Margaux Nattaf
email: margaux.nattaf@emse.fr

Stéphane Dauzère-Pérès
email: dauzere-peres@emse.fr

Claude Yugma
email: yugma@emse.fr

Cheng-Hung Wu

Parallel Machine Scheduling with Time Constraints on Machine Qualications

Keywords: Scheduling, Parallel Machines, Time Constraints, Machine Qualications, Constraint Programming, Integer Programming, Heuristics

This paper studies the scheduling of jobs of dierent families on parallel machines, where not all machines are qualied (eligible) to process all job families. Originating from semiconductor manufacturing, an important constraint imposes that the time between the processing of two consecutive jobs of the same family on a machine does not exceed a given time limit. Otherwise, the machine becomes disqualied for this family. The goal is to minimize both the ow time and the number of disqualications of job families on machines.

To solve this problem, an integer linear programming model and a constraint programming model are proposed, as well as two improvement procedures of existing heuristics:

A Recursive Heuristic and a Simulated Annealing algorithm. Numerical experiments on randomly generated instances compare the performances of each method.

Introduction

Nowadays, process industries are facing numerous challenges that are induced by continuous market changes, uncertainty in the demand, aggressive competition and recently more complex manufacturing technologies. These challenges require companies to continuously improve their production management and control to remain economically viable. To do so, several authors, such as [START_REF] Dauzère-Pérès | On the importance of sequencing decisions in production planning and scheduling[END_REF] and [START_REF] Gaudreault | Combined planning and scheduling in a divergent production system with co-production: A case study in the lumber industry[END_REF], point out the importance of integrating operational scheduling decisions with tactical planning decisions. More recently, [START_REF] Yugma | Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook[END_REF] show the opportunities related to integrating scheduling and process control in semiconductor manufacturing. This paper tackles a problem in this latter context, by integrating process control constraints when optimizing scheduling decisions.

The semiconductor industry is probably the most complex industry. Typical characteristics of semiconductor fabrication facilities include numerous products, each requiring hundreds of operations on hundreds of machines in dierent workshops. Scheduling all jobs in a semiconductor manufacturing facility is so complex that the problem needs to be decomposed, i.e. jobs are scheduled in each workshop separately (see Moench et al. (2011)). Still, in a workshop performing the same type of operations, machines are often not identical, i.e. a machine can usually process a limited number of job families. For instance, [START_REF] Yugma | A batching and scheduling algorithm for the diusion area in semiconductor manufacturing[END_REF] and [START_REF] Jung | An eective problem decomposition method for scheduling of diusion processes based on mixed integer linear programming[END_REF], and more recently [START_REF] Knopp | A batch-oblivious approach for complex job-shop scheduling problems[END_REF], consider scheduling problems in the cleaning and diusion workshop, while [START_REF] Rotondo | Sequencing optimisation for makespan improvement at wet-etch tools[END_REF] consider the scheduling of jobs on wet-etch tools. Because it contains the most expensive machines, a critical workshop in wafer manufacturing facilities is the photolithography workshop. Scheduling approaches for this workshop have been proposed for instance in [START_REF] Cakici | Parallel machine scheduling subject to auxiliary resource constraints[END_REF] and [START_REF] Bitar | A memetic algorithm to solve an unrelated parallel machine scheduling problem with auxiliary resources in semiconductor manufacturing[END_REF].

Advanced Process Control (APC) aims at controlling machines and processes to ensure product quality, mainly by reducing variability. APC is usually associated with the combination of Statistical Process Control (SPC), Fault Detection and Classication (FDC), Run to Run (R2R) control, and more recently Virtual Metrology (VM) (see for instance [START_REF] Moyne | Run-to-run control in semiconductor manufacturing[END_REF]). Although usually studied separately, scheduling and APC are actually often related in semiconductor manufacturing [START_REF] Yugma | Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook[END_REF]. In this paper, we are considering constraints induced by R2R controllers in scheduling decisions, and more specically a maximum time constraint between two jobs of the same family to be processed on a machine. As shown in the survey paper of [START_REF] Tan | Survey on run-to-run control algorithms in high-mix semiconductor manufacturing processes[END_REF], R2R control is becoming critical in high-mix semiconductor manufacturing processes.

