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Abstract

This paper addresses the problem of identifying mechanical exciting forces

from vibration measurements. The proposed approach is based on a gener-

alized Tikhonov regularization that allows taking into account prior infor-

mation on the measurement noise as well as on the main characteristics of

sources to identify like its sparsity or regularity. To solve such a regulariza-

tion problem efficiently, a Generalized Iteratively Reweighted Least-Squares

(GIRLS) algorithm is introduced. Proposed numerical and experimental val-

idations reveal the crucial role of prior information in the quality of the source

identification and the performance of the GIRLS algorithm.

Keywords: Source identification, Generalized Tikhonov regularization,

Bayesian inference.

1. Introduction

The control of the vibro-acoustic behavior of structures remains a chal-

lenging task in many industrial applications. A possible solution is to control

vibration at source. In this situation, the knowledge of excitation sources is
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required. However, such information is sometimes difficult or even impossi-

ble to measure. A possible alternative to bypass this drawback is to identify

excitation sources from vibration measurements. The resolution of this in-

verse problem has been extensively studied over the past three decades. The

most widespread approaches are based on the transfer functions matrix of

the structure under test [1, 2, 3, 4, 5], that can be numerically computed

[2, 6] or measured [7, 8, 9]. There exists, however, alternative approaches

based on the numerical calculation of a local operator corresponding to the

dynamic stiffness of a part of the structure [10, 11, 12, 13, 14].

Unfortunately, all the proposed methods are very sensitive to measurement

errors causing the identification to fail. That is why, there have been numer-

ous studies focusing on the development of regularization methods to stabilize

this inverse problem. Except methods for which very specific procedures have

been proposed [10, 15], the most popular regularization methods remain the

Truncated Singular Value Decomposition (TSVD) [16, 17, 18, 19, 20] and the

Tikhonov regularization [6, 13, 14, 20, 21, 22].

In the present article, we are interested in solving the identification prob-

lem using the following generalized Tikhonov regularization [23]:

F̂c = argmin
Fc

1

p
‖HFc −Xm‖pp +

λ

q
‖LFc‖qq, ∀(p, q) ∈ ]0,∞[2, (1)

where Xm is the vibration field (displacement, velocity or acceleration)

measured over the structure, Fc is the force vector to identify, H is the corre-

sponding transfer functions matrix, ‖•‖p is either the `p norm if p ≥ 1 or the

`p quasi-norm if p < 1 and F̂c is the particular value of Fc for which the func-

tional reaches its minimum. Such a problem is said to be convex when p ≥ 1
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and q ≥ 1 and non-convex otherwise. In the next of the paper, the proposed

generalized Tikhonov regularization is also referred to as `p-`q regularization.

In Eq.(1), the functional to minimize is the sum of two terms. The first

one is the data fidelity term 1
p
‖HFc−Xm‖pp, which is related to measurement

noise and allows controlling the a priori on the nature of the noise [24, 25].

The second one is the regularization term 1
q
‖LFc‖qq, that introduces an a

priori on the solution, like its regularity thanks to the differentiation matrix

L [26], or its sparsity, by using an `q norm such as q < 2 [27]. Finally, these

terms are related by the trade-off parameter, λ ∈ R+, that represents the

balance between data fidelity and regularization terms. In this formalism,

the standard Tikhonov regularization corresponds to p = q = 2. As shown

in [13, 14], this regularization leads to a systematic smoothing of regularized

solutions, which is not a desirable effect when one wants to identify localized

sources, for instance.

To have a better understanding of this result, it is worth turning to decon-

volution techniques developed in image and signal processing, in which the

influence of data fidelity and regularization terms has been deeply studied.

It has been shown in [25] that having a data fidelity term reflecting the noise

characteristics of the signal provides better reconstruction. In particular, it

has been pointed out that using the `2 norm for the data fidelity term was

most appropriate to remove additive gaussian white noise [24, 28], whereas us-

ing `1 norm was suitable for removing impulsive noise [28, 29]. Concerning the

regularization term, it has been proven that sparsity-promoting terms allow
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preserving discontinuities in deconvolved signal or image [30, 31, 32, 33, 34].

The most widely used are the regularization terms based on the `1 norm

[30, 31]. However, it has been demonstrated recently that non-convex sparse

regularization terms, i.e. based on the `q quasi-norm (q ∈ ]0, 1[), yield even

better discontinuities preservation when compared to the convex `1 type reg-

ularization [35, 36, 37]. To solve efficiently convex as well as non-convex

sparse regularization problems, only a few algorithms are available. They

are generally based on a generalized version of the Iteratively Reweighted

Least-Squares approach (IRLS) [38, 39, 40], originally proposed to deal with

problems of the form of Eq.(1) for λ = 0 [41, 42, 43].

