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Abstract. Two digraphs G = (V,E) and G′ = (V,E′) are isomorphic up to complementation
if G′ is isomorphic to G or to the complement G := (V, {(x, y) ∈ V 2 : x ̸= y, (x, y) ̸∈ E}) of G.
The boolean sum G+̇G′ is the symmetric digraph U = (V,E(U)) defined by {x, y} ∈ E(U) if
and only if (x, y) ∈ E and (x, y) /∈ E′, or (x, y) /∈ E and (x, y) ∈ E′. Let k be a nonnegative
integer. The digraphs G and G′ are (≤ k)-hypomorphic up to complementation if for every
t-element subset X of V , with t ≤ k, the induced subdigraphs G↾X and G′

↾X are isomorphic
up to complementation. The digraphs G and G′ are hereditarily isomorphic (resp. hereditarily
isomorphic up to complementation) if for each subset X of V , the induced subdigraphs G↾X
and G′

↾X are isomorphic (resp. isomorphic up to complementation). Here, we give the form of
the pair {G,G′} whenever G and G′ are two digraphs, (≤ 5)-hypomorphic up to complemen-
tation and such that the boolean sum U := G+̇G′ and the complement U are both connected,
and thus we deduce that G and G′ are hereditarily isomorphic up to complementation; we prove
also that the value 5 is optimal. The case U or U is not connected is studied in a forth come paper.

Keywords: Digraph, isomorphism, k-hypomorphy up to complementation, hereditary isomorphy
up to complementation, boolean sum, symmetric digraph, tournament, indecomposability

2010 Mathematics Subject Classification: 05C50; 05C60

1 Introduction

In this paper, we study the reconstruction of digraphs up to complementation (definitions
and notations are given in section 2). Ulam’s reconstruction conjecture on digraphs [22],
still unsolved for graphs, is well-known (see [2, 3]). Fräıssé made a related conjecture
about relational structures. The case of binary relations was solved by Lopez [14, 15, 16],
he showed that all binary relations are (≤ 6)-reconstructible. The case of ternary relations
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was solved negatively by Pouzet [17]. On the other hand, Stockmeyer [20] showed that
the tournaments are not, in general, (−1)-reconstructible, invalidating so the conjecture
of Ulam for digraphs. In 1993, Hagendorf raised the (≤ k)-half-reconstruction problem for
digraphs and solved it with Lopez [12, 13], they showed that the finite digraphs are (≤ 12)-
half-reconstructible. In 1995, Boudabbous and Lopez [6] showed that the finite tourna-
ments are (≤ 7)-half-reconstructible. This motivated, in 2013, M.Alzohairi, M.Bouaziz and
Y.Boudabbous to introduce the concept of (≤ k)-hereditary reconstructibility of posets
[1]. In 2015, Y.Boudabbous proposed the problem of (≤ k)-hereditarily reconstruction of
digraphs. He solved this problem for tournaments with A.Boussäıri, A. Chäıchaâ and N.
El Amri [5].

We say that a symmetric digraph G is connected if for any distinct vertices a and
b of G, there are vertices a = x0, x1, · · · , xm = b of G, such that xi G

xi+1 for each
i ∈ {0, · · · ,m − 1}. Otherwise G is said disconnected. A component of G is a max-
imal connected subdigraph of G. Let G = (V,E) and G′ = (V,E ′) be two digraphs,
2-hypomorphic up to complementation. The boolean sum G+̇G′ of G and G′ is the sym-
metric digraph U = (V,E(U)) defined by {x, y} ∈ E(U) if and only if (x, y) ∈ E and
(x, y) /∈ E ′, or (x, y) /∈ E and (x, y) ∈ E ′. Clearly U = G+̇G′. Denote DG,G′ the binary
relation on V such that: for x ∈ V , x DG,G′ x; and for x ̸= y ∈ V , x DG,G′ y if there
exists a sequence x = x0, x1, . . . , xm = y of elements of V satisfying (xi, xi+1) ∈ E if and
only if (xi, xi+1) /∈ E ′, for each i, 0 ≤ i ≤ m − 1. The relation DG,G′ is an equivalence
relation called the difference relation, its classes are called difference classes, this relation
was introduced by Lopez [14]. Then clearly C is a connected component of U := G+̇G′

if and only if C is an equivalence class of DG,G′ , and thus DG,G′ and DG,G′ have only one

class if and only if U and U are connected. In 2003, Dammak [8] proved the following
result.

Proposition 1.1 ([8]) Let T and T ′ be two finite tournaments, (≤ 5)-hypomorphic up to
complementation, and U := T +̇T ′. If U and U are connected, then T and T ′ are total
orders.

In 1999, Ille raised the problem of the (≤ k)-reconstruction up to complementation
of digraphs. The case of symmetric digraphs was solved by Dammak, Lopez, Pouzet
and Si Kaddour [9, 10], they proved that, the symmetric digraphs on v vertices are t-
reconstructible up to complementation for every 4 ≤ t ≤ v−3. In fact, the case t = v−3 was
solved in [10] using the following result established by Pouzet, Si Kaddour and Trotignon
[18].

Theorem 1.2 [18] If G and G′ are two symmetric digraphs, 3-hypomorphic up to com-
plementation and |V (G)| ≥ 10, then the connected components of U := G+̇G′, or of its
complement U , are cycles of even length or paths.

We define the symmetric digraph Pn in the following manner, V (Pn) = {0, 1, · · · , n− 1},
and for i ̸= j ∈ {0, 1, . . . , n − 1}, {i, j} is an edge of Pn when |i − j| = 1. Thus
Pn := 0 1 . . . n− 2 n− 1. A path is a symmetric digraph isomorphic to Pn. A
cycle is a symmetric digraph isomorphic to Cn := (V (Pn), E(Pn)∪ {{0, n− 1}}) for some
integer n ≥ 3.
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Figure 1: Cn

We define the digraph
−→
Pn by, for i ̸= j ∈ {0, 1, . . . , n − 1}, i −→−→

Pn
j when j = i + 1.

Thus
−→
Pn := 0 −→ 1 −→ · · · −→ n− 2 −→ n− 1. We call directed path or oriented path

a digraph isomorphic to
−→
Pn, and directed cycle or oriented cycle a digraph isomorphic to−→

Cn := (V (
−→
Pn), E(

−→
Pn) ∪ {(n− 1, 0)}) for some integer n ≥ 3.
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Figure 2:
−→
Cn

We define
−→
P f
n (resp.

−→
Cf

n) obtained from
−→
Pn (resp.

−→
Cn) by switching the void pairs by

the full pairs. Thus
−→
P f
n =

(−→
Pn

)∗
and
−→
Cf

n =
(−→
Cn

)∗
.

A total order is a tournament T such that for x, y, z ∈ V (T ), if x −→
T
y and y −→

T
z

then x −→
T
z. Given a total order O = (V,E), for x, y ∈ V , x < y means x −→

O
y.

Thus, a total order on n vertices can be denoted by v0 < v1 < · · · < vn−1.

Our main result is the following.

Theorem 1.3 Let G and G′ be two digraphs on the same set V of n ≥ 4 vertices such
that G and G′ are (≤ 5)-hypomorphic up to complementation. Let U := G+̇G′. If U and
U are connected, then G′ and G are hereditarily isomorphic up to complementation; more
precisely one of the following holds:

1) G and G′ are two total orders.

