
HAL Id: hal-02067896
https://hal.science/hal-02067896

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collective singleton-based consistency for qualitative
constraint networks: Theory and practice

Michael Sioutis, Anastasia Paparrizou, Jean-François Condotta

To cite this version:
Michael Sioutis, Anastasia Paparrizou, Jean-François Condotta. Collective singleton-based consis-
tency for qualitative constraint networks: Theory and practice. Theoretical Computer Science, 2019,
797, pp.17-41. �10.1016/j.tcs.2019.02.028�. �hal-02067896�

https://hal.science/hal-02067896
https://hal.archives-ouvertes.fr

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Sioutis, Michael; Paparrizou, Anastasia; Condotta, Jean-François
Collective singleton-based consistency for qualitative constraint networks: Theory and
practice

Published in:
Theoretical Computer Science

DOI:
10.1016/j.tcs.2019.02.028

Published: 01/01/2019

Document Version
Peer reviewed version

Please cite the original version:
Sioutis, M., Paparrizou, A., & Condotta, J-F. (2019). Collective singleton-based consistency for qualitative
constraint networks: Theory and practice. Theoretical Computer Science, 797, 17-41.
https://doi.org/10.1016/j.tcs.2019.02.028

https://doi.org/10.1016/j.tcs.2019.02.028
https://doi.org/10.1016/j.tcs.2019.02.028

Collective Singleton-based Consistency for Qualitative
Constraint Networks: Theory and Practice

Michael Sioutisa,∗, Anastasia Paparrizoub, Jean-François Condottab

aAalto University, Department of Computer Science, Espoo, Finland
bArtois University, CRIL UMR 8188, Lens, France

Abstract

Partial singleton weak path-consistency, or partial ◆-consistency for short,

is essential for tackling challenging fundamental reasoning problems associated

with qualitative constraints networks. Briefly put, partial ◆-consistency ensures

that each base relation of each of the constraints of a qualitative constraint

network can define a singleton relation in its corresponding partially weakly

path-consistent, or partially �-consistent for short, subnetwork. In this paper,

we propose a stronger local consistency that couples ◆-consistency with the idea

of collectively deleting certain unfeasible base relations by exploiting singleton

checks. We then propose an algorithm for enforcing this new consistency and

a lazy variant of that algorithm for approximating the new consistency that,

given a qualitative constraint network, both outperform the respective algorithm

for enforcing partial ◆-consistency in that network. With respect to the lazy

algorithmic variant in particular, we show that it runs up to 5 times faster

than our original exhaustive algorithm whilst exhibiting very similar pruning

capability. We formally prove certain properties of our new local consistency and

our algorithms, and motivate their usefulness through demonstrative examples

and a thorough experimental evaluation with random qualitative constraint

networks of the Interval Algebra and the Region Connection Calculus from the

phase transition region of two different generation models. Finally, we provide

∗Corresponding author
Email addresses: michael.sioutis@aalto.fi (Michael Sioutis), paparrizou@cril.fr

(Anastasia Paparrizou), condotta@cril.fr (Jean-François Condotta)

Preprint submitted to Theoretical Computer Science March 19, 2019

evidence of the crucial role of the new consistency in tackling the minimal

labeling problem of a qualitative constraint network, which is the problem of

finding the strongest implied constraints of that network.

1. Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of

study in Artificial Intelligence, and in particular in Knowledge Representation

& Reasoning, that deals with the fundamental cognitive concepts of space

and time in an abstract, qualitative, manner. In a sense, this approach is in5

line with the qualitative abstractions of spatial and temporal aspects of the

common-sense background knowledge on which the human perspective of physical

reality is based. For instance, in natural language one uses expressions such as

inside, before, and north of to spatially or temporally relate one object with

another object or oneself, without resorting to providing quantitative information10

about these entities. More formally, QSTR restricts the vocabulary of rich

mathematical theories that deal with spatial and temporal entities to simple

qualitative constraint languages. Thus, QSTR provides a concise framework

that allows for rather inexpensive reasoning about entities located in space and

time and, hence, further boosts research and applications to a plethora of areas15

and domains that include, but are not limited to, dynamic GIS [1], cognitive

robotics [2], deep learning [3], spatio-temporal design [4], qualitative model

generation from video [5], and ambient intelligence [6]. The interested reader

may look into a more comprehensive review of the emerging applications, the

trends, and the future directions of QSTR in [7]. In addition, a detailed survey20

of qualitative spatial and temporal calculi appears in [8].

As an illustration, the first constraint language to deal with time in a

qualitative manner was proposed by Allen in [9], called Interval Algebra. Allen

wanted to define a framework for reasoning about time in the context of natural

language processing that would be reliable and efficient enough for reasoning25

about temporal information in a qualitative manner. In particular, Interval

2

Algebra uses intervals on the timeline to represent entities corresponding to

actions, events, or tasks. Interval Algebra has become one of the most well-

known qualitative constraint languages, due to its use for representing and

reasoning about temporal information in various applications. Specifically,30

typical applications of Interval Algebra involve planning and scheduling [10,

11, 12, 13, 14], natural language processing [15, 16], temporal databases [17,

18], multimedia databases [19], molecular biology [20] (e.g., arrangement of

DNA segments/intervals along a linear chain involves particular temporal-like

problems [21]), and workflow [22].35

As another illustration, inspired by the success of Interval Algebra, Randell

et al. developed the Region Connection Calculus (RCC) in [23], which studies

the different relations that can be defined between regions in some topological

space; these relations are based on the primitive relation of connection. For

example, the relation disconnected between two regions x and y suggests that40

none of the points of region x connects with a point of region y, and vice

versa. Two fragments of RCC, namely, RCC8 and RCC5 (a sublanguage of

RCC8 where no significance is attached to boundaries of regions), have been

used in several real-life applications. In particular, Bouzy in [24] used RCC8 in

programming the Go game, Lattner et al. in [25] used RCC5 to set up assistance45

systems in intelligent vehicles, Heintz et al. in [26] used RCC8 in the domain of

autonomous unmanned aircraft systems (UAS), and Randell et al. in [27] used a

particular discrete domain counterpart of RCC8 (called discrete meterotopology)

to correct segmentation errors for images of hematoxylin and eosin (H&E)-

stained human carcinoma cell line cultures. Other typical applications of RCC50

involve robot navigation [28, 29, 30], computer vision [31], and natural language

processing [32, 33].

The problem of representing and reasoning about qualitative spatial or

temporal information can be modeled as a qualitative constraint network (QCN)

using a qualitative constraint language, such as one of those that we presented55

earlier, namely, RCC8 or Interval Algebra respectively. Specifically, a QCN is a

network of constraints corresponding to qualitative spatial or temporal relations

3

between spatial or temporal variables respectively, and the qualitative constraint

language of choice is used to ground those constraints on a finite set of binary

relations, called base relations (or atoms) [34]. In the case of Interval Algebra60

(IA) for example, which considers time intervals (as its temporal entities), each

of its base relations represents an ordering of the four endpoints of two intervals

in the timeline (e.g., during). Likewise, in the case of RCC8 each base relation

corresponds to a spatial configuration that can hold between two regions in some

topological space (e.g., partially overlapping). More details of the aforementioned65

notions are provided later on in Section 2.

The fundamental reasoning problems associated with a given QCN N are

the problems of satisfiability checking, minimal labeling (or deductive closure),

and redundancy (or entailment) [35]. In particular, the satisfiability checking

problem is the problem of deciding if there exists a spatial or temporal valuation70

of the variables of N that satisfies its constraints, such a valuation being called

a solution of N , the minimal labeling problem is the problem of finding the

strongest implied constraints of N , and the redundancy problem is the problem

of determining if a given constraint is entailed by the rest of N (that constraint

being called redundant, as its removal does not change the solution set of75

the QCN). In general, for most well-known qualitative constraint languages

the satisfiability checking problem is NP-hard [36]. Further, the redundancy

problem, the minimal labeling problem, and the satisfiability checking problem

are equivalent under polynomial Turing reductions [20].

Many of the published works that study the aforementioned reasoning prob-80

lems, use partial �-consistency1 as a means to define practical algorithms for

efficiently tackling them [38, 39, 40, 41, 42, 43, 44]. Given a QCN N and a

graph G, partial �-consistency with respect to G, denoted by �G-consistency,

entails (weak) consistency for all triples of variables in N that correspond to

1Note that �-consistency can be interpreted as weak path-consistency, i.e., path-consistency

where the (true) composition of relations is replaced by weak composition [37] (a notion that

will be formally defined in Section 2).

4

three-vertex cycles (triangles) in G. We note that if G is complete, �G-consistency85

becomes identical to �-consistency [37]. Hence, �-consistency is a special case of

�
G-consistency. In fact, earlier works have relied solely on �-consistency; it was

not until the introduction of chordal (or triangulated) graphs in QSTR, due to

some generalized theoretical results of [45], that researchers started restricting

�-consistency to a triangulation (or chordal completion) of the constraint graph90

of an input QCN and benefiting from better complexity properties in more recent

works. The importance of �G-consistency, and any other local consistency that

uses �G-consistency as its basis, lies in the fact that it can be directly utilized to

decide the satisfiability of QCNs that are defined over particular subclasses of

qualitative spatial or temporal relations, called tractable classes of relations, it95

can be applied on a QCN as a preprocessing step to remove impossible, unfeasible,

base relations and simplify the problem, and it can also be incorporated in a

look-ahead subprocedure in backtracking algorithms whenever the use of such

algorithms is appropriate (e.g., in the general case where a QCN is not defined

over a tractable class of relations).100

Motivation and Contributions

Adding to what has already been written, and with respect to the satisfiability

checking problem in particular, the literature suggests that �G-consistency alone

is sufficient in most cases to guarantee that a solution for a given QCN can be

efficiently obtained, provided that the QCN is satisfiable (see also [46]). However,105

for the more challenging problems of minimal labeling and redundancy, a stronger

local consistency is typically employed that builds upon �G-consistency, called

singleton �G-consistency and denoted by ◆G-consistency, as solving either of these

problems benefits from concise representations of QCNs throughout the execution

of the related algorithms [38, 39]. The need and usefulness of this consistency is110

especially apparent in the work of [38] for the minimal labeling problem, where

◆

G-consistency is repetitively utilized in the execution of the algorithm that is

presented there in order to remove as many unfeasible (i.e., not corresponding

to a solution) base relations as possible and, hence, drastically refine the QCN

5

at hand. Simply put, given a QCN N and a graph G, ◆G-consistency holds on115

N if and only if each base relation of each of the constraints of N is closed

under �G-consistency, i.e., after instantiating any constraint of that network with

one of its base relations b and closing the network under �G-consistency, the

corresponding constraint in the �G-consistent subnetwork will continue being

defined by b.120

It is then natural to ask whether we can have an even stronger local consistency

than ◆G-consistency (and �G-consistency) for QCNs that can also be enforced more

efficiently than ◆

G-consistency, as a positive answer to that question would

suggest an immediate improvement for any algorithm that currently employs

◆

G-consistency. In this paper, we make the following contributions towards125

obtaining a positive answer to that question.

• We enrich the family of consistencies for QCNs by proposing a new single-

ton style consistency inspired by k-partitioning consistency for constraint

satisfaction problems (CSPs) [47]. This filtering technique is based on

domain partitioning combined with a local consistency, typically arc con-130

sistency [48], and allows for improved pruning capability over singleton

arc consistency [49]. Similarly to k-partitioning consistency, our new

consistency, denoted by ◆
∪

G -consistency, combines singleton checks and

�
G-consistency to present itself as a better alternative to ◆G-consistency.

• With respect to our new consistency, we also propose an algorithm for135

applying it on a given QCN, which turns out being more efficient than the

respective algorithm for applying ◆G-consistency on that same QCN. As

a brief intuitive explanation of this, ◆
∪

G -consistency allows for proactively

eliminating base relations anywhere in a given QCN and not only in the

set of base relations of the constraint at hand that is singleton checked.140

• Further, we obtain several theoretical results regarding our new local

consistency and our novel algorithm for enforcing it, and show, among

other things, that ◆
∪

G -consistency is strictly stronger than ◆

G-consistency

and, hence, than �G-consistency.

6

• Moreover, based on our new algorithm, we present and thoroughly study145

a lazy algorithmic variant for approximating ◆
∪

G -consistency that restricts

singleton checks to constraints that are likely to lead to the removal of a

base relation upon their propagation in a given QCN. We show that this

variant runs up to 5 times faster than our original exhaustive algorithm

whilst exhibiting similar pruning capability for the involved datasets here.150

• In addition, we perform a thorough experimental evaluation of the al-

gorithms for enforcing ◆
∪

G -consistency and ◆

G-consistency, and the lazy

algorithmic variant for approximating ◆
∪

G -consistency, using random QCNs

of two different calculi, viz., the Interval Algebra and the Region Con-

nection Calculus [23], from the phase transition region of two different155

generation models. The results support our argument that ◆
∪

G -consistency

can be enforced more efficiently than ◆G-consistency for a given QCN and, as

mentioned earlier, are very complimentary of our lazy algorithmic variant

for approximating ◆
∪

G -consistency (and ◆G-consistency).

• Finally, we provide evidence of the utility of the new consistency in tackling160

the minimal labeling problem of a qualitative constraint network, which, as

a reminder, is the problem of finding the strongest implied constraints of

that network, and also explore how it fares against the more straightforward

problem of satisfiability checking.

Related Work165

This work is inspired from similar works that exist for the constraint satis-

faction problem (CSP). From the early beginning since the last decade, the CP

community has put a noticeable research effort in proposing strong consistencies

as alternatives to the classic and standard arc consistency (AC). Strong consis-

tencies though, despite their pruning capacity, and thus the space reduction, were170

considered prohibitive in practice due to their operational cost. In recent years,

many of these consistencies have been revisited, and new data structures that

allow fast memory access make them much more competitive than in the past.

7

The most representative examples are the singleton arc consistency (SAC) [49]

and the 1-Partition-AC or partition one AC (POAC) [47]. Also, weaker forms175

of SAC and POAC, such as NSAC [50, 51], or approximations of them [52] have

been developed. We believe that qualitative spatial and temporal reasoning can

also benefit from similar consistencies. Such consistencies could allow us to solve

existing problems faster or reveal new challenges for the field.