A R2R controller is often associated with each machine and each job family, and uses data from past process runs to adjust the settings of the machine for the next run (see for example [START_REF] Musacchio | On the utility of run to run control in semiconductor manufacturing[END_REF] or [START_REF] Jedidi | Feedforward run-to-run control for reduced parametric transistor variation in cmos logic 0.13 µm technology[END_REF]). In order to keep the R2R parameters updated and valid, a R2R controller should regularly receive data. Hence, as presented in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF], an additional time constraint is dened on the scheduling problem to impose that the execution of two jobs of the same family lies within a given time interval on the same (qualied) machine. The value of this time threshold depends on several criteria such as the process type (critical or not) and the machine type. If this time constraint between two jobs of the same family is not satised, a qualication procedure is required for the machine to be able to process again the job family. This procedure ensures that the machine works within a specied tolerance and is usually time-consuming.

In this paper, we assume that qualication procedures are not scheduled either because the scheduling horizon is not suciently long or because qualication procedures have to be manually performed and/or validated by process engineers. Therefore, maintaining machine qualications as long as possible is crucial. More precisely, it is important to have as many remaining machine qualications as possible at the end of the schedule, so that future jobs can also be scheduled. Note that dening the right qualications of job families to machines, studied for instance in [START_REF] Johnzén | Flexibility measures for qualication management in wafer fabs[END_REF] and [START_REF] Rowshannahad | Capacitated qualication management in semiconductor manufacturing[END_REF], is outside the scope of this paper. We assume that the current set of qualications are the ones that should be maintained for current and future short-term production mixes (i.e. number of jobs of each family). An extension of the approaches proposed in this paper would consist in not penalizing losses of the current qualications that become unnecessary.

It is also important to note that the time constraints considered in this paper are dierent from the time constraints, also called time windows or maximum time lags, studied for instance in [START_REF] Wu | Dynamic production control in a serial line with process queue time constraint[END_REF], [START_REF] Klemmt | Scheduling jobs with time constraints between consecutive process steps in semiconductor manufacturing[END_REF] and [START_REF] Sadeghi | Production control in semiconductor manufacturing with time constraints[END_REF]. In this latter case, the maximum time to satisfy is between two operations, usually performed on dierent machines, in the route (sequence of operations) of a job and not between two jobs on the same machine as it is the case in our problem.

To our knowledge, there are few articles dealing with scheduling decisions while integrating R2R constraints. [START_REF] Li | The impact of the qual-run requirements of APC on the scheduling performance in semiconductor manufacturing[END_REF] and [START_REF] Cai | Single-machine scheduling with advanced process control constraints[END_REF] study related problems, except that they allow qualication procedures to be performed, the number or the type of machines is dierent and the threshold is expressed in number of jobs instead of in time. The scheduling problem addressed in this paper has been studied in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF], where two Integer Linear Programs (I P 1 and IP 2) and two constructive heuristics are proposed. In this paper, the objective remains the same, i.e. to schedule jobs on non-identical parallel machines while satisfying time constraints and optimizing both the sum of completion times and the number of qualication losses. To solve this problem, we rst propose a new Integer Linear Program IP 3 that solves larger instances than IP 1 and better models time constraints. Then, a CP model is presented to also solve exactly the problem. Finally, two heuristics are introduced that improve the solutions obtained in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF].

The paper is organized as follows. In Section 2, a more formal description of the problem is given. Section 3 is dedicated to exact methods. The new ILP is rst introduced, and then the constraint programming model. Section 4 presents a Recursive Heuristic and a Simulated Annealing algorithm. Section 5 provides and discusses experimental results.

Finally, conclusions and perspectives for future research are given in Section 6.

Problem description

The problem description and notations are taken from [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF]. This problem takes as input a set of jobs, N = {1, . . . , N }, belonging to dierent families, and a set of machines, M = {1, . . . , M }. The set of job families is denoted by F, and f (i) is the family of job i. A machine m ∈ M can process a limited number of job families. If m can process family f , m is said to be qualied (eligible) for f , and M(f) denotes the subset of machines qualied for f . Each family f is associated with a number n f of jobs to process, a processing time p f needed to process a job of family f , a setup time s f and a time threshold γ f . Between two jobs of the same family, no setup time is required. The time threshold γ f is used to model time constraints, i.e. γ f is the maximum time interval between two jobs of f on a machine m to avoid losing the qualication of f on m. This time threshold is considered on a start-to-start basis, i.e. the threshold is counted from the start of a job of family f to the start of the next job of f on machine m. If the constraint is not satised at time t, machine m becomes disqualied for family f and is no longer available to process jobs of f (see Example 2.1).

Example 2.1. Figure 1 illustrates time constraints. In Figures (1a) and (1b), a job of a given family is started during the time interval corresponding to its family, and hence the machine remains qualied to process jobs of the same family for another time interval. The objective is to minimize both the sum of the completion times of jobs and the number of machine disqualications. The objective considered through the paper is the weighted sum of both objectives with parameters α, for the sum of completion times, and β, for the number of machine disqualications.