2) G ≃
−→
Pn or G ≃

−→
Cn, and G′ = G∗.

3) G ≃
−→
Pn or G ≃

−→
Cn, and G′ = G∗.

4) G ≃
−→
P f
n or G ≃

−→
Cf

n , and G′ = G∗.

5) G ≃
−→
P f
n or G ≃

−→
Cf

n , and G′ = G∗.

In Proposition 3.5, we prove that the value 5 is optimal by giving two digraphs G,G′, on
the same vertex set V with |V | ≥ 5, which are (≤ 4)-hypomorphic up to complementation
and not (≤ 5)-hypomorphic up to complementation, U := G+̇G′ and U are connected but
G and G′ are not isomorphic up to complementation, and thus not hereditarily isomorphic
up to complementation.

From Theorem 1.3, we deduce trivially the following result for digraphs which is similar
to Theorem 1.2.
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Corollary 1.4 Let G and G′ be two digraphs on the same set V of n ≥ 4 vertices such
that G and G′ are (≤ 5)-hypomorphic up to complementation and U := G+̇G′. If U and
U are connected and G is not a total order, then U or U is a cycle or a path.

2 Definitions and notations

A directed graph or simply digraph G consists of a finite and nonempty set V of vertices
together with a prescribed collection E of ordered pairs of distinct vertices, called the
set of the edges of G. Such a digraph is denoted by (V (G), E(G)) or simply (V,E).
Given a digraph G = (V,E), to each nonempty subset X of V associate the subdigraph
(X,E ∩ (X × X)) of G induced by X denoted by G↾X . Given a proper subset X of V ,
G↾V \X is also denoted by G − X, and by G − v whenever X = {v}. With each digraph
G = (V,E) associate its dual G∗ = (V,E∗) and its complement G =

(
V,E

)
defined as

follows. Given x ̸= y ∈ V, (x, y) ∈ E∗ if (y, x) ∈ E, and (x, y) ∈ E if (x, y) ̸∈ E.
Let G = (V,E) be a digraph, for x ̸= y ∈ V , x −→

G
y or y ←−

G
x (or simply x −→ y

if there is no confusion) means (x, y) ∈ E and (y, x) /∈ E; x
G
y (or simply x y) means

(x, y) ∈ E and (y, x) ∈ E; x . . .
G
y (or x . . . y or x G y) means (x, y) /∈ E and (y, x) /∈ E.

For X,Y ⊆ V , X
G
Y and X . . .

G
Y (or X GY ) are defined in the same way. If X = {x}

or Y = {y}, we can replace X by x and Y by y.
Given a digraph G = (V,E), two distinct vertices x and y of G form a directed pair

or oriented pair if either x −→
G
y or x ←−

G
y. Otherwise, {x, y} is a neutral pair ; it

is full if x
G
y, and void if x . . .

G
y. Two interesting types of digraphs are symmetric

digraphs and tournaments. A digraph G = (V,E) is a symmetric digraph or graph (resp.
tournament) whenever for x ̸= y ∈ V , x

G
y or x . . .

G
y (resp. x −→

G
y or y −→

G
x). If

G = (V,E) is a graph, each edge (x, y) of G is identified with the pair {x, y} and is called
an edge of G. For instance, given a set V , (V, ∅) is the empty graph on V whereas (V, [V ]2)
is the complete graph on V , where [V ]2 is the set of pairs {x, y} of distinct elements of V .

Given two digraphs G = (V,E) and G′ = (V ′, E ′), a bijection f from V onto V ′ is
an isomorphism from G onto G′ provided that for any x, y ∈ V , (x, y) ∈ E if and only if
(f(x), f(y)) ∈ E ′. The digraphs G and G′ are isomorphic, which is denoted by G ≃ G′,
if there exists an isomorphism from one onto the other, otherwise G ̸≃ G′. A digraph H
embeds into G, or H is embeddable in G, if H is isomorphic to an induced subdigraph of
G.

Given two digraphs G and G′ on the same vertex set V . They are equal up to comple-
mentation if G′ = G or G′ = G. Let k be an integer with 0 < k < |V |, the digraphs G and
G′ are k-hypomorphic (resp. (−k)-hypomorphic) if for every k-element (resp. (|V | − k)-
element) subset X of V , the induced subdigraphs G↾X and G′

↾X are isomorphic. The di-
graphs G and G′ are (≤ k)-hypomorphic if they are t-hypomorphic for each integer t ≤ k.
A digraph G is k-reconstructible (resp. (−k)-reconstructible) if any digraph k-hypomorphic
(resp. (−k)-hypomorphic) to G is isomorphic to G. A digraph G is (≤ k)-reconstructible
if any digraph (≤ k)-hypomorphic to G is isomorphic to G. The digraphs G and G′ are
isomorphic up to complementation (resp. hemimorphic) if G′ is isomorphic to G or G
(resp. to G or G∗). The digraphs G′ and G are hereditarily isomorphic [19] if for each
nonempty subset X of V , the digraphs G↾X and G′

↾X are isomorphic. They are hered-
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itarily isomorphic up to complementation [4] if they are hereditarily isomorphic, or G′

and G are hereditarily isomorphic. Let k be a positive integer, the digraphs G and G′

are k-hypomorphic up to complementation (resp. k-hemimorphic) if for every k-element
subset X of V , the induced subdigraphs G↾X and G′

↾X are isomorphic up to comple-
mentation (resp. hemimorphic). The digraphs G and G′ are (≤ k)-hypomorphic up to
complementation (resp. (≤ k)-hemimorphic) if they are t-hypomorphic up to complemen-
tation (resp. t-hemimorphic) for each integer t ≤ k. A digraph G is k-reconstructible
up to complementation (resp. k-half-reconstructible) if any digraph k-hypomorphic up to
complementation (resp. k-hemimorphic) to G is isomorphic up to complementation (resp.
hemimorphic) to G. A digraph G is (≤ k)-reconstructible up to complementation (resp.
(≤ k)-half-reconstructible) if any digraph (≤ k)-hypomorphic up to complementation (resp.
(≤ k)-hemimorphic) to G is isomorphic up to complementation (resp. hemimorphic) to
G.
A 3-cycle is a tournament isomorphic to

−→
C3 := ({0, 1, 2}, {(0, 1), (1, 2), (2, 0)}). A flag is

a digraph hemimorphic to ({0, 1, 2}, {(0, 1), (1, 2), (2, 1)}). A peak is a digraph hemimor-
phic to ({0, 1, 2}, {(0, 1), (0, 2), (1, 2), (2, 1)}) or to ({0, 1, 2}, {(0, 1), (0, 2)}). Let G be a
digraph, the positive degree (resp. negative degree) of a vertex x of G, denoted d+G(x) (resp.
d−G(x)), is the number of y ∈ V (G) such that x −→

G
y (resp. y −→

G
x). Notice that,

here, d+G(x) (resp. d−G(x)) is not the outdegree (resp. indegree) of the vertex x. The type
of G is (e, e′) where e and e′ are respectively the number of full pairs of G and G. Let
G = (V,E) and G′ = (V,E ′) be two digraphs and a, b ∈ V . We say that {a, b} have the
same character in G and G′ if and only if G↾{a,b} ≃ G′

↾{a,b}.