To the author’s knowledge, the aforementioned methods have been seldom

applied in the context of structural source identification. One can neverthe-

less cite the recent work of Chardon and Daudet [44], in which they apply

a convex `2-`1 regularization, processed by a group matching pursuit algo-

rithm, to localize sources acting on a thin plate. Finally, it is important to

cite works of Guillaume et al. [8, 9] that propose using an IRLS type pro-

cedure to identify localized sources, as well as the work of Renzi et al. [13, 45].

This paper proposes demonstrating the ability of the generalized Tihkonov

regularization to identify vibration sources from a GIRLS algorithm. Unlike

the standard IRLS procedure, the proposed approach allows introducing,

besides prior information on measurement noise, an a priori on the spatial

distribution of sources.

To clearly distinguish the main features of the proposed regularization pro-
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cedure, the present article is divided into four parts. In section 2, the general

methodology, based on a Finite Element (FE) modelling of a part of the

structure under test, is presented. In section 3, the GIRLS algorithm is

detailed. A particular attention is paid to the crucial choice of the regular-

ization parameters and the definition of a robust stopping criterion. Finally,

sections 4 and 5 are devoted to the numerical and experimental validations

of the proposed methodology. Obtained results show that using properly

a priori knowledges on the measurement noise and the spatial distribution

of the solution improves drastically the quality of the identification and the

performance of the GIRLS algorithm.

2. General principles of the identification process

As explained in the introduction, one seeks to deal with the structural

source identification problem using the generalized Tikhonov regularization

given by Eq.(1). To properly solve this problem, one needs to know the me-

chanical behavior of the part of the structure under test. Such information is

given by the transfer functions matrix H. Since the measurement of H can

be quite cumbersome, one prefers using a FE model of the structure instead.

Assuming the structure is linear and the damping is of structural type,

the FE model of the structure is of the form:

[
K(1 + jη)− ω2M

]
X(ω) = D(ω)X(ω) = F(ω), (2)

where M is the mass matrix, K is the stiffness matrix, X(ω) is the vector

containing the considered degrees of freedom (dofs), F(ω) is the excitation
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vector, η is the structural damping factor, D(ω) is the dynamic stiffness ma-

trix of the structure and ω is the angular frequency.

In Eq.(2), the vibration displacement field X(ω) contains two types of

degrees of freedom (dofs), namely translation and rotation dofs. However,

in practical situations, some dofs, such as rotations, are difficult to measure

directly. Considering this experimental fact, the FE model given by Eq.(2)

has to be transformed into a model containing only the measurable dofs.

Several techniques have been used for that purpose, such as static condensa-

tion [21], observation matrix approach [14, 46] or exact dynamic condensation

[11, 45, 47, 48]. Finally, reduction techniques can be used to avoid the need of

data in unmeasured areas, such as the Craig–Bampton reduction [13, 45, 49]

or the modal reduction [50].

In this paper, Eq.(2) is transformed using an exact dynamic condensation.

The basic idea is to express non-measurable dofs with respect to measurable

dofs. To this end, the dynamic stiffness matrix is partitioned into measurable

dofs m and non-measurable dofs m̄. After expressing non-measurable dofs in

terms of measurable dofs, one obtains:

DcXm = Fc, (3)

where Dc = Dmm − Dmm̄Dm̄m̄
−1Dm̄m is the condensed dynamic stiffness

and Fc = Fm−Dmm̄Dm̄m̄
−1Fm̄ is the equivalent excitation vector acting on

the measurable dofs of the structure.

Finally, the transfer functions matrixH of the part of the structure under
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test is proportional to the inverse of the reduced dynamic stiffness matrixDc,

namely:

H = D−1
c , (4)

Two comments have to be made concerning Eqs.(3) and (4). First of

all, the computation of the transfer functions matrix can be computationally

expensive due to the inversion at each frequency of the reduced dynamic

stiffness matrix Dc. However, as shown in [10, 13, 14], the identification can

be performed locally. This means that only a part of the studied structure

can be modelled by using free boundary conditions in the corresponding lo-

cal finite element model. As a consequence, the size of FE model can be

limited, which makes the procedure described above applicable on industrial

structures. Furthermore, using a FE model with free boundary conditions

gives the possibility of identifying the reaction forces acting at boundaries of

the studied structure [14].

Moreover, the transfer functions matrix being generally ill-conditioned,

the inverse problem is very sensitive to errors in the measured data set Xm.