The consistency proposed here is inspired by the k-partitioning consistency180

family. The k-partitioning consistency family is defined by fixing k and the level

of consistency. If arc consistency is the underlying local consistency then we

have the k-Partition-AC. For k = 1 we obtain 1-Partition-AC (aka partition one

AC or POAC, which was mentioned earlier), which is the most used consistency

from this family. POAC splits a domain into singleton sub-domains. For each185

such singleton, AC is applied and the produced domains are recorded. After

this step, a union operation on the domains allows the respective algorithm to

remove values that do not appear in the union and, by consequence, not in any

problem solution either. The last operation makes POAC strictly stronger than

SAC. Here we have to mention that due to the non-bidirectionality of supports190

for SAC, there exist another consistency that benefits from this property of SAC

to achieve extra pruning. Interestingly, it is also stronger than POAC and is

called BiSAC (bidirectional SAC) [53].

The rest of the paper is organized as follows. In Section 2 we give some

preliminaries on qualitative spatial and temporal reasoning, and in Section 3195

we focus on �G-consistency and ◆

G-consistency and, in particular, recall some

related results from the literature, but also provide some new results of our

own. Then, in Section 4 we introduce, formally define, and thoroughly study

our new local consistency, namely, ◆
∪

G -consistency. In Section 5 we present an

algorithm for efficiently applying ◆
∪

G -consistency on a given QCN N , and in200

Section 6 we present a lazy algorithmic variant of that algorithm for efficiently

approximating ◆
∪

G -consistency on N . In Section 7 we evaluate the algorithms

for enforcing ◆
∪

G -consistency and ◆G-consistency and the lazy algorithmic variant

8

for approximating ◆
∪

G -consistency on a given QCN, and, finally, in Section 8 we

conclude the paper and give some directions for future work.205

2. Preliminaries

A (binary) qualitative spatial or temporal constraint language, is based on

a finite set B of jointly exhaustive and pairwise disjoint relations defined over

an infinite domain D, which is called the set of base relations [34]. The base

relations of a particular qualitative constraint language can be used to represent210

the definite knowledge between any two of its entities with respect to the level of

granularity provided by the domain D. The set B contains the identity relation

Id, and is closed under the converse operation (−1). Indefinite knowledge can

be specified by a union of possible base relations, and is represented by the set

containing them. Hence, 2B represents the total set of relations. The set 2B is215

equipped with the usual set-theoretic operations of union and intersection, the

converse operation, and the weak composition operation denoted by the symbol

� [34]. For all r ∈ 2B, we have that r−1 =
⋃
{b−1 | b ∈ r}. The weak composition

(�) of two base relations b, b′ ∈ B is defined as the smallest (i.e., strongest)

relation r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},220

where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is

the (true) composition of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint

language of Interval Algebra (IA) introduced by Allen [9]. IA considers time225

intervals (as its temporal entities) and makes use of the temporal relations

precedes (p), precedes inverse (pi), meets (m), meets inverse (mi), overlaps (o),

overlaps inverse (oi), starts (s), starts inverse (si), during (d), during inverse

(di), finishes (f), finishes inverse (fi), and equals (eq) to encode knowledge

about the temporal relations between intervals on the timeline. These temporal230

relations constitute the set of base relations B = {eq, p, pi, m, mi, o, oi, s, si, d,

di, f , fi} of IA, where each base relation of IA represents a particular ordering

9

precedes

meets

overlaps

starts

during

finishes

equals

p pi

m mi

o oi

s si

d di

f fi

eq

x

y

y

y

y

y

y

y

x

x

x

x

x

x

Figure 1: The base relations of IA, with ·i denoting the converse of ·

of the four endpoints of two intervals on the timeline, and eq is the identity

relation Id of IA. The base relations of IA are depicted in Figure 1.

As another illustration, the Region Connection Calculus (RCC) is a first-order235

theory for representing and reasoning about mereotopological information [23].

The domain D of RCC comprises all possible non-empty regular subsets of some

topological space. These subsets do not have to be internally connected and

do not have a particular dimension, but are commonly required to be regular

closed [54]. In particular, a fragment of RCC, called RCC8, makes use of the240

topological relations disconnected (DC), externally connected (EC), equal (EQ),

partially overlapping (PO), tangential proper part (TPP), tangential proper

part inverse (TPPi), non-tangential proper part (NTPP), and non-tangential

proper part inverse (NTPPi) to encode knowledge about the spatial relations

between regions in some topological space. These spatial relations constitute the245

set of base relations B = {EQ, DC, EC, PO, TPP , TPPi, NTPP , NTPPi}

of RCC8, where each base relation of RCC8 represents a particular topological

10

disconnected

externally

partially

tangential

non-tangential

DC

EC

PO

TPP TPPi

NTPP NTPPi

x y

connected

overlapping

proper part

proper part

equal EQ

x

x

x

x

x

y

y

y

y

y

Figure 2: The base relations of RCC8, with ·i denoting the converse of ·

configuration of two regions in some topological space, and EQ is the identity

relation Id of RCC8. The base relations of RCC8 are depicted in Figure 2.

Other notable and well-known qualitative spatial and temporal constraint250

languages include Point Algebra [55], Cardinal Direction Calculus [56, 57], and

Block Algebra [58], and Cardinal Direction Calculus for extended objects [59,

60, 61].

The weak composition operation �, the converse operation −1, the union

operation ∪, the complement operation {, and the total set of relations 2B
255

along with the identity relation Id of a qualitative constraint language, form an

algebraic structure (2B, Id, �,−1 ,{ ,∪) that can correspond to a relation algebra

in the sense of Tarski [62].

Proposition 1 ([36]). The languages of Point Algebra, Cardinal Direction

Calculus, Interval Algebra, Block Algebra, and RCC8 are each a relation algebra260

with the algebraic structure (2B, Id, �, −1, {, ∪).

In what follows, for a qualitative constraint language that is a relation algebra

with the algebraic structure (2B, Id, �, −1, {, ∪), we will simply use the term

relation algebra, as the algebraic structure will always be of the same format.

11

x1 x2

x3x4

{p,m}

B

{d, s, si} {oi}
{oi,m}

{pi, eq}

(a) A satisfiable QCN N

x1

x2

x3

x4

(b) A solution σ of N

x1 x2

x3x4

{m}

{d}
{d} {oi}

{oi}

{eq}

(c) A scenario S of N

Figure 3: Figurative examples of QCN terminology using IA

The problem of representing and reasoning about qualitative spatial or265

temporal information can be modeled as a qualitative constraint network (QCN),

defined in the following manner:

Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables, each representing

an entity of an infinite domain D;270

• and C is a mapping C : V ×V → 2B such that C(v, v) = {Id} for all v ∈ V

and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V , where
⋃

B = D× D.

An example of a QCN of IA is shown in Figure 3a; for simplicity, converse

relations as well as Id loops are not mentioned or shown in the figure.

Definition 2. Let N = (V,C) be a QCN, then:275

• a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V ,

∃b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b (see Figure 3b);

• N is satisfiable iff it admits a solution;

• a QCN is equivalent to N iff it admits the same set of solutions as N ;

• a sub-QCN2 N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that280

2This term can also be found by the name of refined QCN or simply refinement throughout

the literature.

12

C ′(u, v) ⊆ C(u, v) ∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂

C(u, v), then N ′ ⊂ N ;

• N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation

{b} with b ∈ B;

• a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);285

• a base relation b ∈ C(v, v′) with v, v′ ∈ V is feasible (resp. unfeasible) in

N iff there exists (resp. there does not exist) a scenario S = (V,C ′) of N

such that C ′(v, v′) = {b};

• N is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a feasible base relation

of N ;290

• the constraint graph of N , denoted by G(N), is the graph (V,E) where

{u, v} ∈ E iff C(u, v) 6= B and u 6= v;

• N is trivially inconsistent iff ∃u, v ∈ V such that C(u, v) = ∅;

• N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .

Let us further introduce the following operations with respect to QCNs:295

• given a QCN N = (V,C) and v, v′ ∈ V , we define that N[v,v′]/r with r ∈ 2B

yields the QCN N ′ = (V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1 and

C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V) \ {(v, v′), (v′, v)};

• given two QCNs N = (V,C) and N ′ = (V,C ′) on the same set of variables

V , we define that N ∪N ′ yields the QCN N ′′ = (V,C ′′), where C ′′(v, v′) =300

C(v, v′) ∪ C ′(v, v′) for all v, v′ ∈ V .

We recall the following definition of �G-consistency, which, as noted in the

introduction, is the basic local consistency used in the literature for solving

fundamental reasoning problems of QCNs, such as the satisfiability checking

problem.305

13

Definition 3. Given a QCN N = (V,C) and a graph G = (V,E), N is said

to be �G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆

C(vi, vk) � C(vk, vj).

We note again that if G is complete, �G-consistency becomes identical to

�-consistency [37], and, hence, �-consistency is a special case of �G-consistency.310

Given a graph G = (V,E), a QCN N = (V,C) is ◆G-consistent iff for every pair

of variables {v, v′} ∈ E and every base relation b ∈ C(v, v′), after instantiating

C(v, v′) with {b} and applying �G-consistency onN , the revised constraint C(v, v′)

is always supported by {b}. Formally, ◆G-consistency of a QCN is defined as

follows:315

Definition 4. Given a QCN N = (V,C) and a graph G = (V,E), N is said to

be ◆G-consistent iff ∀{v, v′} ∈ E and ∀b ∈ C(v, v′) we have that {b} = C ′(v, v′),

where (V,C ′) = �G(N[v,v′]/{b}).

An example of a ◆G-consistent QCN is shown in Figure 5a later on. If G is a

complete graph, i.e., G = KV , we can easily verify that ◆G-consistency corresponds320

to �B-consistency of the family of �f -consistencies studied in [46]. Interestingly,

◆

G-consistency can also be seen as a counterpart of singleton arc consistency

(SAC) [49] for QCNs. Given a QCN N = (V,C) and a graph G = (V,E), for

every b ∈ B and every {v, v′} ∈ E, we will say that b is ◆G-consistent for C(v, v′)

iff {b} = C ′(v, v′), where (V,C ′) = �G(N[v,v′]/{b}).325

Definition 5. A subclass of relations is a subset A ⊆ 2B that contains the

singleton relations of 2B and is closed under converse, intersection, and weak

composition.

Next, we recall the definition of a ditributive subclass of relations.

Definition 6. Given three relations r, r′, r′′ of a subclass A, we say that330

weak composition distributes over intersection if we have that r � (r′ ∩ r′′) =

(r � r′)∩ (r � r′′) and (r′ ∩ r′′) � r = (r′ � r)∩ (r′′ � r). A subclass A is distributive

iff weak composition distributes over non-empty intersection ∀r, r′, r′′ ∈ A.

14

Distributive subclasses of relations are defined for all of the qualitative

constraint languages mentioned in Proposition 1 [63]; in particular, for all335

those calculi the closures of their sets of base relations under weak composition,

intersection, and converse (denoted by B̂) are distributive.

Finally, for the sake of simplicity in recalling and phrasing some results, in

what follows we assume that all considered graphs are biconnected [64] (referred

to as 2-connected in [64]). Specifically, given a QCN N and a graph G on a set340

of variables V , this assumption on G is useful for the sole purpose of allowing

algorithms that apply �G-consistency (and other local consistencies that use

�
G-consistency as their basis) to propagate the assignment of the empty relation

throughout the given graph G, whenever such an assignment occurs in the first

place. This assumption will become relevant later on when we will present345

Propositions 3 and 4 in Section 3 and Proposition 10 in Section 4, at which

points we will make explicit remarks.

3. A closer look at �G-consistency and ◆

G-consistency

Let us come back to �G-consistency and ◆G-consistency and recall in this section

some results from the literature that will be relevant in the rest of the paper, but350

also provide some new results of our own. Please note that we view a consistency

φ
G, where φ is some operation and G a graph, as a predicate on QCNs, i.e., as

a function that receives an input QCN and returns true or false depending on

whether φG holds on that QCN or not respectively.

In order to compare the pruning (or inference) capability of different con-355

sistencies, we introduce a preorder. Let φ
G and ψ

G be two consistencies defined

by some operations φ and ψ respectively and a graph G. Then, φG is stronger

than ψ
G, denoted by φ

G DψG, iff whenever φG holds on a QCN N with respect to a

graph G, ψG also holds on N with respect to G, and φ
G is strictly stronger than ψ

G,

denoted by φ
G.

ψ
G, iff φ

G D ψ
G and there exists at least one QCN N and a graph360

G such that ψ
G holds on N with respect to G but φ

G does not hold on N with

respect to G. Finally, φG and ψ
G are equivalent, denoted by φ

G ≡
ψ
G, iff we have

15

both φ
G DψG and ψ

G DφG.3

We now recall the definition of a well-behaved consistency [46].

Definition 7. A consistency φ
G is well-behaved iff for any QCN N = (V,E) and365

any graph G = (V,E) the following properties hold:

• there exists a unique largest (w.r.t. ⊆) φG-consistent sub-QCN of N , denoted

by φ
G(N) and referred to as the φ

G-closure of N w.r.t. G (Dominance);

• φ
G(N) is equivalent to N (Equivalence).4

We can obtain the following theorem:370

Theorem 1. If the property of dominance holds for a consistency φ
G, then for

any QCN N = (V,E) and any graph G = (V,E) the following properties hold:

• φ
G(φG(N)) = φ

G(N) (Idempotence);

• if N ′ ⊆ N then φ
G(N ′) ⊆ φ

G(N) (Monotonicity).

Proof. (Idempotence) Let N = (V,C) be a QCN, and G = (V,E) a graph.375

Then, φG(N) is φ
G-consistent. Now, by dominance of φG-consistency the largest

φ
G-consistent sub-QCN of φG(N) is itself and, hence, φG(φG(N)) = φ

G(N). (Mono-

tonicity) Let N = (V,C) and N ′ = (V,C ′) be two QCNs such that N ′ ⊆ N , and

G = (V,E) a graph. As N ′ ⊆ N , we have that φG(N ′) is a φ
G-consistent sub-QCN

of N . In addition, by dominance of φG-consistency we can assert that φ
G(N) is380

the largest φG-consistent sub-QCN of N . Thus, we have that φG(N ′) ⊆ φ
G(N).

It is routine to formally prove the following result for �G-consistency:

Corollary 1 (cf. [46]). We have that �G-consistency is well-behaved.

It is routine to formally prove the following result for ◆G-consistency as well:

3Note that this notion of equivalence concerning consistencies is not to be confused with

the notion of equivalence concerning QCNs; this latter notion has been defined in Definition 2.
4Note that in [46] the property of equivalence is not explicitly considered in what the

authors refer to as a well-behaved consistency (although all of their defined consistencies are

characterized by that property), but we think that it is a reasonable property to include in the

definition of a well-behaved consistency.

16

Corollary 2 (cf. [46]). We have that ◆G-consistency is well-behaved.385

The aforementioned two results are derived from respective results of [46]

where complete graphs are used in all cases. The generalization to an arbitrary

graph G is trivial.

We recall the following general result regarding the pruning capability of

�
G-consistency in comparison with that of ◆G-consistency:390

Proposition 2 ([46]). We have that ◆G-consistency . �G-consistency.

The next result shows the link between �G-consistency and minimal QCNs:

Proposition 3 ([65]). Let A be a distributive subclass of relations of a relation

algebra with the property that any atomic QCN over A that is �-consistent is

satisfiable. Then, for any QCN N = (V,C) over A and any chordal graph395

G = (V,E) such that G(N) ⊆ G, we have that ∀{u, v} ∈ E and ∀b ∈ C ′(u, v),

where (V,C ′) = �
G(N), the base relation b is feasible.

It should be noted that the aforementioned proposition is essentially obtained

from the merge of Proposition 3 and Theorem 4 as they appear in [65], and is

presented informally in [65] in the form of the following statement: “The last400

two results (namely, Proposition 3 and Theorem 4 in [65]) show that given a

QCN that is defined over a distributive subclass of relations, enforcing partial

�-consistency on it is able to make the relations corresponding to the edges of a

triangulation of its constraint graph become minimal.”

The property described in Proposition 3 is satisfied by all of the qualitative405

constraint languages mentioned in Proposition 1 [36].

Finally, the following result shows the connection between ◆G-consistency and

minimal QCNs:

Proposition 4 (cf. [38]). Let A be a subclass of relations of a relation algebra

with the property that for any QCN N = (V,C) over A there exists a graph410

G = (V,E) such that, if �G(N) is not trivially inconsistent, then N is satisfiable.

Then, for any such N and G, we have that ∀{u, v} ∈ E and ∀b ∈ C ′(u, v), where

(V,C ′) = ◆

G(N), the base relation b is feasible.

17

x1 x2

x3 x4

x5

B

{eq}

B

B ∅

B

{eq} ∅

{eq} ∅

Figure 4: Given the unsatisfiable QCN N = (V,C) of IA above (which is defined over a distribu-

tive subclass of relations of IA) and the non-biconnected (separable) graph G with the edge set

{{x1, x3}, {x1, x5}, {x3, x5}, {x2, x4}, {x2, x5}, {x4, x5}}, we have that N is �G-consistent (and

◆

G-consistent) and that the base relation eq in constraints C(x1, x3), C(x1, x5), and C(x3, x5)

is unfeasible in N ; this is an example of the pathological case described in Remark 1

It should be noted that the aforementioned proposition appears as point (2)

under Proposition 4 in [38], and we have generalized its wording here to make it415

applicable to the case where �G-consistency is complete for deciding the satisfia-

bility of a given QCN (indeed, the property of �G-consistency being complete for

deciding satisfiability is what is used to prove Proposition 4 in [38]).

It is important to make the following remark:

Remark 1. As noted in Section 2, all our graphs are assumed to be biconnected.420

If this assumption does not hold, Propositions 3 and 4 may suffer from the

pathological case where the QCN at hand is unsatisfiable, and the constraints

corresponding to a biconnected component in the given graph G get labeled with

the empty relation (and hence have all their base relations removed as unfeasible),

whilst the constraints corresponding to another biconnected component in the425

given graph G are not labeled with the empty relation (and hence may appear

to hold feasible base relations). This case may indeed occur due to the inability

of any suitable algorithm for applying �G-consistency (and ◆

G-consistency as a

consequence) to propagate the empty relation from biconnected component to

18

biconnected component (see Definition 3 and Figure 4). The reader may easily430

drop the assumption at the cost of taking care of this pathological case via more

complicated wording of the presented result; in particular, it could be stated that

if the assignment of the empty relation takes place, then all the base relations in

the constraints corresponding to the edges of G are unfeasible in the QCN.

As a note, an interesting case where the property described in Proposition 4435

can be satisfied, is the case where the considered subclass of relations is obtained

from a relation algebra that has patchwork [66] for �G-consistent and not trivially

inconsistent QCNs over that subclass, where G = (V,E) is any chordal graph

such that G(N) ⊆ G for a given QCN N = (V,C). In that case, we will indeed

have that N is satisfiable if �G(N) is not trivially inconsistent [38]. As a matter440

of fact, patchwork holds for all the qualitative constraint languages mentioned in

Proposition 1 [45]. Of course, in general, the property may be satisfied in other

cases as well; for instance, patchwork may not hold, but the overall property

may hold for using complete graphs (and, hence, when �-consistency is used)

or when constraints in the structure of the constraint graphs of the QCNs are445

imposed (a trivial case being restricting the constraint graphs to being trees).

4. ◆
∪

G -Consistency: a new local consistency for QCNs

We define a new local consistency for QCNs inspired by k-partitioning consis-

tency for constraint satisfaction problems (CSPs), where arc consistency is used

as the underlying local consistency of choice, or k-Partition-AC for short [47].450

This technique splits a variable domain into disjoint domains, where each of them

contains at most k elements. In the case of QCNs, these elements correspond to

base relations. With respect to k-Partition-AC, the most common and preferred

approach is splitting a domain into singleton sub-domains, which is the case

where k = 1, otherwise many questions arise, such as what should the size of455

each sub-domain be, how should this size be fixed, and which elements should

be considered for a given use case. Although having many questions to deal

with is not necessarily bad in general, the most important aspect regarding

19

x1 x2

x3x4

{p, d,mi}

{p, pi}
{s, f} {oi, fi}

{o, oi}

{m,mi}

(a) A ◆

G-consistent QCN N

x1 x2

x3x4

{p}

{p}
{s} {fi}

{oi}

{mi}

(b) N1 = �G(N[x1,x3]/{p})

x1x1 x2

x3x4

{mi}

{pi}
{f} {oi}

{o}

{m}

(c) N2 = �G(N[x1,x3]/{pi})

x1 x2

x3x4

{p, d,mi}

{p, pi}
{s, f} {oi, fi}

{o, oi}

{m,mi}

(d) N1 ∪N2 (⊂ N)

Figure 5: A ◆

G-consistent QCN N of IA along with a demonstration of how enforcing

◆
∪

G -consistency can further eliminate base relations; here G is the complete graph on the

set of variables of N

1-Partition-AC is that it offers the nice property that it is strictly stronger than

singleton arc consistency (SAC) [49].460

In this work, we adapt the aforementioned technique to qualitative con-

straint networks and use �G-consistency as our underlying local consistency of

choice.5 Given a QCN N , enforcing this consistency for k = 1 will eliminate

every base relation that is not ◆G-consistent for some constraint in N , but also

every base relation that is not supported by some base relation in N through465

�
G-consistency. We call this new local consistency ◆

∪

G -consistency, and better

explain it with a demonstrative example as follows. Consider the ◆G-consistent

QCN N = (V,C) of IA in Figure 5. We can see that the base relation d is

5The partitioning scheme can be combined with any local consistency or propagation

technique. Here, the definition is restricted to �G-consistency as it is the most essential of local

consistencies used for dealing with QCNs.

20

◆

G-consistent for C(x1, x2), but it is not supported by any of the base relations

that define constraint C(x1, x3), namely, p and pi, through �G-consistency. In470

particular, by instantiating C(x1, x3) with p and pi respectively and closing

the corresponding QCNs under �G-consistency, we obtain the atomic sub-QCNs

presented in Figures 5b and 5c respectively. A unification of those two sub-QCNs

results in the elimination of the base relation d in C(x1, x2) of the unified QCN,

as depicted in Figure 5d. After eliminating the base relation d in C(x1, x2), the475

revised QCN N becomes ◆
∪

G -consistent.

Now we can formally define this consistency.

Definition 8. Given a QCN N = (V,C) and a graph G = (V,E), N is said

to be ◆
∪

G -consistent iff N is ◆G-consistent and ∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and

∀{u, u′} ∈ E we have that ∃b′ ∈ C(u, u′) such that b ∈ C ′(v, v′), where (V,C ′) =480

�
G(N[u,u′]/{b′}).

We prove the following result to be used in the sequel, which suggets that

◆
∪

G -consistency can only eliminate unfeasible base relations:

Proposition 5. Let N = (V,C) be a QCN, G = (V,E) a graph, and b ∈ C(v, v′)

with v, v′ ∈ V a base relation. Then, if ∃{u, u′} ∈ E such that b 6∈ C ′(v, v′),485

where (V,C ′) =
⋃
{�G(N[u,u′]/{b′}) | b′ ∈ C(u, u′)}, we have that b is an unfeasible

base relation.

Proof. Let us assume that b is a feasible base relation. Then, by definition

of feasible base relations there exists a scenario S = (V,C ′) of N such that

C ′(v, v′) = {b}. Further, by the equivalence property of �G-consistency it holds490

that �G(S) = S (as S, being a scenario, is an atomic and satisfiable QCN and,

hence, none of its base relations can be removed by application of �G-consistency).

Thus, it follows that ∀{u, u′} ∈ E we have that b ∈ C ′′(v, v′), where (V,C ′′) =

�
G(N[u,u′]/C′(u,u′)), as S ⊆ N[u,u′]/C′(u,u′) and, hence, �G(S) ⊆ �G(N[u,u′]/C′(u,u′))

by the monotonicity property of �G-consistency. As S ⊆ N , it follows that495

∀{u, u′} ∈ E we have that C ′(u, u′) ⊆ C(u, u′) and, hence, that ∃b′ ∈ C(u, u′)

such that b ∈ C ′′′(v, v′), where (V,C ′′′) = �G(N[u,u′]/{b′}), by simply considering

21

the base relation b′ ∈ C(u, u′) to be the one of the singleton relation C ′(u, u′) of S.

Therefore, by definition of operation ∪ with respect to QCNs we can derive that

∀{u, u′} ∈ E it holds that b ∈ C∗(v, v′), where (V,C∗) =
⋃
{�G(N[u,u′]/{b′}) | b′ ∈500

C(u, u′)}, which concludes our proof by contraposition.

We recall the following result to be used in one of our proofs later on:

Proposition 6 ([38]). For any QCNs N1 and N2 on a set of variables V and any

graph G = (V,E), if N1 and N2 are ◆G-consistent, then (N1∪N2) is ◆G-consistent.

We note that the aforementioned result describes a sufficient property for505

proving dominance for a new consistency, but that property might not be

necessary in general and, hence, does not solely follow from the well-behaveness

of the consistency at hand. We prove the same property for ◆
∪

G -consistency, to

be used in what follows.

Proposition 7. For any QCNs N1 and N2 on a set of variables V and any graph510

G = (V,E), if N1 and N2 are ◆
∪

G -consistent, then (N1 ∪N2) is ◆
∪

G -consistent.

Proof. Let N1 = (V,C1), N2 = (V,C2), (N1 ∪ N2) = (V,C), v, v′ ∈ V be

two variables, and b ∈ C(v, v′) a base relation. We only need to consider the

case where b ∈ C1(v, v′), as the case where b ∈ C2(v, v′) is symmetric. Note

that as both N1 and N2 are on V , both C1(v, v′) and C2(v, v′) are defined515

(see Definition 1). Since N1 is ◆
∪

G -consistent, we have that N1 is ◆G-consistent

and ∀{u, u′} ∈ E there exists b′ ∈ C1(u, u′) such that b ∈ C ′1(v, v′), where

(V,C ′1) = �G(N1[u,u′]/{b′}), by definition of ◆
∪

G -consistency. In addition, we have

that (N1 ∪ N2) is ◆G-consistent by Proposition 6. As N1 ⊆ (N1 ∪ N2), we

have that N1[u,u′]/{b′} ⊆ (N1 ∪ N2)[u,u′]/{b′} ∀{u, u′} ∈ E and ∀b′ ∈ C1(u, u′).520

Thus, we have that �G(N1[u,u′]/{b′}) ⊆ �G((N1 ∪ N2)[u,u′]/{b′}) ∀{u, u′} ∈ E and

∀b′ ∈ C1(u, u′) by the monotonicity property of �G-consistency. From that we

can deduce that ∀{u, u′} ∈ E there exists b′ ∈ C(u, u′) such that b ∈ C ′(v, v′),

where (V,C ′) = �G((N1 ∪N2)[u,u′]/{b′}). Hence, by the assumption that N1 and

N2 are ◆
∪

G -consistent, we have proved that (N1∪N2) is ◆
∪

G -consistent as well.525

Next, we arrive to one of our main results of this work.

22

Theorem 2. We have that ◆
∪

G -consistency is well-behaved.

Proof. (Dominance) From Proposition 7 we can assert that, for any QCN N =

(V,C) and any graph G = (V,E), there exists a unique ◆
∪

G -consistent QCN⋃
{N ′ | N ′ ⊆ N and N ′ is ◆

∪

G -consistent}, which by its definition is the largest530

(w.r.t. ⊆) ◆
∪

G -consistent sub-QCN of N and, hence, the closure of N under

◆
∪

G -consistency. (Equivalence) Let N = (V,C) be a QCN, G = (V,E) a graph,

and N ′ = (V,C ′) the QCN where ∀v, v′ ∈ V and ∀b ∈ B we have that b ∈ C ′(v, v′)

iff there exists a solution σ of N such that (σ(v), σ(v′)) ∈ b. Clearly, N ′ is

a sub-QCN of N and it is necessarily ◆
∪

KV
-consistent (where KV denotes the535

complete graph on the set of variables V of N), as by Proposition 5 we have that

the application of ◆
∪

G -consistency on any QCN (V,C) w.r.t. any graph G = (V,E)

can only remove unfeasible base relations, and not feasible ones. It follows that

N ′ ⊆ ◆∪G (N) ⊆ N and, as such, ◆
∪

G (N) and N share the same set of solutions.

We prove the following general result regarding the pruning capability of540

◆

G-consistency in comparison with that of ◆
∪

G -consistency:

Proposition 8. We have that ◆
∪

G -consistency . ◆G-consistency.

Proof. We have that ◆
∪

G -consistency D ◆

G-consistency by the very definition

of ◆
∪

G -consistency, since, for any graph G = (V,E), any QCN (V,C) that is

◆
∪

G -consistent is already ◆

G-consistent. To prove strictness we use an exam-545

ple as follows. Consider the QCN N = (V,C) of Figure 5. The reader can

verify that N is ◆G-consistent, as we have that b is ◆G-consistent for C(v, v′)

∀{v, v′} ∈ E and ∀b ∈ C(v, v′). However, we have that d 6∈ C ′(x1, x2), where

(V,C ′) =
⋃
{�G(N[x1,x3]/{b′}) | b′ ∈ C(x1, x3)}, as demonstrated in the figure.

In detail, �G(N[x1,x3]/{p}) ∪ �G(N[x1,x3]/{pi}) is a QCN such that d is not among550

the base relations that define the constraint on variables x1 and x2. Thus,

◆
∪

G -consistency does not hold in N .

The next result follows trivially:

Proposition 9. We have that ◆
∪

G -consistency . �G-consistency.

23

Proof. A direct consequence of Propositions 2 and 8 and the transitivity of ..555

Finally, we introduce the following result that identifies the case where

◆

G-consistency and ◆
∪

G -consistency are equivalent:

Proposition 10. Let A be a subclass of relations of a relation algebra with the

property that for any QCN N = (V,C) over A there exists a graph G = (V,E)

such that, if �G(N) is not trivially inconsistent, then N is satisfiable. Then, for560

any such N and G, we have that ◆G-consistency ≡ ◆
∪

G -consistency.

Proof. We first prove that, if N is ◆G-consistent, then N is also ◆
∪

G -consistent. By

Proposition 4 we have that ∀{u, v} ∈ E and ∀b ∈ C(u, v) the base relation b is

feasible. In addition, by the equivalence property of ◆
∪

G -consistency we have that

the application of ◆
∪

G -consistency on N can only remove unfeasible base relations565

and, hence, that ◆
∪

G (N) = N , as every base relation b ∈ C(u, v) ∀{u, v} ∈ E

is feasible. The proof that, if N is ◆
∪

G -consistent, then N is also ◆G-consistent,

follows directly from the definition of ◆
∪

G -consistency.

It is important to make the following remark:

Remark 2. The reader is kindly reminded of Remark 1 in Section 3, as well570

as the discussion in the end of Section 2, which focus on the assumption of

biconnectedness for all of our graphs. If this assumption does not hold, the reader

can verify that the QCN of Figure 4 is ◆G-consistent but not ◆
∪

G -consistent. The

reader may drop the assumption and consider the pathological case described in

Remark 1 as a special case in a revised wording of Proposition 10.575

A hasty reading of Proposition 10 might give the impression that one should

always opt to apply ◆G-consistency for the cases where the considered QCN and the

graph G satisfy the prerequisites detailed in that proposition, as ◆G-consistency,

being weaker than ◆
∪

G -consistency in general, should be “easier” to apply. How-

ever, as we will experimentally show in Section 7, ◆
∪

G -consistency is faster to apply.580

To give an intuition, any well-structured algorithm for applying ◆
∪

G -consistency

on a QCN will inescapably make better use of the singleton checks than the

24

Algorithm 1: PSWC∪(N , G)

in :A QCN N = (V,C), and a graph G = (V,E).

out :A sub-QCN of N .

1 begin

2 N ← PWC(N , G);

3 Q ← list(E);

4 while Q 6= ∅ do

5 {v, v′} ← Q.pop();

6 (V,C′) ← ⊥V ;

7 foreach b ∈ C(v, v′) do

8 (V,C′) ← (V,C′) ∪ PWC(N[v,v′]/{b}, G, {{v, v′}});

9 if (V,C′) ⊂ N then

10 flag ← False;

11 foreach {u, u′} ∈ E do

12 if C′(u, u′) ⊂ C(u, u′) then

13 C(u, u′)← C′(u, u′);

14 C(u′, u)← C′(u′, u);

15 flag ← True;

16 if flag then Q ← list(E);

17 return N ;

respective algorithm for applying ◆G-consistency, as it will exploit the checks (by

the very definition of ◆
∪

G -consistency) to proactively eliminate certain unfeasible

(and, hence, possibly not ◆G-consistent for their constraints) base relations.585

5. PSWC∪: an algorithm for achieving ◆
∪

G -consistency

In this section, we propose an algorithm for efficiently applying ◆
∪

G -consistency

on a given QCN N , called PSWC∪ (which stands for ∪-collective partial singleton

closure under weak composition) and presented in Algorithm 1. This algorithm

builds upon the algorithm for efficiently achieving ◆G-consistency, called PSWC590

25

Algorithm 2: PSWC(N , G)

in :A QCN N = (V,C), and a graph G = (V,E).

out :A sub-QCN of N .

1 begin

2 N ← PWC(N , G);

3 Q ← list(E);

4 while Q 6= ∅ do

5 {v, v′} ← Q.pop();

6 (V,C′) ← ⊥V ;

7 foreach b ∈ C(v, v′) do

8 (V,C′) ← (V,C′) ∪ PWC(N[v,v′]/{b}, G, {{v, v′}});

9 if C′(v, v′) ⊂ C(v, v′) then

10 C(v, v′) ← C′(v, v′);

11 C(v′, v) ← C′(v′, v);

12 Q ← list(E);

13 return N ;

(which stands for partial singleton closure under weak composition) and presented

in Algorithm 2, which in itself is an advancement6 of the respective algorithm for

enforcing ◆G-consistency that is presented in [38]. For the sake of completeness, we

also present the state-of-the-art algorithm for applying �G-consistency on a given

QCN, called PWC (which stands for partial closure under weak composition),595

6We use a queue in both of our algorithms that is initialized with all of the edges of a

given graph G, which correspond to constraints of a given QCN, and that is also filled with

all of the aforementioned edges during execution whenever any of those constraints is revised,

i.e., whenever a base relation is removed. This technique is equivalent to executing a break

statement in the algorithm of [38] whenever a singleton check fails and, hence, a constraint is

revised, forcing the inner loop in that algorithm to stop and using the outer loop to initiate

singleton checks in a fresh QCN. We have found this tactic to work much better in practice,

cutting down on the number of constraint checks performed by ∼ 20%. Further, using a queue

allows for prioritizing certain edges, a strategy which is in line with similar techniques used in

the algorithm for enforcing �G-consistency [67, 42, 68].

26

Algorithm 3: PWC(N , G, e← ∅)
in :A QCN N = (V,C), a graph G = (V,E), and optionally a set e such

that e ⊆ E.

out :A sub-QCN of N .

1 begin

2 Q ← set(e if e 6= ∅ else E);

3 while Q 6= ∅ do

4 {v, v′} ← Q.pop();

5 foreach v′′ ∈ V | {v, v′′}, {v′, v′′} ∈ E do

6 r ← C(v, v′′) ∩ (C(v, v′) � C(v′, v′′));

7 if r ⊂ C(v, v′′) then

8 C(v, v′′) ← r;

9 C(v′′, v) ← r−1;

10 Q.add({v, v′′});

11 r ← C(v′′, v′) ∩ (C(v′′, v) � C(v, v′));

12 if r ⊂ C(v′′, v′) then

13 C(v′′, v′) ← r;

14 C(v′, v′′) ← r−1;

15 Q.add({v′′, v′});

16 return N ;

which is utilized as a subroutine by both PSWC∪ and PSWC (see Algorithm 3).

The difference between algorithms PSWC∪ and PSWC lies solely in the way

that they exploit singleton checks. In particular, note the difference between the

conditions in line 9 of both algorithms; PSWC∪ will bring up all edges in the queue

for revising the entire QCN even when the constraint at hand was not revised,600

but another constraint somewhere in the QCN was, whereas PSWC will keep its

focus solely on the constraint at hand. This is due to the fact that algorithm

PSWC∪ will use a single singleton check to eliminate base relations anywhere

in the network, and not just in the constraint at hand as algorithm PSWC

does. Henceforth, we will refer to the exploited singleton checks that are used605

27

to collectively eliminate certain unfeasible base relations as collective singleton

checks, defined as follows. Given a QCN N = (V,C) and a graph G = (V,E), a

collective singleton check for a constraint C(v, v′) with {v, v′} ∈ E consists of

computing the QCNN ′ =
⋃
{�G(N[v,v′]/{b}) | b ∈ C(v, v′)} and checking ifN ′ ⊂N .

Simply put, a collective singleton check involves successively instantiating a given610

constraint of a QCN with each of its base relations, computing and unifying the

corresponding �G-consistent QCNs, and checking if there exist stronger constraints

in the resulting QCN than the respective ones in the original QCN so that the

latter can be updated accordingly. The operations involved in the singleton checks

themselves are based on the use of an algorithm for enforcing �G-consistency,615

such as PWC presented in Algorithm 3, and are in line with Definition 4 of

◆

G-consistency.

Before proving the correctness of algorithm PSWC∪, we recall the following

result regarding the correctness of algorithm PSWC:

Proposition 11 (cf. [38, 46]). Given a QCN N = (V,C) of a relation algebra620

and a graph G = (V,E), we have that algorithm PSWC terminates and returns

◆

G(N).

Now, we show that algorithm PSWC∪ is complete for applying ◆
∪

G -consistency

on a given N = (V,C) for a given graph G = (V,E). As the algorithm builds

upon PSWC, the result is straightforward; hence, an intuitive proof is provided,625

which however manages to explain the overall functionallity of algorithm PSWC∪

in sufficient detail.

Theorem 3. Given a QCN N = (V,C) of a relation algebra and a graph

G = (V,E), we have that algorithm PSWC∪ terminates and returns ◆
∪

G (N).

Proof. (Intuition) It is easy to see that lines 9–14 in Algorithm 1 perform a630

superset of the operations performed in lines 9–11 in Algorithm 2. Thus, by

Proposition 11 we know that given a QCN N = (V,C) and a graph G = (V,E),

algorithm PSWC∪ applies the set of operations required to make N ◆

G-consistent.

We need to show that the rest of the operations maintain ◆

G-consistency and

28

further achieve ◆
∪

G -consistency. With respect to that, it is again easy to see that635

algorithm PSWC∪ enforces exactly the conditions specified in Proposition 5 and,

hence, removes the (unfeasible) base relations required to make N ◆
∪

G -consistent.

Further, since the algorithm will only terminate when b is guaranteed to have

become ◆G-consistent for C(u, v) ∀{u, v} ∈ E and ∀b ∈ C(u, v) and no constraint

is further revised to additionally achieve ◆
∪

G -consistency, we can conclude that640

algorithm PSWC∪ correctly applies ◆
∪

G -consistency on N .

Time complexity analysis

Given a QCN N = (V,C) and a graph G = (V,E), we have that algorithm

PSWC∪ applies ◆
∪

G -consistency on N in O(∆ · |E|3 · B3) time, where ∆ is the

maximum vertex degree of graph G. In particular, algorithm PWC is executed645

O(|E| · |B|) times every time a constraint is revised, and such a constraint

revision can occur O(|E| · |B|) times. Further, we note that the unification

operations that take place in line 8 of the algorithm are handled in O(|E| · |B|)

time in total, as we keep track of the constraints that are revised by algorithm

PWC and we can have a total of O(|E| · |B|) constraint revisions. The same650

argument holds for the operations that take place in lines 9–14 of the algorithm.

(These details are not included in the algorithm to allow for a more compact

representation.) Now, by taking into account the worst-case time complexity

of algorithm PWC, which is O(∆ · |E| · B) [69], a worst-case time complexity of

O(∆ · |E|3 ·B3) can be obtained for algorithm PSWC∪; this is also the worst-case655

time complexity of algorithm PSWC [38]. It is important to note that we cannot

utilize the incremental functionality of algorithm PWC (see Theorem 1 in [70,

Section 3] and the surrounding text) to obtain a better bound for our algorithm,

as the singleton checks are perfomed independently of one another; to be more

precise, the unification operations that take place in line 8 of the algorithm do660

not provide the level of interdependency required to tap into the incrementality

of PWC.

29

Algorithm 4: `PSWC∪(N , G)

in :A QCN N = (V,C), and a graph G = (V,E).

out :A sub-QCN of N .

1 begin

2 N ← PWC(N , G);

3 Q ← list(E ∩ E(G(N)));

4 while Q 6= ∅ do

5 {v, v′} ← Q.pop();

6 (V,C′) ← ⊥V ;

7 foreach b ∈ C(v, v′) do

8 (V,C′) ← (V,C′) ∪ PWC(N[v,v′]/{b}, G, {{v, v′}});

9 C(v, v′) ← C′(v, v′);

10 if (V,C′) ⊂ N then

11 foreach {u, u′} ∈ E \ {v, v′} do

12 if C′(u, u′) ⊂ C(u, u′) then

13 C(u, u′)← C′(u, u′);

14 C(u′, u)← C′(u′, u);

15 Q.push({u, u′});

16 return N ;

6. `PSWC∪: a lazy variant for approximating ◆
∪

G -consistency

In this section we propose a lazy variant of algorithm PSWC∪ that aims to

efficiently approximate ◆
∪

G -consistency for a given QCN N = (V,C) with respect665

to a graph G = (V,E), when ◆
∪

G -consistency (or ◆G-consistency) is too costly

to enforce. This algorithmic variant is presented in Algorithm 4 and is called

`PSWC∪ (which stands for lazy ∪-collective partial singleton closure under weak

composition).