Let G = (V,E) be a graph, the degree of a vertex x of G, denoted dG(x), is the number
of y ∈ V (G) such that x

G
y.

3 The Gallai decomposition Theorem

Given a digraph G = (V,E), a subset I of V is an interval of G if for every x ∈ V \ I
either x −→

G
I or x ←−

G
I or x

G
I or x . . .

G
I. For instance, ∅, V and {x} (where

x ∈ V ) are intervals of G, called trivial intervals. A digraph is indecomposable if all its
intervals are trivial, otherwise it is decomposable.

The graph Qn (see Figure 3) is defined in the following manner. For i ̸= j ∈
{0, 1, . . . , n − 1}, {i, j} is an edge of Qn whenever either i, j ∈ {0, 1, . . . , n − 3} and
|i− j| = 1 or {i, j} = {n− 2, ℓ}, where ℓ ∈ {0, 1, . . . , n− 4} ∪ {n− 1}.

0 1 2 . . . n− 4 n− 3

n− 2 n− 1

J
J
J
J
J

D
D
D
DD

�
�
�
��

�
�

�
�

�
��

Figure 3: Qn.

Theorem 3.1 [7] Let S = (V,E) be an indecomposable graph with |V | ≥ 4. Let W
denotes the set of x ∈ V such that there is a subset X of V satisfying S↾X is isomorphic
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to P4 and x ∈ X. We have: |V \W | ≤ 1. Furthermore, if V \W = {x}, then there are a
subset X of V containing x and an isomorphism f from S↾X onto Q5 such that f(x) = v0.

Theorem 3.2 [7] Let S = (V,E) be an indecomposable graph with |V | ≥ 5. For a ̸= b ∈
V , there is a subset X of V satisfying: a, b ∈ X and there is an isomorphism f from S↾X
or S↾X onto Pk or Qk, where k ≥ 5, such that f({a, b}) = {0, k − 1}.

We begin with a well-known property of the intervals. Given a digraph G = (V,E),
if X and Y are disjoint intervals of G, then X −→

G
Y , or X ←−

G
Y , or X

G
Y , or

X . . .
G
Y . This property leads to consider interval partitions of G, that is, partitions of V ,

all the elements of which are intervals of G. The elements of such a partition P become the
vertices of the quotient G/P = (P,E/P ) of G by P defined as follows: given X ̸= Y ∈ P ,
(X,Y ) ∈ E/P if (x, y) ∈ E for x ∈ X and y ∈ Y . Given a digraph G = (V,E), a subset
X of V is a strong interval [11] of G provided that X is an interval of G and for each
interval Y of G, we have: if X ∩ Y ̸= ∅, then X ⊆ Y or Y ⊆ X. For |V | ≥ 2, the family
of the maximal strong intervals under inclusion which are distinct from V is denoted by
P (G). The family P (G) constitues an interval partition of V . Now we state the Gallai
decomposition theorem.

Theorem 3.3 [11] Given a digraph G = (V,E), with | V |≥ 2. The corresponding
quotient G/P (G) is a complete digraph or an empty digraph or a total order or an inde-
composable digraph with at least 3 vertices.

The inverse operation of the quotient is the lexicographic sum defined as follows: let m
be an integer, m ≥ 1, S = ({0, 1, . . . ,m− 1}, E) be a digraph and for i < m, Gi = (Vi, Ei)
be a digraph such that the Vi’s are nonempty and pairwise disjoint. The lexicographic
sum over S of the Gi’s or simply the S-sum of the Gi’s, is the digraph denoted by
S(G0, G1, . . . , Gm−1) and defined on the union of the Vi’s as follows: given x ∈ Vi and
y ∈ Vj, where i, j ∈ {0, 1, . . . ,m − 1}, (x, y) is an edge of S(G0, G1, . . . , Gm−1) if either
i = j and (x, y) ∈ Ei or i ̸= j and (i, j) ∈ E: this digraph replaces each vertex i of S by
Gi. We say that the vertex i of S is dilated by Gi.

From Theorem 3.3, we have immediately this result.

Corollary 3.4 Given a graph G = (V,E). If G and G are connected, if and only if
G = S(G0, G1, . . . , Gm−1), where S is an indecomposable graph with at least 4 vertices and
Gi is a graph for each i ∈ {0, 1, . . . ,m− 1}.

The following result shows the optimality of the value 5 in Theorem 1.3.

Proposition 3.5 Let A3 := {{a0, b0, c0}, {(a0, b0), (b0, c0), (c0, a0)}}. Let G (resp. G′)

be the digraph obtained from
−→
Pn

(
resp.

(−→
Pn

)∗ )
by dilating the vertex 0 by A3. Let

U := G+̇G′. Then G and G′ are (≤ 4)-hypomorphic up to complementation, not (≤ 5)-
hypomorphic up to complementation, U and U are connected, but G and G′ are not isomor-
phic up to complementation, and thus not hereditarily isomorphic up to complementation.
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Proof. Note that A3 is an oriented cycle isomorphic to C3. The graph U is obtained
from Pn by dilating the vertex 0 by the empty graph with vertex set {a0, b0, c0}. By
Corollary 3.4, U and U are connected. Clearly G and G′ are (≤ 4)-hypomorphic up
to complementation. The subdigraphs G↾{a0,b0,c0,1,2} and G′

↾{a0,b0,c0,1,2} are not isomor-

phic because d+G′
↾{a0,b0,c0,1,2}

(1) = 3 but d+G↾{a0,b0,c0,1,2}
(x) ≤ 2 for all vertex x. The sub-

digraphs G↾{a0,b0,c0,1,2} and G′
↾{a0,b0,c0,1,2} are not isomorphic because there are full edges

in G↾{a0,b0,c0,1,2} whereas there are none in G′
↾{a0,b0,c0,1,2}. Thus G and G′ are not (≤ 5)-

hypomorphic up to complementation. As d+G′(1) = 3 and there is no vertex x in G of
degree 3, and there are full edges in G whereas there are none in G′, then G and G′ are
not isomorphic up to complementation. Thus G and G′ are not hereditarily isomorphic
up to complementation.

4 Preliminary results

Theorem 4.1 [21] Let G be a graph. If G and G are connected then G embeds a P4.

Remark 4.2 Let G and G′ be two digraphs on the same set V such that G and G′ are
(≤ 3)-hypomorphic up to complementation. Let U := G+̇G′ and a, b, c ∈ V . If G↾{a,b,c} is
a peak or a flag, then U↾{a,b,c} is a complete or an empty graph.

Lemma 4.3 Let G and G′ be two digraphs on the same set V such that G and G′ are
(≤ 3)-hypomorphic up to complementation. Let U := G+̇G′ and a, b, c ∈ V .

1) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}, {b, c}}, then {a, b} is an oriented pair
in G if and only if {b, c} is an oriented pair in G.

2) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}} and {a, b} is an oriented pair in G, then
{a, b} is an interval of G↾{a,b,c} and G′

↾{a,b,c}.

3) If E(U↾{a,b,c}) or E(U ↾{a,b,c}) is the set {{a, b}} and {a, b} is a neutral pair in G, then
{a, b} is not an interval of G↾{a,b,c}, and {b, c} is an oriented pair in G if and only if
{a, c} is an oriented pair in G. Moreover if c −→

G
a (resp. c

G
a) then b −→

G
c

(resp. c . . .
G
b).