At least two reasons are motivating the minimization of the number of machine disqualications. First, scheduling problems are usually solved in a rolling horizon setting, and it is thus interesting to preserve machine qualications for future jobs, in particular if the scheduling horizon is relatively short. Second, the decision of qualifying a job family on a machine is often taken by process engineers once the machine qualication is lost. And qualication decisions are taken periodically by process engineers and not dynamically.

Hence, again, it is relevant to preserve machine qualications to avoid losing them for an extended period of time. As discussed in the perspectives in Section 6, considering automatic machine re-qualications when scheduling lots is a future research topic.

The problem is dened as Scheduling Problem with Time Constraints (P T C). It is important to notice that minimizing the sum of completion times for all jobs and minimizing the number of machine disqualications are two conicting criteria. Indeed, to maintain machine qualications, one needs to regularly change the job family scheduled on machines, resulting in numerous setup times and then to a large value of the completion time. This assertion is illustrated in Section 5.

Exact Methods

This section starts by briey recalling the two Integer Linear Programs ((I P 1) and (IP 2)) presented in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF]. Then, an improved Integer Linear Program (IP 3) is presented, and nally a Constraint Programming model for PTC is detailed.

Integer Linear Programming

The two models described in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF], as well as the model proposed in this paper, are based on time-indexed variables. The time horizon T is discretized and let T = {0, . . . , T -1} be the set of intervals. In such formulation, nding a good upper bound on T is therefore crucial. Since P T C considers two objectives that are conicting, this bound is not easy to nd. In the following formulations, the scheduling horizon is taken as the sum of all processing times, plus the setup time multiplied by the number of jobs per family. This is an extreme case where all jobs are scheduled on a single machine, and where a setup time is required for each job, i.e.

T = f ∈F n f • (p f + s f).
The rst model, (IP 1), is a job-based formulation where for each job i ∈ N , for each time t ∈ T and for each machine m ∈ M, a binary variable x m i,t models the start time of job i. (2014). This formulation uses the fact that all jobs in a family can be interchanged in an optimal solution. Thus, to model the job start times, a binary variable x m f,t is used to model the start time of jobs of family f . That is, x m f,t is equal to 1 if and only if a job of family f starts at time t on machine m. With this model, larger instances can be solved but time constraints are still not modeled appropriately. Indeed, in (IP 2), the number of disqualications depends on the time horizon T and on the makespan C max . One of the main consequences is that, with this modeling, a machine can lose its qualication after C max , i.e. the maximum completion time of all jobs. Thus, the solution determined by (IP 2) may not be realistic.

Example 3.1. In Figure 2, the dashed part corresponds to the scheduled jobs. Hence, C max is the maximum completion time of all jobs. Furthermore, T is an upper bound on C max and can be pretty far from it. In this gure, a job family f with a time threshold smaller than T -C max is disqualied in (IP 2).

C max T

Machine disqualications in this interval The main goal of the new model (IP 3) is to tackle the previous issue. This is done by introducing a new binary variable Y m f , which models the fact that machine m is disqualied for family f at the end of the schedule, i.e. C max . Hence, Y m f is now penalized in the objective function instead of y m f,t in (IP 2). New constraints are also added (Constraints (8) below) to ensure that Y m f is equal to 1 if m is disqualied for f at C max , i.e. if ∃t ∈ {0, . . . , C max } such that y m f,t = 1. Note that, if machine m is disqualied for family f after C max , then Y m f = 0. Note also that the scheduling objective is not to minimize C max . (IP 3) is written below:

min. α • f ∈F C f + β • f ∈F m∈M Y m f (1) m∈M(f) T -p f t=0 x m f,t = n f ∀f ∈ F (2) m∈M(f) T -p f t=0 (t + p f) • x m f,t ≤ C f ∀f ∈ F (3) y m f,t + t τ =t-p f +1 x m f,τ ≤ 1 ∀f ∈ F, ∀p f -1 ≤ t ≤ T -p f , ∀m ∈ M(f) (4) n f • x m f ,t + t τ =t-p f -s f +1 x m f,τ ≤ n f ∀f = f ∈ F 2 , ∀m ∈ M(f) ∩ M(f), ∀p f + s f -1 ≤ t ≤ T -p f (5)
y m f,t + t τ =t-γ f +1 x m f,τ ≥ 1 ∀f ∈ F, ∀t ≥ γ f ∈ T , ∀m ∈ M(f) (6) y m f,t-1 ≤ y m f,t ∀f ∈ F, ