution E; more formally, x ∈ I E,v if and only if there exists r i , r i-1 in S E,v and x = r ir i-1 . We assume that each node has been visited at round -1.

We say that an algorithm solves patrolling on a graph G, if each node of the graph is visited infinitely often. Given an algorithm A and an integer n ≥ 5, we define as T n the set of all executions of algorithm A over any (1-intervalconnected) dynamic ring G with n nodes. The idle time of algorithm A is the function

I(n) = max ∀E∈Tn (∪ ∀v∈V I E,v).
Stable idle time. Given an execution E we define as E[r, ∞] the execution obtained by removing the first r configurations from E. An algorithm A is said to have a stable idle time I rs (n) with stabilisation time r s , if for some round r s ,

I rs (n) = max ∀E∈Tn (∪ ∀v∈V I E[rs,∞],v).

Preliminaries

We devote this section to some simple observations based on previous results on dynamic rings. Note that for a single agent moving in a dynamic ring, an adaptive adversary can keep the agent confined to the starting node and one of its neighbors. Due to the above observations, the only interesting cases for patrolling is for k ≥ 2 which we investigate in this paper. For any k agents, we have the following observation derived from the proof of Proposition 1 in [START_REF] Ilcinkas | Exploration of the t-interval-connected dynamic graphs: the case of the ring[END_REF].

Observation 3 ([24]

) In a dynamic ring G under the KNOWN model, for any round r and any 1 ≤ h ≤ n -1, there are nh distinct nodes, such that if nh agents are placed in these nodes and they all move in the same direction from round r until round r + h -1, then they visit exactly h + 1 nodes.

It is also possible to show an easy lower bound on the idle time of any algorithm under the strongest model considered in this paper (i.e. under global visibility and knowledge of G) Theorem 4. Consider the KNOWN model with Global Snapshot. Let A be any patrolling algorithm for k agents with uniform initial placement. We have that I rs (n) ≥ 2n k for any stabilization time r s .

Proof. The scheduler removes the same edge forever. At this point the k agents have to patrol a line and the lower bound for idle time on a line with k agents is 2n k (See [START_REF] Collins | Optimal patrolling of fragmented boundaries[END_REF] for a proof).

Patrolling with Local Visibility

In this section we analyse the Local Snapshot model, we first examine the case in which the placement of the agents is arbitrary and then we examine the case in which the placement is uniform.

= (V = {v 0 , . . . , v n-1 }, E = {(v 0 , v 1), (v 1 , v 2), . . .}
) and a set of agents {a 0 , . . . , a k-1 }. Configuration C 0 is such that C(a j) = v j , that is agents are placed one for each node in {v 0 , . . . , v k-1 }.

If the ring is oriented and the nodes are anonymous, each agent would have the same local view and they take the same action at each step. Thus, at any round r, the configuration C r is a rotation of either one step counter-clockwise or one step clockwise of configuration C r-1 . This implies that the best idle time is obtained by having agents to perpetually move in the same direction. The idle time of this strategy is I rs (n) = nk for any possible stabilization time r s .

The above result assumes the agents to be placed on consecutive nodes, and its proof does not hold when there is an uniform initial placement of agents. However, even in the case of uniform placement, we show the following result for agents having constant amount of persistent memory (b bits), under the UNKNOWN model. Theorem 6. Consider a dynamic ring under the UNKNOWN model with local snapshots and uniform initial placement. Given any patrolling algorithm A for k agents, with c = O(1) bits of memory, the idle time for patrolling is

I(n) ≥ n -7 • 2 c k.

Two agents with Global Visibility

In this section we assume that the agents have access to a global snapshot of the configuration at each round during Look phase. We first consider the simpler case of k = 2 agents and show upper and lower bounds on patrolling for both the UNKNOWN and the KNOWN setting.

UNKNOWN setting

Given the graph G r at round r, we define as BC r (resp. BCC r) the set of all agents that are attempting to move clockwise (resp. counter-clockwise) from a node v that has the clockwise (resp. counter-clockwise) edge missing at the round r. We will remove the subscript r when it is clear that we are referring to the current round. We now describe a patrolling algorithm called Tick-Tock for k = 2 agents in the UNKNOWN setting. Initially, both agents move in the clockwise direction in each round, until they reach a round r in which BC r is not empty. At this point the symmetry between agents is broken, and we assign to the agent in BC r the counter-clockwise direction while the other agent keeps the clockwise direction. Starting from round r, the agents continue to move according to the following rule: Move in the assigned direction until the minimum distance between the agents is less or equal to 1; When this happen, both agents reverse their direction (i.e, the agents bounce off each other). The state diagram of the algorithm is presented in Figure 1.

Theorem 7. For any dynamic ring in the UNKNOWN model with Global Snapshot and arbitrary initial placement, Algorithm Tick-Tock allows two agents to patrol the ring with an idle time I(n) ≤ 2(n -1).

Proof. The algorithm has two distinct phases. In the first phase, both agents move in the same direction, while in the second phase the agents always move in opposite directions. We need to show that for any node v, given two consecutive visits of v at round r 0 and r 1 it holds that r 1r 0 ≤ 2(n -1). First, let r 0 and r 1 be both in the first phase of the algorithm. Observe that in this phase each agent loops around the ring visiting each node once in every n rounds. Since the agents on distinct nodes we have at most n -1 rounds between two visits of node v; thus r 1r 0 ≤ n -1. Now we examine the case when r 0 and r 1 are both in the second phase. It takes at most n -1 rounds for the distance between the two agents to be 1 or less-the agents are moving on opposing direction and at most one of them can be blocked at any round. This means that during a period that is upper bounded by n -1 all nodes are visited. Thus, there are at most 2(n -1) rounds between consecutive visits of a node v.

Finally, we have to show that the bound still holds if r 0 is in the first phase and r 1 in the second. Let r be the round in which the algorithm switches phase. We necessarily have rr 0 = x ≤ n -1, by the previous discussion regarding the first phase. At round r, one agent is at distance x from node v and thus, the distance between the agents on the segment not containing v, is at most (nx -1). Now, if both agents are move towards v, then v would be visited in the next (n -1) rounds. Otherwise, the agents move away from v, therefore in at most (nx -2) rounds, the two agents would be at distance one or less. In the subsequent n -1 rounds all nodes would be visited (recall our previous discussion for the second phase). This implies that r 1r 0 ≤ 2(n -1) in both cases.

Surprisingly, the algorithm Tick-Tock is almost optimal. Theorem 8. Under the UNKNOWN model with global snapshot and uniform initial placement, any patrolling algorithm A for two agents has idle time I(n) ≥ 2n -6.

We prove the above result by showing that the adversarial scheduler can (1) entrap one of the agents on two neighboring nodes of the ring, say, nodes v n-1 , v n-2 , and at the same (2) prevent the other agent from performing a full tour of the ring. Under the above two conditions, patrolling the ring by two agents reduces to patrolling a line of l = n -2 nodes by a single agent, for which we have an idle time of 2(l -1) = 2n -6.

KNOWN setting

In this subsection we examine the KNOWN setting. We first present a solution algorithm, namely Place-&-Swipe, that solves the problem with an idle time of 3 n 2 rounds, when there is an uniform initial placement of the agents. We then discuss how the algorithm can be adapted to work under arbitrary initial placement by having a stabilisation time of n 2 and a stable idle time of 3 n 2 rounds.

Patrolling Algorithm The algorithm Place-&-Swipe perpetually alternates between two phases of fixed length (each phase lasts n 2 rounds). During the first phase, called Placement Phase, the agents position themselves on a specially choosen pair of antipodal 1 nodes -the swiping nodes. In the second phase, called the Swipe Phase, the agents together visit all nodes of the ring by both moving clockwise for n 2 rounds without stop. A Placement Phase followed by Swipe Phase is an epoch of the algorithm, we use i ≥ 0 to indicate the epoch number. Since every node is visited once in every Swipe phase, in the worst case, a node may be visited at the beginning of a Swipe phase and subsequently at the end of the next Swipe Phase, giving an idle time of at most 3 n 2 rounds. We now show that for each epoch i, there exists a a special pair P i of antipodal nodes which allow the Swipe Phase to cover all nodes in n 2 rounds. Let start i = i • n, and end i = (12 + i)n -1 be the starting and ending round of the i-th Placement Phase.

Lemma 1. Given any dynamic ring G and any round r = end i + 1, there exists a pair of antipodal nodes P i , such that two agents placed on P i and moving clockwise from round end i + 1 to the end round start i+1 -1, explore all nodes of the ring.

Proof. The key idea to prove the existence of P i is Observation 3. By plugging t = n 2 -1 in the statement of the observation. We have that there are n 2 + 1 nodes, let E i be this set, such that an agent being on one of these nodes at round end i + 1 moving clockwise visits exactly n 2 nodes by the end of round start i+1 -1. Now we have to prove that E i contains a pair of antipodal nodes. But this is obvious since the ring contains at least n 2 antipodal pairs and the cardinality of E i is n 2 + 1. Being the pair P i antipodals, when each agent visits n 2 nodes the ring has been explored. To prove correctness of the algorithm, we need to show that agents starting from any uniform configuration, the two agents can reach the chosen nodes P i in n 2 rounds. Note that, for computing P i in each epoch, the algorithm needs only the knowledge of the future n rounds of G. Arbitrary initial placement. Theorem 9 assumes that agents are starting at uniform distance. However, it is possible to easily adapt the algorithm to work under any initial placement sacrificing the stabilization time. Essentially, we need an initialization phase in which agents place themselves in antipodal positions. This can be done in n 2 rounds: in each round, agents move apart from each other increasing the distance by at least one unit per round. Thus, we obtain an algorithm with stabilization time r s = n 2 and

I rs (n) ≤ 3 n 2 .
Lower bounds. A lower bound of n for the KNOWN setting is immediate from Th. 4. However, when the initial placement of the agents is arbitrary we can show a slightly better bound.

1 A pair of nodes is antipodal if the distance between them in the ring is n 2 .

Theorem 10. Let A be a patrolling algorithm for two agents with arbitrary initial placement under the KNOWN model with Global snapshot. For any even n ≥ 10, there exists a 1-interval connected ring where A has an idle time I(n) ≥ (1 + 1 5)(n -1) .

6 Patrolling with k > 2 agents having Global Visibility

In this section we examine the case of k > 2 agents, showing how to generalize the algorithms of Section 5 for this case.

6.1 UNKNOWN setting: Generalising Tick-Tock for k agents

We generalize Tick-Tock for k agents assuming that: k divides n, k is even, and that there is uniform initial placement. At the end of the section we discuss how to remove such assumptions. The new algorithm, called K-Tick-Tock is divided in two phases, Single-Group-Swiping and Two-Groups-Swiping, as described below.

The Single-Group-Swiping Phase starts at round r = 0 and all agents move clockwise in this phase, keeping uniform distribution. The phase ends at the first round r when an agent is blocked. Starting from round r , the Two-Groups-Swiping phase starts. Recall that BC r is the set of agents trying to move clockwise in round r that encounter a missing edge. Since the agents are in distinct nodes, only one agent, say agent a j ∈ BC r . This breaks the symmetry among the agents and they can partition themselves in two groups: group clockwise G C and group counter-clockwise G CC . The group G C contains agent a (j+2t) mod k with t ∈ N, and group G CC contains all other agents. The partition into groups happens during the computation phase of round r . From round r , the agents move according to the following rules:

-Rule 1 (Group Movement): For X ∈ C, CC, an agent in G X moves in direction X if no agent in G X is blocked, i.e. a ∈ BX r G X . -Rule 2 (Membership Swapping): If at some round r agents in both groups are blocked, then the agents in BC r and BCC r swap their role, i.e. they exchange their states and thus their group membership in this round. Any other agent in G X moves in direction X during this round.

Intuitively, for Rule 1 a group G X moves when all the agents in the group would be able to move without trying to cross a missing edge. Rule 2 is applied only when two agents, one from group G C and one from group G CC are on two nodes that share the same missing edge, and this allows the groups to perform a "virtual movement", i.e. the two blocked agents swap roles to simulate a move across the missing edge. When k is not a divisor of n. In the case k does not divide n, we have that in the initial placement the minimum distance between two agents is n k and the maximum distance is n k + 1. We can use the same analysis of Theorem 11, taking into account the difference in the distance, which gives a bound of When k is odd. The problem for odd k is that once the algorithm switches to the Two-Group-Swiping phase, the groups G C , G CC do not have equal sizes. One group has size k-1 2 and the other k+1 2 . Moreover, within each group the members are not uniformly placed. The last problem is easy fixable at the price of stabilization time using Observation 12. Once the groups are uniformly placed, we can bound the idle time to 4nk k 2 -1 + 4, as shown in the following lemma:

Lemma 2. When one group has size k-1 2 and the other k+1 2 , the Two-Groups-Swiping phase of K-Tick-Tock has an idle time of at most 4nk k 2 -1 + 4 rounds.

Proof. W.l.o.g. let G C be the group of size k-1 2 and G CC be the other group. Let r 0 , r 1 be the times between two successive visits of some node v. In the worst case at round r 0 + 1, node v could be at distance at most 2n k-1 + 1 from an agent in group G C , and distance at most 2n k+1 + 1 from an agent in G CC . The sum of these distances is 4nk k 2 -1 + 2, and since only one group can be blocked at each round, this distance decreases by one at each round. This implies that r 1r 0 ≤ 4nk k 2 -1 + 2, thus proving the bound.

From the previous Lemma and using the same proof strategy of Theorem 11 we have that 4nk k 2 -1 + 4 is the idle time of the algorithm. Unfortunately, it is not possible to bound the stabilization time of the algorithm. The adversary decides when, and if, the algorithm goes to the Two-Groups-Swiping phase, and when this happen a certain number of rounds has to be payed to position in an uniform way the members of each group. However, in any infinite execution of the algorithm, there are only finitely many times in which two consecutive visits of a node are spaced by more than 4nk k 2 -1 + 4 rounds.

6.2 KNOWN setting: Place-&-Swipe for k agents.

Generalising the algorithm Section 5.2, for k agents is immediate. The algorithm is essentially the same, the only variations are: each phase now lasts n k rounds and P i is not a pair of nodes but k nodes uniformly placed. Also in this case we assume that agents start uniformly placed, such assumption can be dropped sacrificing the stabilization time (see Observation 12). Lemma 3 below is an equivalent of Lemma 1 for k ≥ 2 agents. Further, we can show that starting from any uniform configuration, the agents can reach, using the knowledge of G, any given target uniform configuration in at most n k steps (proofs of the results below appear in the appendix). Lemma 3. Given any 1-interval connected dynamic ring G, for any round r i , there exists a set P i of k uniformly spaced nodes, such that k agents placed on P i and moving clockwise from round r i to round r i + n k , together explore all nodes of the ring.

Conclusion

We provided the first results on the patrolling problem in dynamic graphs. As patrolling is usually performed on boundaries of territories, it is natural to study the problem for ring networks. The results may be extended to other topologies e.g. by moving on any cycle containing all the nodes of a graph. Our results on the dynamic ring networks are almost complete, but there exists a small gap between the lower and upper bounds, specially for the case of k > 2 agents which can be reduced by future work. In particular, we believe the lower bound for k > 2 agents in the UNKNOWN setting can be improved.

Observation 1 (

 1 [START_REF] Kuhn | Distributed computation in dynamic networks[END_REF][START_REF] Dell | Information dissemination in highly dynamic graphs[END_REF]) In a dynamic ring G under the UNKNOWN model with global snapshot, a single agent can visit at most 2 nodes.Observation 2 ([START_REF] Kuhn | Distributed computation in dynamic networks[END_REF][START_REF] Dell | Information dissemination in highly dynamic graphs[END_REF]) In a dynamic ring G under the KNOWN model, a single agent can reach any given node v in at most n -1 rounds.

Theorem 5 .

 5 Consider a dynamic ring under the KNOWN model with Local Snapshot and arbitrary initial placement. Then any patrolling algorithm A for k agents has stable idle time I rs (n) ≥ nk, for any stabilisation time r s . Proof. Let us consider a static ring of n nodes G

1 distance  1 : 1 distance  1 : 1 BC = ; : 1 o t h e r 2 B C : 1 m y s e l f 2 B C : 1 Fig. 1 :

 1111112111 Fig. 1: Algorithm Tick-Tock state diagram. The starting state is S0. Transition are of the form P redicate : M ovement where values of 1, -1, 0 denotes clockwise, counter-clockwise or no move, respectively.

Theorem 9 .

 9 Consider the KNOWN model with Global snapshot and uniform initial placement. The algorithm Place-&-Swipe allows two agents to patrol a ring with an idle time I(n) ≤ 3 n 2 .

Theorem 11 .

 11 The K-Tick-Tock algorithm has an idle time of 4n k . The above result is based on the facts that:[START_REF] Aaron | Dmvp: Foremost waypoint coverage of time-varying graphs[END_REF] in each round at least one group moves, and (2) After each visit of a node v, the distances between node v and the closest agents in G C (or G CC) that are moving towards v are at most 2n k -1. So, in the successive 4n k rounds, at least one group would reach v. (a) Starting round of Two-Groups-Swiping. Agents belonging to GC (resp. GCC) are marked with squares (dots) (b) Rule 1: Group GC is blocked. GCC reaches the other endpoint of the missing edge. (c) Rule 2: The two blocked agents swap roles. Others move normally.

Fig. 2 :

 2 Fig. 2: Algorithm K-Tick-Tock, depiction of salient cases.

4n k + 2 .

 2 When agents are not uniformly placed. If agents are not uniformly placed initially, they can arrive at a uniform configuration in O(n) steps.Observation 12 Consider a set of k ≥ 2 agents arbitrarily placed in a dynamic ring under the UNKNOWN model with global snapshot, then the agents need at most 2n rounds to reach an uniform placement in the ring.

Theorem 13 .

 13 Consider the KNOWN model with global snapshots. The algorithm Place-&-Swipe allows k agents with uniform initial placement to patrol a ring with an idle time I(n) ≤ 3 n k .

Table 1 :

 1 Results for the idle time in dynamic rings of n nodes, with k uniformly placed agents having global visibility.

	Adversary	Number of Agents
		k = 2 k > 2
	KNOWN UNKNOWN	Upper Bound 3 n 2 Lower Bound n Upper Bound 2n -2 4 n 3 n k 2n k k Lower Bound 2n -6 2n k