Proof. 1) By contradiction. Without loss of generality (W.l.o.g.), we assume that a −→
G
b

and b
G
c, then a ←−

G′ b and b . . .
G′ c. If {a, c} is an oriented pair in G not reversed

in G′, then G′
↾{a,b,c} ̸≃ G↾{a,b,c} and G′

↾{a,b,c} ̸≃ G↾{a,b,c} because exactly one of G↾{a,b,c} and

G′
↾{a,b,c} is a peak, which contradicts the 3-hypomorphy up to complementation. If {a, c}

is a neutral pair in G not reversed in G′, then G′
↾{a,b,c} ̸≃ G↾{a,b,c} and G′

↾{a,b,c} ̸≃ G↾{a,b,c}
because exactly one of G↾{a,b,c} and G′

↾{a,b,c} is a flag, which contradicts the 3-hypomorphy
up to complementation.
2) W.l.o.g, we assume that E(U↾{a,b,c}) = {{a, b}} Then E(U ↾{a,b,c}) = {{a, c}, {b, c}} and
U = G+̇G′. We can assume that a −→

G
b, then a −→

G′ b.

• Case 1. {b, c} is an oriented pair in G.
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W.l.o.g we assume b −→
G
c, thus b ←−

G′ c. Since a −→
G
b, b −→

G
c and {a, c} −→

G′ b,
from the 3-hypomorphic up to complementation we have a −→

G
c and the conclusion

follows.
• Case 2. {b, c} is not an oriented pair in G.
W.l.o.g we can assume b

G
c, thus b · · ·

G′ c. From 1) of this lemma, {a, c} is a neutral

pair in G. Since G and G′ are 3-hypomorphic up to complementation, a
G
c and the

conclusion follows.
3) We have E(U↾{a,b,c}) or E(U ↾{a,b,c}) = {{a, b}} and {a, b} is a neutral pair in G.
W.l.o.g, we can assume that E(U↾{a,b,c}) = {{a, b}} and a

G
b, so a . . .

G′ b.
• Case 1. {a, c} is an oriented pair in G not reversed in G′.
W.l.o.g, we assume that a −→

G
c, so a −→

G′ c. We have U↾{a,b,c} is neither a complete
graph nor an empty graph, so from Remark 4.2, each of G↾{a,b,c} and G′

↾{a,b,c} is neither a
peak nor a flag, so b←−

G
c and b←−

G′ c.
• Case 2. {a, c} is a neutral pair in G not reversed in G′.
W.l.o.g, we assume that a

G
c, so a

G′c. As a G
{b, c} and a

G′c and a . . .
G′ b, then

the 3-hypomorphy up to complementation applied to G↾{a,b,c} gives b . . .
G
c, so b . . .

G′ c.
In the two cases we have {a, b} is not an interval of G↾{a,b,c}.

Lemma 4.4 Let G and G′ be two digraphs on the same vertex set V such that G and G′

are (≤ 3)-hypomorphic up to complementation, and U := G+̇G′. Let n ≥ 3 be an integer,
X := {v0, v1, . . . , vn−1} ⊂ V and x ∈ V \X.
We assume that U↾X∪{x} = x v0 v1 . . . vn−1.

1) If G↾X = v0 −→ v1 −→ · · · −→ vn−1, then G↾X∪{x} = x −→ v0 −→ v1 −→ · · · −→ vn−1

and G′
↾X∪{x} = G∗

↾X∪{x}.

2) If G↾X =
−→
P f
n , then G↾X∪{x} is isomorphic to

−−→
P f
n+1 by an isomorphism f such that

f(vi) = i+ 1 for each i ∈ {0, . . . , n− 1} and f(x) = 0, and G′
↾X∪{x} = G∗

↾X∪{x}.

Proof. 1) We have E(U↾{x,v0,v1}) = {{x, v0}, {v0, v1}} and v0 −→G
v1, then 1) of Lemma

4.3 gives {x, v0} is an oriented pair in G, reversed in G′, let j ∈ {2, 3 . . . n − 1}, we
have E(U↾{x,v0,vj}) = {{x, v0}}, then 2) of Lemma 4.3 applied to {x, v0, vj} gives that
{x, v0} is an interval of G↾{x,v0,vj}. As v0 . . .G vj, thus x . . .

G
vj and x . . .

G′ vj. We have
U↾{x,v1,v2} = x . . . v1 v2, x . . .G v2 and v1 −→G

v2, then 2) of Lemma 4.3 gives x . . .
G
v1

and x . . .
G′ v1. As v0 U

v1 and x . . .
U
v1 then, from Remark 4.2, G↾{x,v0,v1} is not a peak,

thus x −→
G
v0 and x ←−

G′ v0. Then, G↾X∪{x} = x −→ v0 −→ v1 −→ · · · −→ vn−1 and
G′

↾X∪{x} = G∗
↾X∪{x}.

2) The proof is similar to that of first assertion.

Lemma 4.5 Let G and G′ be two digraphs on the same vertex set V such that G and G′ are
(≤ 4)-hypomorphic up to complementation, and U := G+̇G′. Let X := {v0, v1, v2, v3} ⊂ V .
If U↾X = v0 v1 v2 v3, we have :

1) If {v0, v1} is a neutral pair in G, then

{G↾X , G
′
↾X} =

{
H,H∗

}
or {G↾X , G

′
↾X} =

{
H∗, H

}
,

where H := v1 −→ v3 −→ v0 −→ v2.
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2) If (v0 −→G
v1 and v1 −→G

v2) or (v0 ←−G
v1 and v1 ←−G

v2), then

{G↾X , G
′
↾X} =

{−→
P4,

(−→
P4

)∗}
or {G↾X , G

′
↾X} =

{−→
P f
4 ,

(−→
P f
4

)∗}
.

3) If (v0 −→G
v1, v1 ←−G

v2) or (v0 ←−G
v1 and v1 −→G

v2), then

{G↾X , G
′
↾X} = {v0 < v2 < v1 < v3, v1 < v0 < v3 < v2}

or {G↾X , G
′
↾X} = {v2 < v3 < v0 < v1, v3 < v1 < v2 < v0}.

Proof. 1) As {v0, v1} is a neutral pair in G, w.l.o.g, we assume that v0 G
v1. Then

v0 . . .G′ v1. We have E(U↾{v0,v1,v2}) = {{v0, v1}, {v1, v2}} and v0 G
v1, so 1) of Lemma

4.3 applied to {v0, v1, v2} gives {v1, v2} is a neutral pair in G reversed in G′. We have
E(U↾{v1,v2,v3}) = {{v1, v2}, {v2, v3}}, so 1) of Lemma 4.3 applied to {v1, v2, v3} gives {v2, v3}
is a neutral pair in G reversed in G′. According to the nature of the pair {v1, v2}, we have
the following cases:
• Case 1. v1 G

v2.
Then v1 . . .G′ v2. We have v0 . . .U v2, then the 3-hypomorphy up to complementation ap-
plied to {v0, v1, v2} gives {v0, v2} is an oriented pair in G not reversed in G′. We assume
that v0 −→G

v2 and v0 −→G′ v2 (resp. v0 ←−G
v2 and v0 ←−G′ v2). As U↾{v0,v2,v3} =

v0 . . . v2 v3, then 3) of Lemma 4.3 gives v0 ←−G
v3 and v0 ←−G′ v3 (resp. v0 −→G

v3
and v0 −→G′ v3). As U↾{v0,v1,v3} = v3 . . . v0 v1, then 3) of Lemma 4.3 gives v1 −→G

v3
and v1 −→G′ v3 (resp. v1 ←−G

v3 and v1 ←−G′ v3). Since v1 U
v2 and v1 . . .U v3, from

Remark 4.2, G↾{v1,v2,v3} is not a flag, so v2 G
v3 and v2 . . .G′ v3. Then G′

↾{v0,v1,v2,v3} = H

and G↾{v0,v1,v2,v3} = H∗ (resp. G↾{v0,v1,v2,v3} = H and G′
↾{v0,v1,v2,v3} = H∗).

• Case 2. v1 . . .G v2.
Then v1 G′v2. As v0 . . .U v2 and v1 U

v2 then, from Remark 4.2, G↾{v0,v1,v2} is not a flag,
so {v0, v2} is a neutral pair in G not reversed in G′. W.l.o.g. we can assume that v0 G

v2,
so v0 G′v2. Since E(U↾{v0,v2,v3}) = {{v2, v3}} and {v2, v3} is a neutral pair in G, then 3) of
Lemma 4.3 gives v0 . . .G v3 and v0 . . .G′ v3. We have v0 . . .G′ {v1, v3}, v0 . . .G v3 and v0 G

v1,
so the 3-hypomorphy up to complementation applied to {v0, v1, v3} gives v1 G′v3, so
v1 G

v3. We have v1 G′{v2, v3}, v1 . . .G v2 and v1 G
v3, then the 3-hypomorphy up to

complementation applied to {v1, v2, v3} gives v2 . . .G′ v3, so v2 G
v3. Then G↾{v0,v1,v2,v3}

and G′
↾{v0,v1,v2,v3} have respectively the types (4,2) and (3,3), so G′

↾{v0,v1,v2,v3} ̸≃ G↾{v0,v1,v2,v3}

and G′
↾{v0,v1,v2,v3} ̸≃ G↾{v0,v1,v2,v3}, that contradict the 4-hypomorphy up to complementa-

tion.
2) • Case 1. v0 −→G

v1 and v1 −→G
v2.

Then v1 −→G′ v0 and v2 −→G′ v1. We have v0 . . .U v2, if {v0, v2} is an oriented pair
in G, then one of the subdigraphs G↾{v0,v1,v2} and G′

↾{v0,v1,v2} is a 3-cycle and the other
is a total order of order 3, that contradict the 3-hypomorphy up to complementation,

so {v0, v2} is a neutral pair in G not reversed in G′, thus G↾{v0,v1,v2} =
−→
P3 or

−→
P f
3 , and

G′
↾{v0,v1,v2} = G∗

↾{v0,v1,v2}. As U↾{v0,v1,v2,v3} is a P4 then, from Lemma 4.4, G↾{v0,v1,v2,v3} =
−→
P4

or
−→
P f
4 , and G′

↾{v0,v1,v2,v3} = G∗
↾{v0,v1,v2,v3}.
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• Case 2. v0 ←−G
v1 and v1 ←−G

v2.
Then v0 −→G′ v1 and v1 −→G′ v2. From Case 1, by exchanging the roles of G and G′, we

have G′
↾{v0,v1,v2,v3} =

−→
P4 or

−→
P f
4 , and G↾{v0,v1,v2,v3} = (G′)∗↾{v0,v1,v2,v3}.

3) • Case 1. v0 −→G
v1 and v1 ←−G

v2.
Then v0 ←−G′ v1 and v1 −→G′ v2. As v1 U

v2 and v0 . . .U v2 then, from Remark 4.2,
G↾{v0,v1,v2} is not a peak, so {v0, v2} is an oriented pair in G not reversed in G′. We as-
sume that v0 −→G

v2 and v0 −→G′ v2 (resp. v0 ←−G
v2 and v0 ←−G′ v2). We have

E(U↾{v1,v2,v3}) = {{v1, v2}, {v2, v3}} and v1 ←−G
v2, then 1) of Lemma 4.3 gives {v2, v3}

is an oriented pair in G reversed in G′, we have E(U↾{v0,v2,v3}) = {{v2, v3}}, then 2) of
Lemma 4.3 applied to {v0, v2, v3} gives {v2, v3} is an interval of G↾{v0,v2,v3}, so v0 −→G

v3
and v0 −→G′ v3 (resp. v0 ←−G

v3 and v0 ←−G′ v3). We have E(U↾{v0,v1,v3}) = {{v0, v1}}
and v0 −→G

v1, then 2) of Lemma 4.3 applied to {v0, v1, v3} gives {v0, v1} is an interval
of G↾{v0,v1,v3}, so v1 −→G

v3 and v1 −→G′ v3 (resp. v1 ←−G
v3 and v1 ←−G′ v3). We

have v1 ←−G
v2, v1 −→G

v3 and v1 −→G′ {v2, v3} (resp. v1 −→G′ v2, v1 ←−G′ v3 and
v1 ←−G

{v2, v3}), then the 3-hypomorphy up to complementation applied to {v1, v2, v3}
gives v2 −→G

v3, so v2 ←−G′ v3 (resp. v2 ←−G′ v3, so v2 −→G
v3), thus G↾X = v0 <

v2 < v1 < v3 and G′
↾X = v1 < v0 < v3 < v2 (resp. G↾X = v2 < v3 < v0 < v1 and

G′
↾X = v3 < v1 < v2 < v0).
• Case 2. v0 ←−G

v1 and v1 −→G
v2.

Then v0 −→G′ v1 and v1 ←−G′ v2. From Case 1, by exchanging the roles of G and G′, we
have G′

↾X = v0 < v2 < v1 < v3 and G↾X = v1 < v0 < v3 < v2 or G′
↾X = v2 < v3 < v0 < v1

and G↾X = v3 < v1 < v2 < v0.

Proposition 4.6 Let G and G′ be two digraphs on the same vertex set V , (≤ 5)-
hypomorphic up to complementation. Let U := G+̇G′. If U and U are connected and G is

not a tournament, then there exists X ⊂ V , such that G↾X ≃
−→
P4 or

−→
P f
4 , and G′

↾X = G∗
↾X

or G′
↾X = G∗↾X .

Proof. From Theorem 4.1, there exists X := {u0, u1, u2, u3} ⊂ V such that
u0 u1 u2 u3 is an induced P4 of U . The hypotheses of Lemma 4.5 are satisfied.
If we have 1) or 2) of Lemma 4.5, then we conclude.

Now we consider that only the situation 3) of Lemma 4.5 holds. (⋆)
That is if X := {u0, u1, u2, u3} ⊂ V such that u0 u1 u2 u3 is an induced P4 of U ,
then {G↾X , G

′
↾X} = {u0 < u2 < u1 < u3, u1 < u0 < u3 < u2} or {u2 < u3 < u0 < u1, u3 <

u1 < u2 < u0}. From this, if ui −→G
ui+1 then ui+1 ←−G

ui+2 for each i ∈ {0, 1}.
We will show that the situation (⋆) is impossible, which completes our proof.

As G is not a tournament, there exist a, b ∈ V (G) such that {a, b} is a neutral pair in G.
From Corollary 3.4, U = S(U0, U1, . . . , Um−1), where S is an indecomposable graph with
at least 4 vertices and the Ui’s are graphs, for each i ∈ {0, 1, . . . ,m− 1}.

Claim 4.7 {a, b} ̸⊆ V (Ui), for each i ∈ {0, 1, . . . ,m− 1}.

Proof. We assume by contradiction, that there exists i ∈ {0, 1 . . . ,m − 1} such that
a, b ∈ V (Ui). Then from Theorem 3.1, there exist v0, v1, v2, v3 ∈ V (U) such that one of
the following cases holds.
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• Case 1. In U , we have v0 v1 v2 {a, b}.
Let x ∈ {a, b}. We have U↾{v0,v1,v2,x} = v0 v1 v2 x, so from (⋆), G↾{v0,v1,v2,x} and
G′

↾{v0,v1,v2,x} are two total orders of order 4, w.l.o.g., we can assume that G↾{v0,v1,v2,x} =
v0 < v2 < v1 < x and G′

↾{v0,v1,v2,x} = v1 < v0 < x < v2. Then G↾{v0,v1,v2,a,b} = v0 < v2 <

v1 < {a, b} and G′
↾{v0,v1,v2,a,b} = v1 < v0 < {a, b} < v2. Clearly, since G↾{v2,a,b} is a peak

and v2 U
{a, b}, from Remark 4.2, a

U
b. Since G↾{v1,a,b} is a peak and v1 . . .U {a, b},

from Remark 4.2, a . . .
U
b. A contradiction.

• Case 2. In U , we have v0 {a, b} v2 v3.
The proof is similar to that of Case 1.
• Case 3. In U , we have v0 v1 v2 v3.

{a, b}
A
A

�
�

As U↾{v0,v1,v2,v3} = v0 v1 v2 v3, from (⋆), G↾{v0,v1,v2,v3} and G′
↾{v0,v1,v2,v3} are two

total orders of order 4. W.l.o.g., we assume that G↾{v0,v1,v2,v3} = v0 < v2 < v1 < v3
and G′

↾{v0,v1,v2,v3} = v1 < v0 < v3 < v2. Let x ∈ {a, b}. We have E(U↾{x,v2,v3}) =

{{x, v2}, {v2, v3}} (resp. E(U↾{x,v0,v1}) = {{v0, v1}, {x, v1}}) and {v2, v3} (resp. {v0, v1})
is an oriented pair in G, then 1) of Lemma 4.3 applied to {x, v2, v3} (resp. {x, v0, v1})
gives {x, v2} (resp. {x, v1}) is an oriented pair in G reversed in G′. Since E(U↾{x,v1,v3}) =
{{x, v1}}, 2) of Lemma 4.3 applied to {x, v1, v3} gives {x, v1} is an interval of G↾{x,v1,v3},
we have v1 −→G

v3, so x −→
G
v3 and x −→

G′ v3. We have {x, v2} −→G
v3, x −→G′ v3,

v3 −→G′ v2, then the 3-hypomorphy up to complementation applied to {x, v2, x3} gives
x −→

G′ v2, so x←−
G
v2. We have G↾{v2,a,b} is a peak and v2 U

{a, b}, then a
U
b. We

have G↾{v3,a,b} is a peak and v3 . . .U {a, b}, then a . . .
U
b. A contradiction.

From Claim 4.7, there are i, j ∈ {0, 1 . . . ,m − 1}, i ̸= j, such that a ∈ V (Ui) and
b ∈ V (Uj). For each X := {v0, v1, v2, v3} ⊂ V , if v0 v1 v2 v3 is an induced P4 of
U , then from(⋆), G↾{v0,v1,v2,v3} and G′

↾{v0,v1,v2,v3} are total orders, so {a, b} is not a subset

of X and m ≥ 5. From Theorem 3.2, there is a subset Y := {v0, v1, . . . , vm−1} of V (S)
satisfying: a, b ∈ Y and there is an isomorphism f from U↾Y or U ↾Y onto Pm or Qm, such
that f({a, b}) = {v0, vm−1}.
• Case 1. U↾{v0,v1,...,vm−1} ≃ Pm.
W.l.o.g, we can assume that a = v0, b = vm−1 and U↾{v0,v1,...,vm−1} = Pm. We have for
each i ∈ {0, 1 . . . ,m − 4}, U↾{vi,vi+1,vi+2,vi+3} ≃ P4 then, from (⋆), G↾{vi,vi+1,vi+2,vi+3} and
G′

↾{vi,vi+1,vi+2,vi+3} are total orders, thus {vj, vj+1} is an oriented pair in G reversed in

G′ for each j ∈ {0, 1, . . . ,m − 2}. For i ∈ {0, 1 . . . ,m − 4}, we have U↾{vm−1,vi,vi+1} =
vm−1 . . . vi vi+1 and {vi, vi+1} is an oriented pair in G, so 2) of Lemma 4.3 applied to
{vm−1, vi, vi+1} gives {vi, vi+1} is an interval of G↾{vm−1,vi,vi+1}, then {v0, v1, . . . , vm−3} is
an interval of G↾{vm−1,v0,v1,...,vm−3}. As G↾{vm−4,vm−3,vm−2,vm−1} is a total order, {vm−3, vm−1}
is an oriented pair in G, then {v0, vm−1} = {a, b} is oriented in G. A contradiction.
• Case 2. U↾{v0,v1,...,vm−1} ≃ Qm.
W.l.o.g, we can assume that a = v0, b = vm−1 and U↾{v0,v1,...,vm−1} = Qm.

Case 2.1. m = 5.
Then U↾{v0,v1,v2,v3,v4} = Q5 = , a = v0 and b = v4.

v2 v1 v3 v4

v0

A
A

�
�
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As U↾{v2,v1,v3,v4} = v2 v1 v3 v4, thus from (⋆), G↾{v2,v1,v3,v4} and G′
↾{v2,v1,v3,v4} are

total orders. We have E(U↾{v0,v1,v2}) = {{v0, v1}, {v1, v2}} and {v1, v2} is an oriented pair
in G, so 1) of Lemma 4.3 applied to {v0, v1, v2} gives {v0, v1} is an oriented pair in G
reversed in G′, we have E(U↾{v0,v1,v4}) = {{v0, v1}}, thus 2) of Lemma 4.3 applied to
{v0, v1, v4} gives {v0, v1} is an interval of G↾{v0,v1,v4}. As {v1, v4} is an oriented pair in G,
then {v0, v4} = {a, b} is an oriented pair in G. A contradiction.

Case 2.2. m > 5.
We have U↾{v0,vm−1,vm−2,vm−3,vm−4} = {v0, vm−1} vm−2 vm−4 vm−3, where {v0, vm−1}
is an interval of U↾{v0,vm−1,vm−2,vm−3,vm−4}. A contradiction is obtained by making a proof
similar to that of Case 1 of the proof of Claim 4.7.

5 Reconstruction up to complementation

Lemma 5.1 Let G and G′ be two digraphs on the same vertex set V such that G and G′

are (≤ 5)-hypomorphic up to complementation. Let U := G+̇G′, X := {v0, v1, v2, v3} ⊂ V

and x ∈ V \X. If G↾X =
−→
P4 or

−→
P f
4 , and G′

↾X = G∗
↾X then,

1) x . . .U {v1, v2}.

2) Up to isomorphism, U↾X∪{x} is one of the following graphs:

v0 v1 v2 v3 x
v0 v1 v2 v3 x

v0 v1 v2 v3.

x

b
b
bb

"
"

""

Proof. W.l.o.g., we can assume that G↾X = v0 −→ v1 −→ v2 −→ v3, so G′
↾X = G∗

↾X =
v3 −→ v2 −→ v1 −→ v0 and U↾X = v0 v1 v2 v3. It suffices to prove 1) because 2)
is a consequence of 1). By contradiction x

U
v1 or x

U
v2.

• Case 1. x
U
v1 and x . . .

U
v2, or x U

v2 and x . . .
U
v1.

W.l.o.g., we can assume that x
U
v1 and x . . .

U
v2.

Case 1.1. x . . .
U
v3.

Since U↾{x,v1,v2,v3} = x v1 v2 v3 and G↾{v1,v2,v3} = v1 −→ v2 −→ v3, by Lemma 4.4,
G↾{x,v1,v2,v3} = x −→ v1 −→ v2 −→ v3 and G′

↾{x,v1,v2,v3} = G∗
↾{x,v1,v2,v3}. Thus in G we

have {v0, x} −→ v1 −→ v2 −→ v3, and in G′ we have {v0, x} ←− v1 ←− v2 ←− v3.
So G′

↾X∪{x} ̸≃ G↾X∪{x}. On the other hand, G′
↾X∪{x} and G↾X∪{x} are not isomorphic

because their types are distinct. Then G′
↾X∪{x} and G↾X∪{x} are not 5-hypomorphic up to

complementation, a contradiction.
Case 1.2. x

U
v3 and x . . .

U
v0.

As E(U ↾{x,v0,v3}) = {{x, v0}, {v0, v3}} and v0 . . .G v3, 1) of Lemma 4.3 gives {x, v0} is a
neutral pair in G. We have E(U ↾{x,v0,v1}) = {{x, v0}} and v0 −→G

v1, then 3) of Lemma
4.3 gives v1 −→G

x and v1 ←−G′ x. As E(U ↾{x,v1,v3}) = {{v1, v3}} and v1 . . .G v3, 3) of
Lemma 4.3 gives x −→

G
v3 and x ←−

G′ v3. Since E(U↾{x,v0,v3}) = {{x, v3}}, thus 2) of
Lemma 4.3 applied to {v0, x, v3} gives {x, v3} is an interval for G↾{x,v0,v3}, since v0 . . .G v3,
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so x . . .
G
v0 and x . . .

G′ v0.
In G we have v0 −→ v1 −→ {x, v2} −→ v3 and in G′ we have v0 ←− v1 ←− {x, v2} ←− v3,
so G′

↾X∪{x} ̸≃ G↾X∪{x}. By types, G′
↾X∪{x} ̸≃ G↾X∪{x}. We get a contradiction with the

5-hypomorphy up to complementation.
Case 1.3. x

U
{v0, v3}.

As E(U ↾{x,v0,v2}) = {{v0, v2}, {v2, x}} and v0 . . .G v2, 1) of Lemma 4.3 gives {x, v2} is a
neutral pair in G. Since E(U ↾{x,v2,v3}) = {{x, v2}} (resp. E(U ↾{x,v1,v2}) = {{x, v2}} and
v1 −→G

v2), 3) of Lemma 4.3 applied to {x, v3, v2} (resp. {x, v1, v2}) gives x←−G
v3 and

x −→
G′ v3 (resp. x −→

G
v1 and x←−

G′ v1). We have E(U ↾{x,v0,v3}) = {{v0, v3}}, thus 3)
of Lemma 4.3 applied to {x, v0, v3} gives x −→

G
v0 and x ←−

G′ v0. As E(U↾{x,v0,v2}) =
{{x, v0}}, 2) of Lemma 4.3 applied to {x, v0, v2} gives {x, v0} is an interval of G↾{x,v0,v2},
then x . . .

G
v2 and x . . .

G′ v2. The induced digraphs G↾{v0,v1,v2,x} and G′
↾{v0,v1,v2,x} are not

isomorphic up to complementation, which gives a contradiction with the hypothesis G and
G′ are (≤ 5)-hypomorphic up to complementation.
• Case 2. x

U
{v1, v2}.

Case 2.1. x . . .
U
{v0, v3}.

We have E(U ↾{x,v1,v3}) = {{x, v3}, {v1, v3}} and v1 . . .G v3 (resp. E(U ↾{x,v0,v2}) =
{{x, v0}, {v0, v2}} and v0 . . .G v2), then 1) of Lemma 4.3 gives {x, v3} (resp. {x, v0})
is a neutral pair in G. We have E(U ↾{x,v2,v3}) = {{x, v3}} and v2 −→G

v3 (resp.
E(U ↾{x,v0,v1}) = {{x, v0}, {x, v1}} and v0 −→G

v1), then 3) of Lemma 4.3 applied to
{x, v2, v3} (resp.{v0, v1, x}) gives v2 ←−G

x and v2 −→G′ x (resp. v1 −→G
x and

v1 ←−G′ x). We have E(U↾{x,v1,v3}) = {{x, v1}} (resp. E(U↾{x,v0,v2}) = {{x, v2}}), then
2) of Lemma 4.3 applied to {x, v1, v3} (resp.{v0, v2, x}) gives {x, v1} (resp. {x, v2}) is an
interval of G↾{x,v1,v3} (resp. G↾{v0,v2,x}) then x . . .

G
v3 and x . . .

G′ v3 (resp. x . . .
G
v0 and

x . . .
G′ v0). By types, G′

↾{v0,v1,v2,x} ̸≃ G↾{v0,v1,v2,x}. If σ is an isomorphism from G↾{v0,v1,v2,x}
onto G′

↾{v0,v1,v2,x}, then σ(v1) = v1 because v1 is the only vertex in {v0, v1, v2, x}, whose
not adjacent to any neutral pair in G↾{v0,v1,v2,x}; now since d+G↾{v0,v1,v2,x}

(v1) = 2 and

d+G′
↾{v0,v1,v2,x}

(v1) = 1, we deduce that G′
↾{v0,v1,v2,x} ̸≃ G↾{v0,v1,v2,x}. A contradiction.

Case 2.2. x
U
v3 and x . . .

U
v0 or x

U
v0 and x . . .

U
v3.

W.l.o.g., we can assume that x
U
v3 and x . . .

U
v0.

We do the same proof as Case 1.2. In G we have v0 −→ v1 −→ {x, v2} −→ v3 and in G′

we have v0 ←− v1 ←− {x, v2} ←− v3, so G′
↾X∪{x} an G↾X∪{x} are not 5-hypomorphic up to

complementation, a contradiction.
Case 2.3. x

U
{v0, v3}.

According to the nature of {x, v2} in G, we can distinguish the following subcases.
Case 2.3.1. x −→

G
v2 or x←−

G
v2.

W.l.o.g. we can suppose x −→
G
v2. As x U

v2 then x←−
G′ v2. We have E(U ↾{x,v0,v2}) =

{{v0, v2}}, v0 . . .G v2 and x −→
G

v2. So, 3) of Lemma 4.3 applied to {x, v0, v2} gives
x ←−

G
v0 and x −→

G′ v0. We have E(U ↾{x,v0,v3}) = {{v0, v3}} and v0 . . .G v3, then 3) of

Lemma 4.3 applied to {x, v0, v3} gives x −→G
v3 and x←−

G′ v3. We have E(U ↾{x,v1,v3}) =
{{v1, v3}} and v1 . . .G v3. So 3) of Lemma 4.3 applied to {x, v1, v3} gives x ←−

G
v1 and

x −→
G′ v1. We have that x is the only vertex in {v0, v2, v3, x}, which is not adjacent to

any neutral pair in G↾{v0,v2,v3,x}. As d
+
G↾{v0,v2,v3,x}

(x) ̸= d+G′
↾{v0,v2,v3,x}

(x), then G′
↾{v0,v2,v3,x} ̸≃
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G↾{v0,v2,v3,x}. Moreover G′
↾{v0,v2,v3,x} ̸≃ G↾{v0,v2,v3,x} because their types are distinct. We get

a contradiction with the 4-hypomorphy up to complementation.
Case 2.3.2. x . . .

G
v2.

Then x
G′v2. As v2 . . .G {x, v0}, v0 . . .G′ v2 and x

G′v2, thus x
G
v0, so x . . .

G′ v0.
As v0 . . .G′ {x, v3}, v0 . . .G v3 and x

G
v0, then x

G′v3, so x . . .
G
v3. As v3 . . .G {x, v1},

v1 . . .G′ v3 and x
G′v3, then x

G
v1, so x . . .G′ v1. Since G↾{v0,v2,v3,x} and G′

↾{v0,v2,v3,x} have

respectively the types (1, 4) and (2, 3), G′
↾{v0,v2,v3,x} and G↾{v0,v2,v3,x} are not isomorphic up

to complementation, a contradiction.
Case 2.3.3. x

G
v2.

We do the same proof as Case 2.3.2.

From Lemma 5.1, we obtain the following result.

Corollary 5.2 Let G and G′ be two digraphs on the same vertex set V such that G and G′

are (≤ 5)-hypomorphic up to complementation. Let U := G+̇G′, X := {v0, v1, · · · , vk−1} ⊂
V and x ∈ V \X. If G↾X =

−→
Pk or

−→
P f
k , and G′

↾X = G∗
↾X then,

1) x . . .U {v1, · · · , vk−2}.

2) Up to isomorphism, U↾X∪{x} is one of the following graphs:

x v0 v1 . . . vk−2 vk−1

x v0 v1 . . . vk−2 vk−1

v0 v1 . . . vk−2 vk−1

x

Q
Q
Q
Q
QQ

�
�

�
�

��

Proposition 5.3 Let G and G′ be two digraphs on the same set V of n ≥ 4 vertices,
such that G and G′ are (≤ 5)-hypomorphic up to complementation and U := G+̇G′ is
connected. Let X ⊂ V .

1) If G↾X ≃
−→
P4 and G′

↾X = G∗
↾X , then G ≃

−→
Pn or G ≃

−→
Cn, and G′ = G∗.

2) If G↾X ≃
−→
P4 and G′

↾X = G∗↾X , then G ≃
−→
Pn or G ≃

−→
Cn, and G′ = G∗.

3) If G↾X ≃
−→
P f
4 and G′

↾X = G∗
↾X , then G ≃

−→
P f
n or G ≃

−→
Cf

n , and G′ = G∗.

4) If G↾X ≃
−→
P f
4 and G′

↾X = G∗↾X , then G ≃
−→
P f
n or G ≃

−→
Cf

n , and G′ = G∗.

Proof. It suffices to prove 1) because 2), 3) and 4) are consequences of 1). As G↾X ≃
−→
P4,

let
−→
Pℓ be a largest induced oriented path in G reversed in G′. Clearly, ℓ ≥ 4. W.l.o.g. we

can assume
−→
Pℓ = v0 −→ v1 −→ · · · −→ vℓ−1 and G′

↾V (
−→
Pℓ)

= v0 ←− v1 ←− · · · ←− vℓ−1.
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So U↾V (
−→
Pℓ)

= v0 v1 . . . vℓ−2 vℓ−1. If V (
−→
Pℓ) = V , then G =

−→
Pℓ and G′ = G∗. In

the rest of this proof, we assume that V \ V (
−→
Pℓ) ̸= ∅. As U is connected, there exists

vℓ ∈ V \ V (
−→
Pℓ), such that U↾V (

−→
Pℓ)∪{vℓ}

is connected. From 2) of Corollary 5.2, up to

isomorphism, U↾V (
−→
Pℓ)∪{vℓ}

is one of the following graphs:

vℓ v0 v1 . . . vℓ−2 vℓ−1

v0 v1 . . . vℓ−2 vℓ−1

vℓ

Q
Q
Q
Q
QQ

�
�

�
�

��

If U↾V (
−→
Pℓ)∪{vℓ}

is the graph vℓ v0 v1 . . . vℓ−2 vℓ−1 then, from Lemma 4.4,

we have G↾V (
−→
Pℓ)∪{vℓ}

= vℓ −→ v0 −→ v1 −→ · · · −→ vℓ−1 and G′
↾V (

−→
Pℓ)∪{vℓ}

= G∗
↾V (

−→
Pℓ)∪{vℓ}

,

that contradict the fact that
−→
Pℓ is the largest induced oriented path in G reversed in G′.

Then U↾V (
−→
Pℓ)∪{vℓ}

is the second graph.

If there is x in V \(V (
−→
Pℓ)∪{vℓ}), we have vi−1 vi vi+1 vi+2 for each i ∈ {1, . . . , ℓ−2},

then from 1) of Lemma 5.1, x . . .U vi for each i ∈ {1, . . . , ℓ − 1}, also we have

vℓ−1 vℓ v0 v1, so from 1) of Lemma 5.1, x . . .U {v0, vℓ}. Thus x . . .U (V (
−→
Pℓ)∪ {vℓ}).

As U is connected, V = V (
−→
Pℓ) ∪ {vℓ}.

We have G↾{v0,v1,...,vℓ−2} = v0 −→ v1 −→ · · · −→ vℓ−2 and U↾{vℓ,v0,v1,...,vℓ−2} =
vℓ v0 v1 . . . vℓ−3 vℓ−2, then from Lemma 4.4, G↾{vℓ,v0,v1,...,vℓ−2} = vℓ −→
v0 −→ v1 −→ · · · −→ vℓ−2 and G′

↾{vℓ,v0,v1,...,vℓ−2} = G∗
↾{vℓ,v0,v1,...,vℓ−2}.

We have U ↾{vℓ−2,vℓ−1,vℓ} = vℓ−2 vℓ . . . vℓ−1, vℓ−2 −→G
vℓ−1 and vℓ−2 . . .G vℓ, then 3)

Lemma 4.3 applied to {vℓ−2, vℓ−1, vℓ} gives vℓ−1 −→G
vℓ and vℓ−1 ←−G′ vℓ. Then

G =
−−→
Cℓ+1 and G′ = G∗.

Proof of Theorem 1.3. If G is a tournament then from Proposition 1.1, G and G′ are
total orders. If G is not a tournament, then using Proposition 4.6, there exists a subset

X of V (G) such that, G↾X ≃
−→
P4 or

−→
P f
4 , and G′

↾X = G∗
↾X or G∗↾X ; then we conclude using

Proposition 5.3.
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