Like PSWC∪, a key feature of this algorithm is that it utilizes collective sin-670

gleton checks and, hence, collectively eliminates certain unfeasible base relations

by exploiting the singleton checks that are typically performed by an algorithm

30

for enforcing ◆G-consistency, such as the one presented in Algorithm 2 and called

PSWC. Unike PSWC∪, a unique feature of our algorithm is that during its

execution it takes a lazy (non-exhaustive) approach and performs a collective675

singleton check only for a constraint that has been revised and put into the queue

due to a previous collective singleton check for some other constraint. As we will

see in what follows, this behavior leads to a non-unique closure being obtained

in general for a given input QCN. Further, as opposed to PSWC, our algorithm

initially takes into account only non-universal relations of �G(N) for a QCN N680

= (V,C) and a graph G = (V,E). In all other aspects, algorithm `PSWC∪ can

be viewed as being similar to the one for efficiently achieving ◆
∪

G -consistency,

namely, PSWC∪.

We prove the following main result regarding algorithm `PSWC∪, which

captures its major theoretical properties:685

Theorem 4. Given a QCN N = (V,C) of a relation algebra and a graph G

= (V,E), algorithm `PSWC∪ terminates and returns a sub-QCN N ′ of N such

that:

• N ′ is �G-consistent;

• N ′ is equivalent to N ;690

• N ′ is non-unique in general;

• N ′ is incomparable to ◆G(N) in general;

• N ′ ⊆ �G(N);

• ◆∪G (N) ⊆ N ′.

Proof. First of all, and as it is detailed in the time complexity analysis that695

follows this proof, the algorithm terminates because it will only keep executing

as long as a base relation has been removed from some constraint and the

corresponding edge has been pushed into the queue. There is a finite number of

base relations in any given QCN (by definition, the set of base relations is finite

and a QCN involves a finite set of variables).700

31

In line 2 of the algorithm, the original QCN N is made �G-consistent via a call

to function PWC; let N ′ = (V,C ′) = �G(N). We need to show that the rest of the

refinement operations in the algorithm entail �G-consistency as well. By utilizing

the incremental functionality of algorithm PWC (see [70, Section 3]), in lines 7–8

of the algorithm, for a pair of variables {u, u′} ∈ E a set of �G-consistent sub-QCNs705

of N ′ is created, namely, the set S = {�G(N ′[u,u′]/{b}) | b ∈ C ′(u, u′)}. Then, in

those same lines, the operation
⋃
S takes place. We show that

⋃
S is �G-consistent.

Let us assume that there exist k QCNs in S, with k ≤ |C ′(u, u′)|, and hence let

N1 = (V,C1), N2 = (V,C2), . . ., Nk = (V,Ck) be all the k different �G-consistent

QCNs in S. We need to show thatN ∗ = (V,C∗) =
⋃k
i=1Ni is �G-consistent, which710

is a result that can serve as a proof that �G-consistency is closed under union. Let

us consider three variables v, v′, v′′ ∈ V such that {v, v′}, {v, v′′}, {v′, v′′} ∈ E,

and a base relation b such that b ∈ C∗(v, v′). Then, we have that b ∈ Ci(v, v′)

for some i ∈ {1, 2, . . . , k}. Since Ni is �G-consistent, we have that Ci(v, v
′) ⊆

Ci(v, v
′′) � Ci(v′′, v′) and, hence, there exist base relations b′ ∈ Ci(v, v′′) and b′′ ∈715

Ci(v
′′, v′) such that b ∈ b′ � b′′ by definition of �G-consistency. Therefore, we have

that b′ ∈ C∗(v, v′′) and b′′ ∈ C∗(v′′, v′). It follows that b ∈ C∗(v, v′′) � C∗(v′′, v′)

and that N ∗ is �G-consistent. This proves that the algorithm terminates and

returns a �G-consistent sub-QCN of N .

Let N ′ = (V,C ′) = �
G(N) (line 2 of the algorithm). By equivalence of720

�
G-consistency N ′ is equivalent to N . Further, let b ∈ C ′(u, u′) with {u, u′} ∈

E be a base relation. In lines 9–14 of the algorithm, the base relation b is

eliminated only if ∃{v, v′} ∈ E such that b 6∈ C ′′(u, u′), where (V,C ′′) =⋃
{�G(N ′[v,v′]/{b′}) | b′ ∈ C ′(v, v′)}. We need to show that b is an unfeasible base

relation of N ′. This is something that follows directly from Proposition 5 and725

hence we have that the algorithm terminates and returns a sub-QCN of N that

is equivalent to N .

In what follows, we give an intuition of why the order in which the constraints

are processed ultimately affects the output of the algorithm. The validity of

32

x1 x2

x3 x4

x5

{di,m}

{m, si}

{o}

{pi, p, si, f} {d}

{d, o}

{eq, d, fi} {d, di}

B B

(a) A QCN N = (V,C) of IA

x1 x2

x3 x4

x5

{di,m}

{m, si}

{o}

{pi, p, si, f} {d}

{d, o}

{eq, d, fi} {d, di}

B B \ {mi}

(b) The QCN ◆

G(N)

Figure 6: Given the QCN N = (V,C) of Figure 6a and the graph G that results by removing

the edge {x1, x5} from the complete graph on V , algorithm `PSWC∪ is unable to eliminate

the base relation mi in C(x2, x5) for any possible order in which the constraints are processed;

however, mi is not ◆G-consistent for C(x2, x5), as shown in Figure 6b

the result itself is supported by a counterexample;7 here, we only provide an730

argument about why the result is plausible. Let N ′ = (V,C ′) = �
G(N) (line 2 of

the algorithm). Further, consider two different pairs of variables {v, v′}, {u, u′}

7https://msioutis.gitlab.io/files/counterex.log

33

https://msioutis.gitlab.io/files/counterex.log

∈ E, and let N uu′
= (V,Cuu

′
) =

⋃
{�G(N ′[u,u′]/{b}) | b ∈ C ′(u, u′)} and N vv′ =

(V,Cvv
′
) =

⋃
{�G(N ′[v,v′]/{b}) | b ∈ C ′(v, v′)}. Then, it is entirely possible that

there exist two different pairs of variables {y, y′}, {w,w′} ∈ E \ {{v, v′}, {u, u′}}735

such that Cuu
′
(y, y′) ⊂ Cvv

′
(y, y′) and Cuu

′
(w,w′) ⊃ Cvv

′
(w,w′). (In fact, such

an example can be constructed by considering two copies of the QCN of Figure 5a

inside a larger QCN.) It follows that N uu′ 6⊆ N vv′ and N vv′ 6⊆ N uu′
. Since both

N uu′
and N vv′ are sub-QCNs of N ′, but incomparable to each other even if we

only take into account constraints between pairs of variables other than {v, v′}740

and {u, u′}, this result suggests that different constraints may be revised and

put into the queue of the algorithm depending on the order in which N uu′
and

N vv′ are calculated. As the algorithm takes a lazy (non-exhaustive) approach

during its execution and performs a collective singleton check (in lines 7–14) only

for a constraint that has been revised and put into the queue due to a previous745

collective singleton check for some other constraint, the order in which these

collective singleton checks are performed is important and can lead to different

outputs for the same input QCN.

Consider the QCN of Figure 6a and let G be the graph that results by

removing the edge {x1, x5} from the complete graph on the set of variables of750

the QCN. Given that QCN and the graph G as input, algorithm `PSWC∪ is

unable to eliminate any base relation in the QCN for any possible order in which

the constraints are processed. However, the QCN is not ◆G-consistent as shown

in Figure 6b. Indeed, the base relation mi is not ◆G-consistent for the constraint

between variables x2 and x5. Therefore, ◆G-consistency is able to eliminate more755

base relations than our algorithm in this case. Next, consider the ◆G-consistent

QCN of Figure 5a with respect to the complete graph G on the set of variables

of the QCN. In this case, our algorithm is able to eliminate the base relation d

for the constraint between variables x1 and x2 for any possible order in which

the constraints are processed. This implies that given a QCN N = (V,C) and760

a graph G = (V,E), algorithm `PSWC∪ can produce an output sub-QCN N ′

of N such that ◆G(N) 6⊆ N ′ and N ′ 6⊆ ◆

G(N). This proves that the algorithm

terminates and returns a sub-QCN of N that is, in general, incomparable to

34

◆

G(N).

We have already established that algorithm `PSWC∪ terminates and returns765

a �G-consistent sub-QCN N ′ of N in the first part of this proof. By dominance of

�
G-consistency we have that �G(N) is the largest (w.r.t. ⊆) �G-consistent sub-QCN

of N . Therefore, it follows that N ′ ⊆ �G(N).

Finally, the fact that `PSWC∪ terminates and returns a sub-QCN N ′ of N

such that ◆
∪

G (N) ⊆ N ′ follows directly from the structure of algorithm `PSWC∪,770

which considers only a subset of the set of collective singleton checks that is

performed by PSWC∪.

Time complexity analysis

By its construction, given a QCN N = (V,C) and a graph G = (V,E), the

worst-case time complexity of algorithm `PSWC∪ is essentially the same as775

that of algorithms PSWC∪ and PSWC, namely, O(∆ · |E|3 · B3), where ∆ is the

maximum vertex degree of graph G, since it can be the case that the entire set

of constraints is pushed into the queue each time a constraint revision occurs

(see lines 10–15 of the algorithm). However, and as we aim to use `PSWC∪ to

efficiently approximate ◆
∪

G -consistency, in the next section we demonstrate that780

`PSWC∪ substantially outperforms PSWC∪ (and PSWC) in practice.

7. Experimental evaluation

To facilitate discussion and presentation of the results, we will first compare

algorithm PSWC∪ to algorithm PSWC in Section 7.1, and then evaluate algo-

rithm `PSWC∪ separately in Section 7.2. As the title of Section 7.2 suggests,785

viz., “Evaluating `PSWC∪: where does it fit among PSWC∪ and PSWC?”, this

distinction is also done to allow us to focus a little more on the more interesting

(we feel) behavior of `PSWC∪ and determine its place among PSWC∪ and PSWC.

Synopsis of key findings. Here we present a synopsis of the findings concern-

ing a sample dataset of QCNs of IA and RCC8 (to be detailed in what follows)790

in order to give the reader an idea of what lies ahead. We have found PSWC∪

35

to outperform PSWC by 10% to 30% on average for the more time-consuming

network instances (see for example the row for m = 4 in Table 1b). On the other

hand, PSWC∪ is able to prune only slightly more base relations than PSWC on

average; in particular, PSWC∪ is able to prune around 3% more base relations795

than PSWC at best (see for example the row for m = 4 in Table 2b). Regarding

`PSWC∪, we have found it to be up to 5 times faster than PSWC∪ (and, hence,

PSWC as well) on average for the more time-consuming network instances (see

for example the row for d = 10 in Table 8a). Further, the pruning capability of

`PSWC∪ is excellent for the entirety of the network instances of RCC8, but also800

for the majority of the network instances of the Interval Algebra (as the median

value in Tables 6 and 7 suggests) Finally, PSWC∪ (and `PSWC∪) present a big

overhead when used to check the satisfiability of network instances of Interval

Algebra or RCC8 when put up against a state-of-the-art reasoner, but are ideal

candidates for approximating and even determining in most cases the minimal805

labeling of those instances as a comparison with the state-of-the-art approach

suggests (see Tables 11 and 12).

Let us now introduce the technical settings and details of the evaluation.

Technical specifications. The evaluation was carried out on a computer with

an Intel Core i5-6200U processor (which has a max frequency of 2.7 GHz per810

CPU core under turbo mode8), 8 GB of RAM, and the Xenial Xerus x86 64

OS (Ubuntu Linux). All algorithms were coded in Python and run using the

PyPy intepreter under version 5.1.2, which implements Python 2.7.10; the code

is available upon request. Only one CPU core was used.

Dataset. We employed models A(n, l, d) [43] and BA(n,m) [40] to generate815

random QCNs of IA and RCC8. In particular, A(n, l, d) can generate random

QCNs of n variables with an average number l of base relations per non-universal

8Turbo mode was maintained throughout the experimental evaluation by staying well

within thermal design power (TDP) limit.

36

constraint and an average degree d for the respective constraint graphs, and

BA(n,m) can generate random QCNs of n variables with an average number

|B|/2 of base relations per non-universal constraint and by use of a preferential820

attachment [71] value m for the respective constraint graphs. Using model

A(n, l, d), we generated 100 QCNs of IA and RCC8 of n = 70 and n = 100

variables respectively and with l = 6.5 and l = 4.0 base relations per non-

universal constraint on average respectively, for all values of d ranging from

7 to 12 with a step of 1, as the phase transition region [72] for this model is825

observed for 8 ≤ d ≤ 11 for both of our calculi [43, 42]. Using model BA(n,m),

we generated 100 QCNs of IA and RCC8 of n = 150 and n = 200 variables

respectively for all values of m ranging from 2 to 5 with a step of 1, as the

phase transition region for this model is observed for m ≈ 3 or 4 for both of

our calculi [73]. Thus, we considered a total of 1 000 QCNs of IA and RCC8.830

Finally, regarding the graphs that were given as input to our algorithms, the

maximum cardinality search algorithm [74] was used to obtain triangulations

of the constraint graphs of our QCNs. The choice of such chordal graphs was

reasonable given their extensive use in the recent literature on Qualitative Spatial

and Temporal Reasoning, as reviewed in [75]; the use of those graphs itself was835

inspired by [44, 45, 76, 69, 77] among other works.

Measures. Our evaluation involved four measures, which we describe as follows.

The first measure considers the number of constraint checks per base relation

removals performed by an algorithm for meeting its objective. Given a QCN

N = (V,C) and three variables vi, vk, vj ∈ V , a constraint check occurs when840

we compute the relation r = C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) and check if

r ⊂ C(vi, vj), so that we can propagate it if that condition is satisfied. The

second measure concerns the CPU time and is naturally correlated with the first

one, as the run-time of any proper implementation of an algorithm for enforcing

a local consistency should, in principle, rely mainly on the number of constraint845

checks performed. The third measure compares the pruning capability between

the evaluated algorithms, i.e., the number of base relation removals, and, finally,

37

Table 1: Evaluation of the computational effort of algorithms PSWC and PSWC∪ with random

IA networks

(a) Evaluation with random IA networks of model A(n = 70, l = 6.5, d) [43]

min µ max σ

d PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪

7 0.00s
1

0.00s
1

2.53s
10k

2.22s
9k

7.15s
21k

5.01s
16k

1.14s
4k

0.92s
3k

8 0.00s
1

0.00s
1

7.76s
18k

6.83s
16k

59.26s
73k

41.87s
73k

8.45s
12k

6.71s
11k

9 0.01s
1

0.04s
1

23.13s
37k

20.18s
34k

128.94s
172k

117.70s
158k

27.07s
30k

22.58s
28k

10 0.00s
1

0.00s
1

42.58s
36k

35.69s
33k

302.00s
205k

256.44s
171k

63.16s
52k

53.73s
47k

11 0.00s
1

0.00s
1

7.44s
3k

6.18s
2k

131.23s
151k

120.87s
140k

17.59s
15k

16.14s
14k

12 0.00s
1

0.00s
1

1.26s
121

1.01s
106

10.29s
2k

8.91s
846

2.13s
205

1.72s
177

(b) Evaluation with random IA networks of model BA(n = 150,m) [40]

min µ max σ

m PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪

2 0.00s
1

0.00s
1

0.70s
5k

0.63s
5k

2.52s
12k

2.16s
10k

0.35s
2k

0.30s
2k

3 0.00s
1

0.00s
1

11.51s
19k

9.63s
16k

74.09s
81k

52.93s
58k

11.15s
11k

7.95s
8k

4 0.00s
1

0.00s
1

116.39s
57k

82.29s
44k

1438.72s
552k

881.27s
348k

208.09s
97k

144.64s
74k

5 0.00s
1

0.00s
1

0.93s
24

0.78s
22

24.08s
585

24.74s
569

3.91s
96

3.33s
91

the fourth measure keeps track of the number of cases where the algorithms

yield incomparable outputs; this measure in particular is denoted by symbol #‖

and we present it only whenever applicable (for instance, in Tables 7 and 10).850

7.1. Comparing PSWC∪ with PSWC

With respect to IA, the results of our experimental evaluation are detailed in

Tables 1 and 2, where a fraction x
y denotes that an approach required x seconds

of CPU time and performed y constraint checks per base relation removals on

38

Table 2: Evaluation of the pruning capability of algorithm PSWC∪ compared to that of PSWC

with the random IA networks of Table 1; a percentage of x% denotes that PSWC∪ removed

x% more base relations with respect to the involved dataset

(a) Evaluation with the IA networks used in Table 1a

d min µ max med

7 0% 0% 0% 0%

8 0% 0.01% 0.40% 0%

9 0% 0.06% 1.28% 0%

10 0% 0.08% 1.76% 0%

11 0% 0% 0% 0%

12 0% 0% 0% 0%

(b) Evaluation with the IA networks used in Table 1b

m min µ max med

2 0% 0% 0% 0%

3 0% > 0% 0.19% 0%

4 0% 0.10% 3.02% 0%

5 0% 0% 0% 0%

average per dataset of networks during its operation. Regarding computational855

effort, Table 1 shows that PSWC∪ outperformed PSWC in all cases by at least

10% on average and, in particular, that PSWC∪ was around 30% faster than

PSWC on average for the more difficult instances (see the row for m = 4 in

Table 1b). Regarding pruning capability, Table 2, and the median value in

particular, suggests that there is no difference between PSWC∪ and PSWC for860

the majority of the network instances. Of course, we note that this is not an

issue of the implementation of the PSWC∪ algorithm itself, but of its underlying

consistency, viz., ◆
∪

G -consistency; thus, ◆
∪

G -consistency and ◆G-consistency are very

close to one another in terms of the refinement that they achieve in a given

QCN of IA. Nevertheless, due to the proactive nature of the collective singleton865

checks, PSWC∪ is able to refine a QCN more efficiently than PSWC and can

sometimes achieve marginally improved pruning compared to that of PSWC. As

39

Table 3: Evaluation of the computational effort of algorithms PSWC and PSWC∪ with random

RCC8 networks

(a) Evaluation with random RCC8 networks of model A(n = 100, l = 4.0, d) [43]

min µ max σ

d PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪

7 0.00s
1

0.00s
1

1.57s
3k

1.42s
2k

3.53s
5k

3.34s
4k

1.05s
2k

0.96s
2k

8 0.00s
1

0.00s
1

3.00s
3k

2.63s
3k

10.11s
10k

8.41s
7k

2.31s
2k

2.05s
2k

9 0.00s
1

0.00s
1

4.65s
3k

4.15s
3k

19.75s
12k

16.90s
9k

4.68s
3k

4.15s
3k

10 0.00s
1

0.00s
1

4.93s
3k

4.39s
3k

20.61s
12k

17.31s
11k

5.38s
4k

4.74s
3k

11 0.00s
1

0.00s
1

5.01s
3k

4.38s
3k

44.25s
21k

29.91s
14k

8.39s
4k

6.99s
4k

12 0.00s
1

0.00s
1

1.85s
724

1.69s
657

27.02s
11k

22.53s
9k

5.65s
3k

5.11s
2k

(b) Evaluation with random RCC8 networks of model BA(n = 200,m) [40]

min µ max σ

m PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪

2 0.00s
1

0.00s
1

0.40s
2k

0.37s
2k

1.06s
4k

0.93s
3k

0.26s
724

0.23s
601

3 0.00s
1

0.00s
1

2.79s
3k

2.53s
2k

9.33s
8k

8.62s
8k

2.96s
3k

2.68s
2k

4 0.00s
1

0.00s
1

1.85s
554

1.64s
487

29.28s
9k

28.56s
8k

5.82s
2k

5.16s
2k

5 0.00s
1

0.00s
1

0.00s
1

0.00s
1

0.01s
1

0.02s
1

0.00s
1

0.00s
1

an example, the reader may consider the row for m = 4 in Table 2b and the row

for d = 10 in Table 2a.

With respect to RCC8, the results of our experimental evaluation are detailed870

in Tables 3 and 4 and are qualitatively similar to those of Tables 1 and 2 for IA

in most cases. The main difference lies in the fact that the pruning capability of

PSWC∪ is exactly the same as that of PSWC for the network instances that were

generated using model BA(n,m) (see Table 4b). This came as a surprise, since

40

Table 4: Evaluation of the pruning capability of algorithm PSWC∪ compared to that of PSWC

with the random RCC8 networks of Table 3; a percentage of x% denotes that PSWC∪ removed

x% more base relations with respect to the involved dataset

(a) Evaluation with the RCC8 networks used in Table 3a

d min µ max med

7 0% 0% 0% 0%

8 0% 0% 0% 0%

9 0% > 0% 0.10% 0%

10 0% 0.01% 1.29% 0%

11 0% > 0% 0.04% 0%

12 0% 0% 0% 0%

(b) Evaluation with the RCC8 networks used in Table 3b

m min µ max med

2 0% 0% 0% 0%

3 0% 0% 0% 0%

4 0% 0% 0% 0%

5 0% 0% 0% 0%

in the case of IA this was the model for which PSWC∪ had the best pruning875

performance. However, as demonstrated in Table 3b, algorithm PSWC∪ was still

able to outperform algorithm PSWC by around 10% on average for the more

time-consuming instances. Further, algorithm PSWC∪ was able to outperform

algorithm PSWC by even more than that on average for the more time-consuming

instances that were generated using model A(n, l, d), as shown in Table 3a.880

For all intents and purposes, and with respect to the involved datasets

here, we can confidently say that between PSWC∪ and PSWC, the PSWC∪

algorithm is always the better choice. In particular, PSWC∪ is always faster, and

always removes at least as many base relations as PSWC does, since it enforces

◆
∪

G -consistency, a stricter consistency than the ◆G-consistency enforced by PSWC.885

Thus, PSWC∪ represents a clear advancement of the state-of-the-art and can be

seen as a better alternative to PSWC.

41

Table 5: Evaluation of the computational effort of algorithms PSWC∪ and `PSWC∪ with

random IA networks

(a) Evaluation with random IA networks of model A(n = 70, l = 6.5, d) [43]

min µ max σ

d PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪

7 0.00s
1

0.00s
1

2.21s
9k

0.36s
2k

4.94s
16k

1.19s
4k

0.91s
3k

0.19s
528

8 0.00s
1

0.00s
1

6.72s
16k

1.41s
4k

42.26s
73k

17.73s
16k

6.59s
11k

2.14s
3k

9 0.01s
1

0.04s
1

20.27s
34k

4.98s
8k

119.15s
158k

73.15s
75k

22.93s
28k

10.34s
11k

10 0.00s
1

0.00s
1

35.64s
33k

8.92s
9k

254.70s
171k

106.09s
90k

53.40s
47k

19.04s
16k

11 0.00s
1

0.00s
1

5.21s
2k

1.40s
462

95.65s
140k

15.57s
9k

13.30s
14k

2.82s
2k

12 0.00s
1

0.00s
1

1.07s
106

0.36s
39

9.34s
846

5.39s
623

1.82s
177

0.80s
89

(b) Evaluation with random IA networks of model BA(n = 150,m) [40]

min µ max σ

m PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪

2 0.00s
1

0.00s
1

0.55s
5k

0.11s
741

1.89s
10k

0.49s
3k

0.26s
2k

0.06s
266

3 0.00s
1

0.00s
1

9.64s
16k

2.32s
4k

52.56s
58k

18.74s
23k

7.89s
8k

3.02s
4k

4 0.00s
1

0.00s
1

81.35s
44k

31.03s
17k

874.06s
348k

589.13s
238k

143.24s
74k

74.64s
34k

5 0.00s
1

0.00s
1

0.77s
22

0.04s
2

24.75s
569

1.43s
42

3.31s
91

0.17s
6

7.2. Evaluating `PSWC∪: where does it fit among PSWC∪ and PSWC?

In the previous section we showed that PSWC∪ is a better alternative to PSWC

with respect to both computational effort and pruning capability. In this section,890

and with respect to computational effort, it suffices to use algorithm PSWC∪

as a basis of comparison for evaluating algorithm `PSWC∪. In particular, as we

will show `PSWC∪ to be substantially faster than PSWC∪, the exact conclusions

that will be drawn regarding computational effort will be the same as those

42

Table 6: Evaluation of the pruning capability of algorithm `PSWC∪ compared to that of

PSWC∪ with the random IA networks of Table 5; a percentage of x% denotes that `PSWC∪

removed x% more base relations with respect to the involved dataset

(a) Evaluation with the IA networks used in Table 5a

d min µ max med

7 −2.97% −0.07% 0% 0%

8 −6.18% −0.59% 0% −0.20%

9 −37.09% −3.64% 0% −1.58%

10 −95.01% −10.63% 0% 0%

11 −95.49% −3.21% 0% 0%

12 0% 0% 0% 0%

(b) Evaluation with the IA networks used in Table 5b

m min µ max med

2 0% 0% 0% 0%

3 −3.94% −0.22% 0% 0%

4 −74.43% −1.45% 0% 0%

5 0% 0% 0% 0%

that would have resulted from a comparison between `PSWC∪ and PSWC. On895

the other hand, regarding pruning capability, `PSWC∪, being a lazy algorithmic

variant of PSWC∪ (so, a weaker version of it), produces outputs that are directly

comparable to those of PSWC∪, but not directly comparable to those of PSWC.

(See Theorem 4 again regarding the last statement.) For this reason, in this case,

along with tables comparing the pruning capability between algorithms `PSWC∪900

and PSWC∪, we will include tables comparing the pruning capability between

algorithms `PSWC∪ and PSWC as well.

With respect to IA, the results of our experimental evaluation are detailed in

Tables 5, 6, and 7. Regarding computational effort, Table 5 shows that `PSWC∪

substantially outperformed PSWC∪ in all cases and, in particular, that `PSWC∪905

was around 4 times faster than PSWC∪ on average for the more difficult instances

(see the row for d = 10 in Table 5a). Regarding pruning capability, Tables 6

43

Table 7: Evaluation of the pruning capability of algorithm `PSWC∪ compared to that of PSWC

with the random IA networks of Table 5; a percentage of x% denotes that `PSWC∪ removed

x% more base relations with respect to the involved dataset

(a) Evaluation with the IA networks used in Table 5a

d min µ max med #‖

7 −2.97% −0.07% 0% 0% 0

8 −6.18% −0.58% 0% −0.09% 5

9 −36.99% −3.59% 0.03% −1.58% 14

10 −95.01% −10.57% 0.18% 0% 10

11 −95.49% −3.21% 0% 0% 0

12 0% 0% 0% 0% 0

(b) Evaluation with the IA networks used in Table 5b

m min µ max med #‖

2 0% 0% 0% 0% 0

3 −3.94% −0.22% 0% 0% 4

4 −74.41% −1.36% 0.03% 0% 23

5 0% 0% 0% 0% 0

and 7, and the median value in particular, suggest that there is only a slight

difference between `PSWC∪ and PSWC∪ and PSWC respectively for the majority

of the network instances. In particular, for the majority of instances, in the910

worst case (see the row for d = 9 in Tables 6a and 7a), the difference is less

than −1.58%, i.e., `PSWC∪ removes just up to 1.58% less base relations than

PSWC∪ (and PSWC) for the majority of instances, although it can remove up

to 10.63% less base relations than PSWC∪ on average (see the row for d = 10

in Table 6a). It is important to note that PSWC∪ and PSWC unveiled 6 more915

inconsistencies than `PSWC∪ in a total of 1 000 QCNs, in particular, 3 more for

A(70, 6.5, 10) and A(70, 6.5, 11) respectively; this also explains the rather high

minimum percentage values in Tables 6a and 7a for d ∈ {10, 11}. Further, as

demonstrated by measure #‖ in Table 7, there were 56 cases of incomparable

outputs between `PSWC∪ and PSWC in a total of 1 000 QCNs. (We remind the920

44

Table 8: Evaluation of the computational effort of algorithms PSWC∪ and `PSWC∪ with

random RCC8 networks

(a) Evaluation with random RCC8 networks of model A(n = 100, l = 4.0, d) [43]

min µ max σ

d PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪

7 0.00s
1

0.00s
1

1.42s
2k

0.21s
282

3.36s
4k

0.50s
679

0.95s
2k

0.14s
182

8 0.00s
1

0.00s
1

2.57s
3k

0.43s
403

8.33s
7k

2.07s
3k

2.01s
2k

0.39s
343

9 0.00s
1

0.00s
1

3.44s
3k

0.67s
492

14.12s
9k

4.11s
3k

3.46s
3k

0.77s
541

10 0.00s
1

0.00s
1

4.45s
3k

0.98s
592

17.32s
11k

6.09s
4k

4.80s
3k

1.17s
695

11 0.00s
1

0.00s
1

4.47s
3k

1.12s
531

30.86s
14k

8.03s
4k

7.15s
4k

1.84s
875

12 0.00s
1

0.00s
1

1.72s
657

0.47s
182

22.50s
9k

6.38s
3k

5.22s
2k

1.46s
557

(b) Evaluation with random RCC8 networks of model BA(n = 200,m) [40]

min µ max σ

m PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪ PSWC∪ `PSWC∪

2 0.00s
1

0.00s
1

0.48s
2k

0.08s
187

1.20s
3k

0.25s
412

0.30s
601

0.05s
98

3 0.00s
1

0.00s
1

2.54s
2k

0.42s
310

8.60s
8k

1.74s
2k

2.70s
2k

0.48s
345

4 0.00s
1

0.00s
1

1.65s
487

0.34s
106

28.50s
8k

5.53s
2k

5.18s
2k

1.09s
336

5 0.00s
1

0.00s
1

0.00s
1

0.00s
1

0.01s
1

0.02s
1

0.00s
1

0.00s
1

reader that all outputs between `PSWC∪ and PSWC∪ are comparable, that is

why this measure is not included in Table 6).