That is why, regularized formulations, such as Eq.(1), have to be used to

stabilize the identification with respect to measurement noise that corrupts

input data. To go a little further, it could be noticed that the proposed

generalized Tikhonov regularization allows including precisely additional in-

formation on the nature of the sources acting on a structure. Incidentally,

it is expected to obtain better results than that obtained with a classical

regularization method. In particular, it can be shown that the proposed

regularized formulation can be seen as a Bayesian regularization using Gen-

7



eralized Gaussian priors [23]. Indeed, in the Bayesian paradigm, the posterior

probability distribution P (Fc|Xm), corresponding to the probability of ob-

taining the force vector Fc given a measured vibration field Xm is written

according to Bayes’ rule [51, 52]:

P (Fc|Xm) ∝ P (Xm|Fc)P (Fc), (5)

where the likelihood function P (Xm|Fc) corresponds to the probability of

measuring the vibration field Xm given a force vector Fc, while the prior

probability distribution P (Fc) represents the a priori knowledge on the un-

known excitation field Fc before measuring Xm. From these definitions, it

can be inferred that the likelihood function and the prior probability dis-

tribution introduce respectively prior information on the measurement noise

and the nature of the excitation sources. Here, P (Xm|Fc) and P (Fc) are

supposed to be generalized Gaussian distributions defined such that:

P (Xm|Fc) ∝ e−1/p‖HFc−Xm‖pp/αp

and P (Fc) ∝ e−1/q‖LFc‖qq/βq

, (6)

where α and β are the scale parameters of the generalized Gaussian distri-

butions.

In the Bayesian philosophy, the most probable force vector F̂c is the

maximum a posteriori estimate, that is:

F̂c = argmax
Fc

P (Xm|Fc)P (Fc). (7)

Then, it can be easily shown that the solution F̂c is also the solution

of dual minimization problem given by Eq. (1) with λ = αp/βq. The well-

known conclusion of the Bayesian inference [53] is that the more the prior
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information is accurate, the more the posterior probability is high. From

this observation, it is expected that accurate results can be obtained if the

trade-off parameters λ and the tuning parameters p and q are properly cho-

sen, since the regularization process gives the most probable solution given

prior information on the measurement noise and the nature of the sources to

identify.

At this stage of the identification process, the local transfer functions ma-

trixH and the vibration fieldXm, measured on the corresponding part of the

real structure, can be introduced in Eq.(1) to solve the identification prob-

lem. To clearly distinguish measurement stages from numerical processing

stages, an overview of the whole identification procedure is proposed under

a block diagram form in Fig. 1.

The proposed block diagram shows that the general philosophy of the

identification process shares some common points with previous works pub-

lished in the source identification literature, such as the use of a finite ele-

ment description of the structure [20, 49, 50] and the condensation of non-

measurable dofs [11, 13, 21]. Furthermore, it highlights the central role of the

regularization step in the whole process, since it allows gathering and post-

processing numerical and experimental input data to provide an estimate of

the force vector. Consequently, one needs to use a robust solver to deal with

both convex and non-convex minimization problems that can arise when us-

ing a generalized Tikhonov regularization. For this purpose, one proposes to

use the GIRLS algorithm.
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Figure 1: Block diagram of the whole identification procedure

3. Generalized Iteratively Reweighted Least-Squares algorithm

The GIRLS approach is a very general iterative procedure that allows

solving `p-`q regularization problems for all (p, q) ∈ ]0,+∞[2.

3.1. General algorithm

The core idea of the GIRLS algorithm is to replace the `p-`q regulariza-

tion by an equivalent iterative procedure based on a weighted `2-`2 functional.

Indeed, it has been shown in [38, 54, 40, 43] that the `p norm can be approx-

imated, within an iterative scheme, by a weighted `2-norm. This means that

the functional

Jqp (Fc) =
1

p
‖HFc −Xm‖pp +

λ

q
‖LFc‖qq, (8)
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is replaced, at each iteration k + 1 of an iterative process, by the equivalent

quadratic functional

J̃2
2 (Fc) =

1

2
‖W(k)

f
1/2

(HFc −Xm) ‖2
2 +

λ(k+1)

2
‖W(k)

r
1/2
LFc‖2

2, (9)

where λ(k+1) is the trade-off parameter at iteration k + 1, while W(k)
f and

W(k)
r are weighting positive definite matrices, defined as follows [38]:

W(k)
f = diag

[
2

p
T pεf

(
HF̂

(k)

c −Xm

)]
and W(k)

r = diag
[

2

q
T qεr

(
LF̂

(k)

c

)]
,

(10)

where F̂
(k)

c is the solution at iteration k.

As classically done in IRLS type algorithm [38, 55], the functions T pεf (x(k))

and T qεr(x
(k)) are expressed as

T jεi(x
(k)) =

|x
(k)|j−2 if |x(k)| > ε

(k)
i

|ε(k)
i |

j−2
if |x(k)| ≤ ε

(k)
i

(11)

where i = f or r and j = p or q.

In Eq.(11), ε(k)
f and ε(k)

r are small positive numbers acting as damped pa-

rameters. They allows avoiding infinite weights when |x(k)| → 0 and j < 2.

As a result, the solution at iteration k + 1 is obtained by solving the

equivalent minimization problem:

F̂
(k+1)

c = argmin
Fc

J̃2
2 (Fc) (12)
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By expanding the equivalent quadratic functional J̃2
2 (Fc) and setting its

gradient to zero, Eq.(12) has the following explicit form:

F̂
(k+1)

c =
(
HHW(k)

f H + λ(k+1)LHW(k)
r L

)−1

HHW(k)
f Xm, (13)

where HH is the hermitian transpose of H.

The resulting procedure therefore consists in solving Eq.(13) iteratively

until some stopping criterion is satisfied. Supposing now the stopping crite-

rion is well chosen. In this situation, if the functional Jqp (Fc) is convex and

possesses a local minimum, then it is a global minimum. However, when

dealing with non-convex sparse regularization, the final solution F̂c strongly

depends on the initial guess F̂
(0)

c , since the corresponding non-convex func-

tional does not necessarily have an unique minimizer. Consequently, one of

the keys for a successful identification is finding a good initial guess. The

question that arises here is: What is a good initial guess? Actually, it is a

coarse solution of the problem, easy to calculate, but sufficiently close to the

final solution to ensure the convergence of the iterative process. Such require-

ments are fulfilled by the solution of the standard Tikhonov regularization,

that is:

F̂
(0)

c = argmin
Fc

1

2
‖HFc −Xm‖2

2 +
λ(0)

2
‖LFc‖2

2, (14)

or in a more explicit form:

F̂
(0)

c =
(
HHH + λ(0)LHL

)−1
HHXm. (15)

All the previous comments lead to the generic GIRLS algorithm given

below:
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Generic GIRLS Algorithm

Inputs: Transfer functions matrix: H, Measured vibration field: Xm

Differentiation matrix: L

Output: Estimated force vector: F̂c

Initialization: Compute F̂
(0)

c from Eq.(15)

Iteration:

while Stopping criterion is not satisfied

Compute W(k)
f and W(k)

r from Eq.(10)

Compute F̂
(k+1)

c from Eq.(13)

end

return F̂c ← F̂
(k)

c
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3.2. Choice of the tuning parameters p and q

To choose proper values of p and q, it is worth reminding some important

results established in various contexts such as image deconvolution, signal

denoising or convex optimization, already cited in the introduction of the

paper. First, it has been proven that using an `2-norm for the data fidelity

term is suitable for removing additive Gaussian white noise [24, 28], while

using an `1-norm is most appropriate to suppress impulsive noise [28, 29].

Then, it has been shown that using an `2-norm for the regularization term

is perfectly adapted to smooth solutions [27], while using a non-convex regu-

larization based on the `q quasi-norm (q ∈]0, 1[) promotes the sparsity of the

solution [56]. In short, selected values have to reflect the main characteristics

of the measurement noise and the spatial distribution of sources. Thanks to

the results recalled above and a set of numerical experiments, it is possible

to give some general rules to properly choose the values of p and q. On one

hand, in most of the cases, the noise corrupting the data is not known. As

a result, a good choice of p is p = 2, meaning that the noise is assumed to

be an additive Gaussian white noise. This is a reasonable assumption, since

the noise generally results from a variety of causes. However, when the mea-

surement noise is not additive Gaussian, it is preferable to use p < 2, with

the special case of impulsive noise for which p = 1. On the other hand, the

choice of the value of the tuning parameter q is less obvious. Nevertheless,

one can notice that if the sources exciting the structure are smooth, then one

can choose q = 2. On contrary, if the source vector to identify is sparse, it is

recommended to choose q ≤ 1. Finally, in a situation where actual sources

combine both localized and distributed sources, we can choose q ∈]1, 2[.
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3.3. Automatic selection of the regularization parameters

Three iteration-dependent regularization parameters are involved in the

GIRLS algorithm, namely λ(k), ε(k)
f and ε(k)

r . Their role in the iterative pro-

cess is fundamental, since λ(k) represents the trade-off between data-fidelity

and regularization terms, while ε(k)
f and ε

(k)
r controls the trajectory of each

iteration. Choosing manually appropriate values for these parameters is not

an easy task. That is why, the development of automatic selection proce-

dures has been extensively studied in the literature.

The automatic selection of the trade-off parameter is at heart of numerous

studies dealing with the Tikhonov regularization. Among all the automatic

selection methods, one can cite the Morozov’s discrepancy principle [57], the

Generalized Cross Validation [58], the Unbiased Predictive Risk Estimator

[59], the Bayesian estimator [52] and the L-curve method [60]. In the present

paper, the trade-off parameter λ(k) is obtained using the L-curve principle

at each iteration. In few words, the principle is to plot, in a log-log scale,

the l2 norm of the regularization term versus the l2 norm of the data fidelity

term. The resulting L-shaped curve illustrates the trade-off between the two

terms [see Fig.(2)]. The optimal regularization parameter is derived from the

L-curve by calculating its maximum curvature.

Unfortunately, using the L-curve principle to determine the optimal trade-

off parameter λ(k) at each iteration is computationally intensive. It can thus

be of great interest to use an unique value for this parameter throughout

the iterative process. From a series of numerical experiments, we have found

that using λ(k) = λ(0) gives similar results to those obtained from updated
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Figure 2: Typical L-curve

λ(k) within a comparable number of iterations. Consequently, the trade-off

parameter λ(k) is chosen once for all during the initialization step.

Concerning the automatic selection of ε(k)
f and ε

(k)
r , it has been shown

in [54] that their optimal values were functions of the current solution. To

adapt automatically the value of ε(k)
f (resp. ε

(k)
r ) at each iteration, it has

been proposed to set its value so that a fixed percentage pf (resp. pr) of the

smallest values of |HF̂
(k)

c −Xm| (resp. |LF̂
(k)

c |) will be below ε
(k)
f (resp. ε(k)

r ).

This can be easily implemented by calculating the cumulative histogram of

|HF̂
(k)

c −Xm| (resp. |LF̂
(k)

c |) will be below ε
(k)
f (resp. ε(k)

r ). From our own

numerical tests, we have found that setting pf =pr =5% allows obtaining

good results. It can be notice that these values are consistent with those

proposed in [54], namely pf ≤ 5% and pr ≤ 1%.
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As for the automatic selection of the trade-off parameter λ(k), accurate

solutions can be obtained using fixed values of ε(k)
f and ε

(k)
r . From a set

of numerical experiment, we have found that using the values computed

from the solution of the Tikhonov regularization has no significant impact

on both the quality of the results and the time-performance of the algorithm.

Accordingly, the regularization parameters ε(k)
f and ε(k)

r can also be computed

once for all during the initialization step.

3.4. Stopping criterion

The GIRLS algorithm being iterative, a practical test is needed to deter-

mine when to stop the iteration. In this paper, a stopping criterion related

to the variation of the functional J̃2
2 (Fc) between two successive iterations is

used.

In an iterative process, it is expected that

|J̃2
2 (F̂

(k)

c )− J̃2
2 (F̂

(k−1)

c )| ≈ 0, (16)

when the convergence is reached.

From this observation, one defines the normalized variation δ such that:

δ =
|J̃2

2 (F̂
(k)

c )− J̃2
2 (F̂

(k−1)

c )|

|J̃2
2 (F̂

(1)

c )− J2
2 (F̂

(0)

c )|
, (17)

where 2J2
2 (F̂

(0)

c ) = ‖HF̂
(0)

c −Xm‖2
2 + λ(0)‖LF̂

(0)

c ‖2
2.
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If the iterative process is monotonically convergent, the variation between

the initialization step and the first iteration is the larger possible one, insofar

as J2
2 (F̂

(0)

c ) is the value of the functional for the coarsest solution. Conse-

quently, one has 0 ≤ δ ≤ 1. This indicator allows controlling the behavior of

the algorithm, since the iterative process is stopped when δ is smaller than

or equal to a prescribed tolerance defined by the user. Experimentally, we

have found that setting the tolerance to 10−8 leads to accurate regularized

solutions, while preserving the time-performance of the GIRLS algorithm.

3.5. Proposed GIRLS algorithm

By including the automatic selection procedures of regularization param-

eters and the stopping criterion previously described in the generic GIRLS

algorithm, one obtains the following GIRLS algorithm:

4. Numerical validation

In this section, the ability of the GIRLS algorithm to deal with gener-

alized Tikhonov regularization problems is assessed from the identification

of a mechanical point force exciting a simply supported plate. The force is

supposed acting perpendicularly to the plate. The main characteristics of

the test case are given in Table 1.

The FE mesh of the whole plate is made up of 567 linear quadrilateral

shell elements. Assuming that only bending motions are measurable, the

resulting FE model, obtained from MSC Nastran, is used to compute the

corresponding noiseless vibration displacement field Xexact
m . In practical situ-

ations, the exact vibration field is corrupted by measurement noise, causing

the identification to fail due to the extreme sensitivity of the inverse problem
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Proposed GIRLS Algorithm

Inputs: Transfer functions matrix: H, Measured vibration field: Xm,

Differentiation matrix: L, Tolerance: tol

Output: Estimated force vector: F̂c

Initialization: Compute λ(0) from the L-curve principle

Compute F̂
(0)

c from Eq.(15)

Compute ε(0)
f from the cumulative histogram of |HF̂

(0)

c −Xm|

Compute ε(0)
r from the cumulative histogram of |LF̂

(0)

c |

Initialize δ to 1

Iteration:

while δ > tol

Compute W(k)
f and W(k)

r from Eq.(10) using ε(k)
f = ε

(0)
f and ε(k)

r = ε
(0)
r

Compute F̂
(k+1)

c from Eq.(13) using λ(k+1) = λ(0)

Update δ using Eq.(17)

end

return F̂c ← F̂
(k)

c
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Table 1: Simulation parameters of test case 2

Parameters Values

Plate length L = 2 m

Plate width b = 1.5 m

Plate thickness h = 0.017 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Structural damping η = 0.01

Amplitude of the force F0 = 1 N

Location of the force (x0, y0) = (1.04 m, 0.93 m)

Studied frequency f0 = 350 Hz

to uncertainties. To highlight this phenomenon and assess the efficiency of

generalized Tikhonov regularization to solve this problem, the exact data are

corrupted by introducing a multiplicative noise [10, 61] and an addtive noise

[62]to simulate calibration errors and measurement noise respectively:

X̃m = βme
jφmXexact

m + βae
jφa , (18)

where βm = 1+pn|Xexact
m |Z1, φm = arctan(pn)Z2, βa = pnM

−1/2‖Xexact
m ‖2Z3

and φa = U, with pn being the noise percentage,M being the number of mea-

surable dofs, (Z1,Z2,Z3) being three independent Gaussian random vectors

and U being a random vector uniformly distributed over the interval [0, 2π].

In what follows, the noise percentage pn is set to 2%.

Finally, a local model of the plate is used to compute the transfer functions

matrix H of measurable dofs. As suggested in [13, 14], this local model cor-

responds to the FE model with free boundary conditions of a part of the
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structure. In this example, the local model covers the whole extent of the

plate, which has the advantage of enabling the identification of external ex-

citations acting on the structure as well as reaction forces at boundaries. In

the present case, it should be noted that H is computed by using the value

of the structural damping defined in Table 1.

The reference force vector Fref
c is obtained from the condensed dynamic

stiffness Dc of the local model and the exact vibration displacement field

Xexact
m thanks to the following equation:

Fref
c = D−1

c Xexact
m . (19)

Fig. 3 presents the reference force vector to identify at 350 Hz. As ex-

pected, a unit point force appears at (x0,y0) = (1.04 m,0.93 m) m as well as

smooth reacting forces at the boundaries of the plate.

As presented in Fig. 4, when one replaces exact data Xexact
m by the cor-

rupted ones X̃m in Eq. (19), the identification of the force vector fails. This

figure emphasizes the extreme sensitivity of the identification problem with

respect to measurement noise and allows explaining the need for a regular-

ization process.

The first idea to stabilize the source identification is to use the standard

Tikhonov regularization, corresponding to Eq. (1) where p = q = 2 and L is

the identity matrix I. The corresponding result, presented in Fig. 5(a), shows

that the localization of the point force is properly estimated while the ampli-

tude is greatly underestimated. On contrary, reaction forces at boundaries

are well identified. This contrasted result can be explained by the use of the

`2-norm for the regularization term that promotes smooth solutions, which is
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Figure 3: Reference force vector Fref
c at 350 Hz

Figure 4: Identification of the force vector F̂c at 350 Hz from corrupted data and without

regularization
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the case for reaction forces but not for the point force. A better identification

of the point force can be obtained by using a sparsity-promoting regulariza-

tion term. This can be achieved from an `2-`1 regularization in which L = I.

Unlike the standard Tikhonov regularization, the `2-`1 regularization allows

well identifying the point force, but not the reaction forces at boundaries [see

Fig. 5(b)]. In fact, this is the logical outcome of the actual spatial distribu-

tion of vibration sources over the plate, that is smooth along the edges, while

the solution is supposed to be sparse. Hence, a great number of iterations are

necessary to obtain a solution compatible with the prior information. In this

example, the `2-`1 regularization regularization has required 80 iterations to

reach the tolerance. A faster convergence can be achieved by using properly

our a priori on the measurement noise and the target force vector. Indeed,

one knows not only that the noise is a combination of multiplicative and ad-

ditive random noises, but also that the force vector to identify is very sparse,

except at boundaries where the force vector is smooth. Regarding the reg-

ularization term, a compromise has to be found between the smoothness of

the reaction forces at boundaries and the non-smoothness of the point force.

Considering the characteristics of the measurement noise, the actual spatial

distribution of sources as a prior information and the general rules given in

section 3.2, , a consistent result is found after 61 iterations using a convex

`1.9 − `1.1 regularization [see Fig. 5(c)]. These results are consistent with

the remark done in section 2 concerning the relation between the proposed

formulation and the Bayesian regularization, since the more the prior infor-

mation on the measurement noise and the spatial distribution of the solution

is accurate, the more a reliable regularized solution can be obtained. From a

23



computational point of view, the immediate consequence is that the GIRLS

algorithm converges within a few iterations.

Finally, it is interesting to notice that the L-curve used to determine the

trade-off parameter has the typical aspect of an L-curve as shown in

5. Experimental validation

This section aims at assessing the relevance of the proposed approach

in operating conditions and confirm the conclusions drawn in the previous

numerical validation. As presented in Fig. 6, the structure of interest is a

steel parallelepiped box, excited on one of its faces by a shaker equipped with

a force sensor. The main features of the proposed experimental validation

are listed in table 2.

Table 2: Experiment parameters

Parameters Values

Length of the parallelepiped Lx = 0.45 m

Width of the parallelepiped Ly = 0.3 m

Height of the parallelepiped Lz = 0.35 m

Wall thickness h = 0.005 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Location of the force (x0, y0, z0) = (0 m, 0.11 m, 0.09 m)

Studied frequency f0 = 350 Hz

In this experiment, the source identification has been performed on the

excited surface only [see Fig 6]. Measurements of the vibration field were
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(a)

(b)

(c)

Figure 5: Identification of the force vector F̂c at 350 Hz from corrupted data and with

regularization - Identified force vector using (a) a Tikhonov regularization or a sparse

regularization with (b) (p,q) = (2,1) and (c) (p,q) = (1.9,1.1)
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Figure 6: Experimental set-up

carried out with a scanning laser vibrometer on a grid of 19×22 points along

y and z directions respectively. using the force signal as a phase reference.

Hence, the distance between two measurement points is 17 mm in average.

In all the subsequent identifications, the measured vibration velocity field

has been normalized to the force signal delivered by the force sensor. In

other words, the transfer functions between the vibration signals and the

force signal are used as input data of the identification problem. Technically

speaking, these transfer functions correspond to the transfer function esti-

mates H1 derived from standard signal processing techniques. Furthermore,

to be consistent with the formulation presented in section 2, each transfer

function has been numerically integrated by the division of its values by jω

so as to estimate the transfer functions between the displacement signals and

the force signal. It is important to note that the experimental procedure de-

scribed above is established for validation purposes only insofar as, by doing

so, the amplitude of the identified point force F0 should be equal to 1. Fi-
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nally, it should be noted that choosing the force signal as a phase reference

places us in a favorable experimental configuration. Indeed, in an industrial

context, a vibration sensor located in the studied area would be used as a

phase reference since measuring directly the force injected in the structure is

generally impossible.

Regarding now the definition of the FE mesh used to model the dynamic

behavior of the excited surface, it has been designed so as to perfectly match

the measurement mesh. Hence, it is made up of 378 shell elements. The cor-

responding FE model with free boundary conditions has then been used to

compute the transfer functions matrixH, considering that transverse motions

are the only available data. In this experimental validation, the structural

damping is a priori unknown, even if it could be assessed from the vibration

measurements. However, instead of neglecting the structural damping, its

value is set to 0.1 percent to avoid numerical difficulties when calculating H

from Eq. (4).

Fig. 7(a) presents the force vector identified at 350 Hz when no regular-

ization is applied. As expected, the source identification fails. Here again,

the first idea to stabilize the identification problem is to use the standard

Tikhonov regularization [see Fig. 7(b)]. As previously observed, the singu-

larity related to the point force is over-smoothed, while the distribution of the

identified reaction forces seems consistent with what is expected when ana-

lyzing the experimental set-up. To improve this result, prior information on

the measurement noise and the spatial distribution of sources has to be used.
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Assuming that the measurement noise is similar to that modeled in section 4

and the force vector to identify is sparse, one obtains after 74 iterations the

results presented in Fig. 7(c) corresponding to a generalized Tikhonov regu-

larization with (p, q) = (1.9, 0.5) and L = I. As expected, the point force is

well identified, since F̂0 = 0.975 and (x̂0, ŷ0, ẑ0) = (0 m, 0.1026 m, 0.0875 m).

However, spurious point forces appear at boundaries, indicating that our

a priori on the spatial distribution of sources is not suited to identify the

boundary conditions. Finally, the best compromise between the smooth-

ness of reacting forces at boundaries and the singularity of the point force

is achieved after 65 iterations by setting (p, q) = (1.9, 1.1) and L = I [see

Fig. 7(d)]. In this situation, the spatial distribution of reacting forces is in

accordance with that obtained with the standard Tikhonov regularization,

whereas the amplitude of the point force is spread around its actual location.

Incidentally, the amplitude of the identified point force is under-estimated.

Nevertheless, the actual amplitude of the point force can be retrieved by per-

forming a spatial summation of the force distribution around the identified

peak location. Such a summation compensates for the dispersion of the point

force amplitude. In the present case, the spatial summation is performed by

taking all the nodes included in the area defined in Fig. 8. By doing so, the

estimated point force amplitude is F̂0 = 1.08, which approaches the target

value of 1.

Furthermore, as for the numerical validation, it should be noted that the

L-curve used to automatically select the trade- off parameter has the typical

aspect of an L-curve as presented in Fig. 9.
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Figure 7: Experimental identification of the force vector F̂c at 350 Hz using (a) a Tikhonov

regularization or a sparse regularization with (b) (p,q) = (1.9,0.5) and (c) (p,q) = (1.9,1.1)
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Figure 8: Definition of the summation area. (©) identification nodes and (—) contour of

the summation area
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Figure 9: Shape of the L-curve obtained for the experimental test case

At this stage, it is interesting to provide the results obtained at other

frequencies given in Table 2 when using the proposed generalized Tikhonov

regularization for (p, q) = (1.9, 1.1) to verify whether the analysis performed

previously remains valid. Fig. 10 presents the force vector identified at 225

Hz, 650 Hz, 1350 Hz and 1650 Hz. For each case, it can be pointed out that

the reaction forces are consistent with our expectation and the location of the

point force is properly estimated, while its amplitude is distributed around

the actual location. Consequently, these results are in agreement with those

obtained at 350 Hz.

Finally, for the sake of completeness, the amplitude of the identified point

force is calculated for each frequency studied previously by performing a spa-

tial summation in the area defined in Fig. 8. The corresponding results are
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Figure 10: Experimental identification of the force vector F̂c using a generalized Tikhonov

regularization with (p, q) = (1.9, 1.1) at (a) 225 Hz, (b) 650 Hz, (c) 1350 Hz and (d) 1650

Hz
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summarized in Table 3. In particular, it should be noted that the estimated

point force amplitude is relatively close to the target value of 1 for each

studied frequency, with a maximal error of 12% observed at 650 Hz. This in-

dicates that the proposed identification procedure allows obtaining solutions

consistent with the distribution and the amplitudes of actual sources.

Table 3: Summary of the experimental results for (p, q) = (1.9, 1.1) at various frequencies

Frequency (Hz) F̂0 Figure ID

225 0.95 Fig. 10(a)

350 1.08 Fig. 7(d)

650 1.12 Fig. 10(b)

1350 1.04 Fig. 10(c)

1650 1.11 Fig. 10(d)

The presented experimental results therefore tend to confirm that the

quality of the source identification is closely related to prior information,

reflecting the expectation of the experimenter according to his knowledge of

the whole system (measurement devices and structure under test). In other

words, if no prior knowledge is assumed, the probability of good identification

is weak.

6. Conclusion

In the present study, the problem of source identification using a gener-

alized Tikhonov regularization was investigated. This approach allows intro-

ducing prior information on the measurement noise corrupting the data as

well as on the nature of sources to identify, making possible to exploit the a
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priori knowledge of the experimenter on the system to identify. From a math-

ematical point of view, such a formulation can lead to solve either convex

or non-convex problems. To deal with both problems properly, a General-

ized Iteratively Reweighted Least-Squares algorithm has been proposed. It

requires the knowledge of the vibration field measured over the real structure

and the transfer functions matrix that characterizes the dynamic behavior

of the structure under test. Several strategies can be developed to obtain

the transfer functions matrix. In this study, it has been calculated from a

FE model of the structure by taking into account only the measurable dofs.

From these input data, both subsequent numerical and experimental vali-

dations have pointed out the crucial role of prior information in the source

identification process as well as on the performance of the GIRLS algorithm.

In particular, it can be emphasized that such a regularization process gives

the most probable solution given prior information on the measurement noise

and the spatial distribution of sources to identify. Consequently, if prior in-

formation properly reflects the actual measurement noise (additive Gaussian,

impulsive, multiplicative, etc.), as well as the nature of the actual sources to

identify (distributed and/or localized), then the convergence of the GIRLS

algorithm is obtained within a few iterations.
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