With respect to RCC8, the results of our experimental evaluation are detailed

in Tables 8, 9, and 10. Regarding computational effort, Table 8 shows that

`PSWC∪ substantially outperformed PSWC∪ in all cases and, in particular,925

that `PSWC∪ was around 5 times faster than PSWC∪ on average for the more

difficult instances (see the row for d = 10 in Table 8a). Regarding pruning

45

Table 9: Evaluation of the pruning capability of algorithm `PSWC∪ compared to that of

PSWC∪ with the random RCC8 networks of Table 8; a percentage of x% denotes that `PSWC∪

removed x% more base relations with respect to the involved dataset

(a) Evaluation with the RCC8 networks used in Table 8a

d min µ max med

7 −0.67% −0.01% 0% 0%

8 −0.24% −0.01% 0% 0%

9 −0.20% −0.02% 0% 0%

10 −0.22% −0.02% 0% 0%

11 −0.24% −0.02% 0% 0%

12 −0.30% −0.01% 0% 0%

(b) Evaluation with the RCC8 networks used in Table 8b

m min µ max med

2 0% 0% 0% 0%

3 −0.13% < 0% 0% 0%

4 −0.06% < 0% 0% 0%

5 0% 0% 0% 0%

capability, Tables 9 and 10, and the median value in particular, suggest that

there is no difference between `PSWC∪ and PSWC∪ and PSWC respectively

for the majority of the network instances, i.e., `PSWC∪ removes 0% less base930

relations than PSWC∪ (and PSWC) for the majority of instances. In addition,

the low minimum percentage values in Tables 9 and 10 suggest that this robust

pruning performance applies to the entirety of the network instances of RCC8;

this shows that the pruning capability of `PSWC∪ is excellent regarding RCC8.

It is important to note that both PSWC∪ and PSWC did not unveil any more935

inconsistencies than `PSWC∪. Further, as demonstrated by measure #‖ in

Table 10, there were just 3 cases of incomparable outputs between `PSWC∪ and

PSWC in a total of 1 000 QCNs.

All in all, and with respect to the involved datasets here, we can safely state

that the pruning capability of `PSWC∪ is excellent for the entirety of the network940

46

Table 10: Evaluation of the pruning capability of algorithm `PSWC∪ compared to that of

PSWC with the random RCC8 networks of Table 8; a percentage of x% denotes that `PSWC∪

removed x% more base relations with respect to the involved dataset

(a) Evaluation with the RCC8 networks used in Table 8a

d min µ max med #‖

7 −0.67% −0.01% 0% 0% 0

8 −0.24% −0.01% 0% 0% 0

9 −0.20% −0.01% 0.10% 0% 0

10 −0.22% −0.01% 1.18% 0% 1

11 −0.24% −0.02% 0% 0% 2

12 −0.30% −0.01% 0% 0% 0

(b) Evaluation with the RCC8 networks used in Table 8b

m min µ max med #‖

2 0% 0% 0% 0% 0

3 −0.13% < 0% 0% 0% 0

4 −0.06% < 0% 0% 0% 0

5 0% 0% 0% 0% 0

instances of RCC8, but also for the majority of the network instances of the

Interval Algebra (as the median value in Tables 6 and 7 suggests). Further,

regarding computational effort, PSWC∪ and PSWC are no match for `PSWC∪,

as `PSWC∪ is up to 5 times faster than the aforementioned algorithms. How-

ever, choosing `PSWC∪ over PSWC∪ (or PSWC) cannot be directly advised, as945

`PSWC∪ produces non-unique outputs in general (see Theorem 4) and, therefore,

cannot guarantee minimality of a given QCN for certain subclasses of relations

in the way that PSWC∪ or PSWC do (see again Propositions 4 and 10 and the

surrounding text). In the cases where certain properties (such as minimality)

can be approximated rather than strictly enforced, `PSWC∪ is the preferred950

choice.

47

7.3. Evaluating the utility of PSWC∪ (and `PSWC∪) for satisfiability checking

and minimal labeling of QCNs

In this section we expirimentally investigate the usefulness (if any) of PSWC∪

with respect to the fundamental reasoning problems of satisfiability checking955

and minimal labeling, which are typically associated with QCNs. In particular,

we would like to see the efficiency of PSWC∪ in determining the satisfiability

of a given network instance and in discovering the unfeasible base relations of

that instance (in regard to both CPU time and correctness of the respective

decision). We focus on PSWC∪ only, as the results for `PSWC∪ and even PSWC960

can be drawn from the data that were presented in earlier sections. However, we

will explicitly comment on how certain key findings carry over to `PSWC∪ and

PSWC where appropriate.

In this third phase of experimentation we utilize two additional software

tools, which are presented as follows:965

• Solver, the state-of-the-art reasoner for checking the satisfiability of QCNs

of Interval Algebra and RCC8 that was introduced in [40] (and in particular

the reasoner called Phalanx5 in that work);

• Minimizer, our own implementation for the sake of this experimental evalu-

ation of the approach for solving the minimal labeling problem of QCNs of970

Interval Algebra and RCC8 that was first presented in [38].9

With respect to IA, the results of our experimental evaluation are detailed

in Table 11, where a fraction x
y for Solver denotes that it required x seconds of

CPU time on average per dataset of networks during its operation and detected

y instances as being unsatisfiable in total, a fraction x
z for Minimizer denotes975

that it determined z% of base relations to be unfeasible in total, and a fraction

x
y|z for PSWC∪ denotes all the previous information combined together (from

9In particular, we ported the code to Python and included all recent advances that are

associated with the components that comprise that approach, such as improvements in its

underlying satisfiability checking module.

48

Table 11: Evaluation of the satisfiability checking and minimal labeling capacity of algorithm

PSWC∪ with random IA networks

(a) Evaluation with random IA networks

of model A(n = 70, l = 6.5, d) [43]

d Solver Minimizer PSWC∪

7 0.18s
2

12.58s
3.84%

2.21s
2|3.84%

8 0.21s
5

26.27s
8.75%

6.81s
5|8.72%

9 0.35s
6

301.42s
13.67%

21.20s
6|12.31%

10 2.13s
55

1 968.86s
70.57%

37.99s

54| 64.13%
(65.01%)

11 5.77s
100

7.67s
100%

6.23s

99| 98.97%
(100%)

12 0.30s
100

1.22s
100%

1.04s
100|100%

(b) Evaluation with random IA networks

of model BA(n = 150,m) [40]

m Solver Minimizer PSWC∪

2 0.16s
2

8.18s
3.14%

0.64s
2|3.14%

3 0.20s
7

44.49s
9.42%

10.00s
7|9.42%

4 0.27s
60

130.00s
66.89%

87.95s
60|66.83%

5 0.18s
100

0.91s
100%

0.76s
100%

the viewpoint of PSWC∪). Regarding computational effort, Table 11 shows

that Solver has no competition whatsoever. This was expected, as this type of

reasoner is tailored to avoid “bad” branches in the search tree and reach a leaf980

(i.e., a solution) in the most efficient way possible. On the other hand, when the

entire search tree needs to be taken into account, as is the case with Minimizer,

the computational task is much more time-consuming; therefore, Minimizer has

by far the worst performance among its competition (yet, substantially better

performance than a naive approach for solving the minimal labeling problem [38]).985

Regarding PSWC∪, we can note that it of course presents an overhead with

respect to Solver, but it is much faster in general than Minimizer. In addition,

PSWC∪ fails to correctly determine the unsatisfiability of only 2 out of 1 000

network instances, and is able to discover all unfeasible base relations in most

cases, i.e., it simulates the output of Minimizer in an almost exact manner.990

If we further aid PSWC∪ by using Solver to inform the algorithm about the

satisfiability or unsatisfiability of an instance and, consequently, have PSWC∪

zero out those 2 out of 1 000 network instances, then the end result with respect

49

Table 12: Evaluation of the satisfiability checking and minimal labeling capacity of algorithm

PSWC∪ with random RCC8 networks

(a) Evaluation with random RCC8 net-

works of model A(n = 100, l = 4.0, d) [43]

d Solver Minimizer PSWC∪

7 0.01s
25

4.56s
27.47%

1.44s
25|27.47%

8 0.02s
31

7.64s
34.22%

2.65s
31|34.22%

9 0.02s
45

9.41s
48.66%

4.16s
45|48.66%

10 0.02s
50

140.27s
54.65%

4.73s
50|54.65%

11 0.02s
69

11.75s
72.85%

4.52s
69|72.85%

12 0.01s
90

3.39s
91.50%

1.74s
90|91.50%

(b) Evaluation with random RCC8 net-

works of model BA(n = 200,m) [40]

m Solver Minimizer PSWC∪

2 0.01s
15

1.26s
16.97%

0.38s
15|16.97%

3 0.01s
49

6.56s
50.92%

2.59s
49|50.92%

4 0.01s
90

5.05s
91.17%

1.65s
90|91.17%

5 0.00s
100

0.01s
100%

0.00s
100%

to the percentage of unfeasible base relations discovered is even closer to that

of Minimizer; these numbers are given in parentheses in the table. We remind995

the reader that PSWC∪ and PSWC detect the same number of unsatisfiable

network instances for this dataset of Interval Algebra and that they unveil 6

more inconsistencies than `PSWC∪ in a total of 1 000 QCNs, in particular, 3

more for A(70, 6.5, 10) and A(70, 6.5, 11) respectively.

With respect to RCC8, the results of our experimental evaluation are detailed1000

in Table 12, Regarding computational effort, we again have that Solver is by

far the fastest tool, as it is only burderned with the ask of deciding whether a

network instance is satisfiable or not. Further, Minimizer has again the worst

performance among its competition by a large margin. Regarding PSWC∪,

the most notable differences with respect to how it performed in the case of1005

Interval Algebra network instances, are that in this case it correctly determines

the unsatisfiability of all 1 000 network instances, and is able to discover all

unfeasible base relations in all cases. Therefore, for this particular dataset of

RCC8 network instances, PSWC∪ can serve as a direct replacement for Minimizer.

50

Taking into account the fact that PSWC∪ can be 30 times faster than Minimizer1010

(see for example the row for d = 10 in Table 12a), PSWC∪ appears to be an

excellent choice for solving the minimal labeling problem of QCNs of RCC8. We

remind the reader that PSWC∪, PSWC, and `PSWC∪ all detect the same number

of unsatisfiable network instances for this dataset of RCC8.

In conclusion, and with respect to the involved datasets here, we can deduce1015

that PSWC∪ (and `PSWC∪) are not good options for just checking the satisfia-

bility of a network instance, as they present an overhead when compared to a

state-of-the-art reasoner that is tailored to this specific task. However, we can

also deduce that they are ideal candidates for efficiently approximating and even

determining in most cases the minimal labeling of a network instance, especially1020

when coupled with a satisfiability checker to deal with the rare cases where the

singleton consistencies will fail to determine the unsatisfiability of a network

instance.

8. Conclusion and future work

Partial singleton weak path-consistency, or partial ◆-consistency for short, is1025

essential for tackling challenging fundamental reasoning problems associated with

qualitative constraints networks. Briefly put, partial ◆-consistency ensures that

each base relation of each of the constraints of a qualitative constraint network can

define a singleton relation in its corresponding partially weakly path-consistent,

or partially �-consistent for short, subnetwork. Further, partial ◆-consistency1030

has been shown to play a crucial role in tackling the minimal labeling problem

of a qualitative constraint network in particular, which is the problem of finding

the strongest implied constraints of that network. In this paper, we proposed a

stronger local consistency that couples ◆-consistency with the idea of collectively

deleting certain unfeasible base relations by exploiting singleton checks. We then1035

proposed an algorithm for enforcing this new consistency and a lazy variant of

that algorithm for approximating the new consistency that, given a qualitative

constraint network, both outperform the respective algorithm for enforcing

51

partial ◆-consistency in that network. With respect to the lazy algorithmic

variant in particular, we showed that it runs up to 5 times faster than our1040

original exhaustive algorithm whilst exhibiting very similar pruning capability.

We formally proved certain properties of our new local consistency and our

algorithms, and motivated their usefulness through demonstrative examples and

a thorough experimental evaluation with random qualitative constraint networks

of the Interval Algebra and the Region Connection Calculus from the phase1045

transition region of two different generation models.

There are several directions for future work. Regarding the algorithm that

enforces our new consistency, we would like to explore queuing strategies such that

the singleton checks are applied in a more fruitful manner. In particular, it would

make sense to prioritize certain singleton checks that are more likely to eliminate1050

base relations anywhere in the network at hand, because this could unveil certain

inconsistencies faster, but also lead to fewer constraint checks overall. Such

strategies have been used in the case of partial �-consistency [67, 42, 68]. Further,

regarding the new local consistency itself, we would like to define a weaker variant

of it that considers singleton checks in the neighborhood of the constraint in1055

question, instead of the entire network. Early experiments in this direction have

shown really promising results with respect to constraint satisfaction problems,

which is due to the fact that constraint revisions tend to propagate themselves

to just neighboring constraints [50].

Acknowledgements1060

We would like to thank Prof. Sven Schewe, Prof. Thomas Schneider, and

Prof. Jef Wijsen, the program committee chairs of the 24th International Sym-

posium on Temporal Representation and Reasoning (TIME 2017) for selecting

our work that was published in the proceedings of that conference (see [78]) as a

candidate for inclusion in this special issue of the Elsevier Journal of Theoretical1065

Computer Science (TCS). In addition, in this manuscript we have also revised

preliminary material that appears in another conference paper (cf. [79]). Finally,

52

we would also like to thank the reviewers for their thoughtful comments and

efforts towards improving our manuscript.

[1] M. Bhatt, J. O. Wallgrün, Geospatial Narratives and Their Spatio-Temporal1070

Dynamics: Commonsense Reasoning for High-Level Analyses in Geographic

Information Systems, ISPRS Int. J. Geo-Information 3 (2014) 166–205.

[2] F. Dylla, J. O. Wallgrün, Qualitative Spatial Reasoning with Conceptual

Neighborhoods for Agent Control, Journal of Intelligent and Robotic Systems

48 (2007) 55–78.1075

[3] N. Krishnaswamy, S. Friedman, J. Pustejovsky, Combining Deep Learning

and Qualitative Spatial Reasoning to Learn Complex Structures from Sparse

Examples with Noise, in: AAAI, 2019.

[4] P. A. Story, M. F. Worboys, A Design Support Environment for Spatio-

Temporal Database Applications, in: COSIT, 1995.1080

[5] K. S. R. Dubba, A. G. Cohn, D. C. Hogg, M. Bhatt, F. Dylla, Learning

Relational Event Models from Video, J. Artif. Intell. Res. 53 (2015) 41–90.

[6] M. Sioutis, M. Alirezaie, J. Renoux, A. Loutfi, Towards a Synergy of Quali-

tative Spatio-Temporal Reasoning and Smart Environments for Assisting

the Elderly at Home, in: IJCAI Workshop on Qualitative Reasoning, 2017.1085

[7] M. Bhatt, H. Guesgen, S. Wölfl, S. Hazarika, Qualitative Spatial and Tem-

poral Reasoning: Emerging Applications, Trends, and Directions, Spatial

Cognition & Computation 11 (2011) 1–14.

[8] F. Dylla, J. H. Lee, T. Mossakowski, T. Schneider, A. van Delden, J. van de

Ven, D. Wolter, A Survey of Qualitative Spatial and Temporal Calculi:1090

Algebraic and Computational Properties, ACM Comput. Surv. 50 (2017)

7:1–7:39.

[9] J. F. Allen, Maintaining Knowledge about Temporal Intervals, Commun.

ACM 26 (1983) 832–843.

53

[10] J. F. Allen, J. A. G. M. Koomen, Planning Using a Temporal World Model,1095

in: IJCAI, 1983.

[11] J. F. Allen, Planning as Temporal Reasoning, in: KR, 1991.

[12] R. N. Pelavin, J. F. Allen, A Model for Concurrent Actions Having Temporal

Extent, in: AAAI, 1987.

[13] J. Dorn, Dependable Reactive Event-Oriented Planning, Data Knowl. Eng.1100

16 (1995) 27–49.

[14] L. Mudrová, N. Hawes, Task scheduling for mobile robots using interval

algebra, in: ICRA, 2015.

[15] F. Song, R. Cohen, The Interpretation of Temporal Relations in Narrative,

in: IJCAI, 1988.1105

[16] P. Denis, P. Muller, Predicting Globally-Coherent Temporal Structures from

Texts via Endpoint Inference and Graph Decomposition, in: IJCAI, 2011.

[17] R. T. Snodgrass, The Temporal Query Language TQuel, ACM Trans.

Database Syst. 12 (1987) 247–298.

[18] C. X. Chen, C. Zaniolo, Universal Temporal Data Languages, in: DDLP,1110

1998.

[19] T. D. C. Little, A. Ghafoor, Interval-Based Conceptual Models for Time-

Dependent Multimedia Data, IEEE Trans. Knowl. Data Eng. 5 (1993)

551–563.

[20] M. C. Golumbic, R. Shamir, Complexity and Algorithms for Reasoning1115

about Time: A Graph-Theoretic Approach, J. ACM 40 (1993) 1108–1133.

[21] S. Benzer, On the Topology of the Genetic Fine Structure, Proc. Natl. Acad.

Sci. USA 45 (1959) 1607–1620.

[22] R. Lu, S. W. Sadiq, V. Padmanabhan, G. Governatori, Using a temporal

constraint network for business process execution, in: ADC, 2006.1120

54

[23] D. A. Randell, Z. Cui, A. Cohn, A Spatial Logic Based on Regions &

Connection, in: KR, 1992.

[24] B. Bouzy, Les concepts spatiaux dans la programmation du go, Revue

d’Intelligence Artificielle 15 (2001) 143–172.

[25] A. D. Lattner, I. J. Timm, M. Lorenz, O. Herzog, Knowledge-based risk1125

assessment for intelligent vehicles, in: KIMAS, 2005.

[26] F. Heintz, D. de Leng, Spatio-Temporal Stream Reasoning with Incomplete

Spatial Information, in: ECAI, 2014.

[27] D. A. Randell, A. Galton, S. Fouad, H. Mehanna, G. Landini, Mereotopolog-

ical Correction of Segmentation Errors in Histological Imaging, J. Imaging1130

3 (2017) 63.

[28] V. Fenelon, P. E. Santos, H. M. Dee, F. G. Cozman, Reasoning about

shadows in a mobile robot environment, Appl. Intell. 38 (2013) 553–565.

[29] P. Rost, L. Hotz, S. von Riegen, Supporting Mobile Robot’s Tasks through

Qualitative Spatial Reasoning, in: ICINCO, 2012.1135

[30] Z. Falomir, L. M. Cabedo, V. Castelló, L. G. Abril, Qualitative distances

and qualitative image descriptions for representing indoor scenes in robotics,

Pattern Recognition Letters 34 (2013) 731–743.

[31] M. Sridhar, A. G. Cohn, D. C. Hogg, From Video to RCC8: Exploiting a

Distance Based Semantics to Stabilise the Interpretation of Mereotopological1140

Relations, in: COSIT, 2011.

[32] P. Kordjamshidi, M. Moens, Global machine learning for spatial ontology

population, J. Web Sem. 30 (2015) 3–21.

[33] P. Kordjamshidi, J. Hois, M. van Otterlo, M.-F. Moens, Machine learning

for interpretation of spatial natural language in terms of QSR, in: COSIT1145

(Extended abstract), 2011.

55

[34] G. Ligozat, J. Renz, What Is a Qualitative Calculus? A General Framework,

in: PRICAI, 2004.

[35] J. Renz, B. Nebel, Qualitative Spatial Reasoning Using Constraint Calculi,

in: Handbook of Spatial Logics, 2007, pp. 161–215.1150

[36] F. Dylla, T. Mossakowski, T. Schneider, D. Wolter, Algebraic Properties of

Qualitative Spatio-Temporal Calculi, in: COSIT, 2013.

[37] J. Renz, G. Ligozat, Weak Composition for Qualitative Spatial and Temporal

Reasoning, in: CP, 2005.

[38] N. Amaneddine, J.-F. Condotta, M. Sioutis, Efficient Approach to Solve the1155

Minimal Labeling Problem of Temporal and Spatial Qualitative Constraints,

in: IJCAI, 2013.

[39] M. Sioutis, S. Li, J.-F. Condotta, Efficiently Characterizing Non-Redundant

Constraints in Large Real World Qualitative Spatial Networks, in: IJCAI,

2015.1160

[40] M. Sioutis, J. Condotta, M. Koubarakis, An Efficient Approach for Tackling

Large Real World Qualitative Spatial Networks, Int. J. Artif. Intell. Tools

25 (2016) 1–33.

[41] S. Li, Z. Long, W. Liu, M. Duckham, A. Both, On redundant topological

constraints, Artif. Intell. 225 (2015) 51–76.1165

[42] J. Renz, B. Nebel, Efficient Methods for Qualitative Spatial Reasoning, J.

Artif. Intell. Res. 15 (2001) 289–318.

[43] B. Nebel, Solving Hard Qualitative Temporal Reasoning Problems: Eval-

uating the Efficiency of Using the ORD-Horn Class, Constraints 1 (1997)

175–190.1170

[44] J. Huang, J. J. Li, J. Renz, Decomposition and tractability in qualitative

spatial and temporal reasoning, Artif. Intell. 195 (2013) 140–164.

56

[45] J. Huang, Compactness and its implications for qualitative spatial and

temporal reasoning, in: KR, 2012.

[46] J.-F. Condotta, C. Lecoutre, A Class of df-Consistencies for Qualitative1175

Constraint Networks, in: KR, 2010.

[47] H. Bennaceur, M. Affane, Partition-k-AC: An Efficient Filtering Technique

Combining Domain Partition and Arc Consistency, in: CP, 2001.

[48] C. Bessière, Arc-Consistency and Arc-Consistency Again, Artif. Intell. 65

(1994) 179–190.1180

[49] R. Debruyne, C. Bessière, Some Practicable Filtering Techniques for the

Constraint Satisfaction Problem, in: IJCAI, 1997.

[50] R. J. Wallace, Neighbourhood SAC: Extensions and new algorithms, AI

Commun. 29 (2016) 249–268.

[51] A. Paparrizou, K. Stergiou, On Neighborhood Singleton Consistencies, in:1185

IJCAI, 2017.

[52] A. Balafrej, C. Bessiere, E. Bouyakhf, G. Trombettoni, Adaptive Singleton-

Based Consistencies, in: AAAI, 2014, pp. 2601–2607.

[53] C. Bessière, R. Debruyne, Theoretical analysis of singleton arc consistency

and its extensions, Artif. Intell. 172 (2008) 29–41.1190

[54] J. Renz, A Canonical Model of the Region Connection Calculus, J. Appl.

Non-Classical Logics 12 (2002) 469–494.

[55] M. B. Vilain, H. A. Kautz, Constraint Propagation Algorithms for Temporal

Reasoning, in: AAAI, 1986.

[56] G. Ligozat, Reasoning about cardinal directions, J. Vis. Lang. Comput. 91195

(1998) 23–44.

[57] A. U. Frank, Qualitative Spatial Reasoning with Cardinal Directions, in:

ÖGAI, 1991.

57

[58] P. Balbiani, J.-F. Condotta, L. F. del Cerro, Tractability Results in the

Block Algebra, J. Log. Comput. 12 (2002) 885–909.1200

[59] R. K. Goyal, M. J. Egenhofer, Consistent Queries over Cardinal Directions

across Different Levels of Detail, in: DEXA Workshop, 2000.

[60] S. Skiadopoulos, M. Koubarakis, On the consistency of cardinal direction

constraints, AIJ 163 (2005) 91–135.

[61] W. Liu, X. Zhang, S. Li, M. Ying, Reasoning about cardinal directions1205

between extended objects, Artif. Intell. 174 (2010) 951–983.

[62] A. Tarski, On the calculus of relations, J. Symb. Log. 6 (1941) 73–89.

[63] Z. Long, S. Li, On Distributive Subalgebras of Qualitative Spatial and

Temporal Calculi, in: COSIT, 2015.

[64] R. Diestel, Graph Theory, 4th Edition, Vol. 173 of Graduate Texts in1210

Mathematics, Springer, 2012.

[65] Z. Long, M. Sioutis, S. Li, Efficient Path Consistency Algorithm for Large

Qualitative Constraint Networks, in: IJCAI, 2016.

[66] C. Lutz, M. Milicic, A Tableau Algorithm for DLs with Concrete Domains

and GCIs, J. Autom. Reasoning 38 (2007) 227–259.1215

[67] P. van Beek, D. W. Manchak, The design and experimental analysis of

algorithms for temporal reasoning, J. Artif. Intell. Res. 4 (1996) 1–18.

[68] P. B. Ladkin, A. Reinefeld, Fast Algebraic Methods for Interval Constraint

Problems, Ann. Math. Artif. Intell. 19 (1997) 383–411.

[69] A. Chmeiss, J. Condotta, Consistency of Triangulated Temporal Qualitative1220

Constraint Networks, in: ICTAI, 2011.

[70] A. Gerevini, Incremental qualitative temporal reasoning: Algorithms for

the Point Algebra and the ORD-Horn class, Artif. Intell. 166 (2005) 37–80.

58

[71] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science

286 (1999) 509–512.1225

[72] P. C. Cheeseman, B. Kanefsky, W. M. Taylor, Where the Really Hard

Problems Are, in: IJCAI, 1991.

[73] M. Sioutis, Algorithmic Contributions to Qualitative Constraint-based

Spatial and Temporal Reasoning, Ph.D. thesis, Université d’Artois (2017).

[74] R. E. Tarjan, M. Yannakakis, Simple Linear-Time Algorithms to Test1230

Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively

Reduce Acyclic Hypergraphs, SIAM J. Comput. 13 (1984) 566–579.

[75] M. Sioutis, Y. Salhi, J.-F. Condotta, Studying the use and effect of graph

decomposition in qualitative spatial and temporal reasoning, Knowl. Eng.

Rev. 32 (2016) e4.1235

[76] J. J. Li, J. Huang, J. Renz, A divide-and-conquer approach for solving

interval algebra networks, in: IJCAI, 2009.

[77] M. Bodirsky, S. Wölfl, RCC8 is polynomial on networks of bounded

treewidth, in: IJCAI, 2011.

[78] M. Sioutis, A. Paparrizou, J. Condotta, Collective Singleton-Based Consis-1240

tency for Qualitative Constraint Networks, in: TIME, 2017.

[79] M. Sioutis, A. Paparrizou, J. Condotta, A Lazy Algorithm to Efficiently Ap-

proximate Singleton Path Consistency for Qualitative Constraint Networks,

in: ICTAI, 2017.

59

	Introduction
	Preliminaries
	A closer look at G-consistency and G-consistency
	G-Consistency: a new local consistency for QCNs
	PSWC: an algorithm for achieving G-consistency
	PSWC: a lazy variant for approximating G-consistency
	Experimental evaluation
	Comparing PSWC with PSWC
	Evaluating PSWC: where does it fit among PSWC and PSWC?
	Evaluating the utility of PSWC (and PSWC) for satisfiability checking and minimal labeling of QCNs

	Conclusion and future work

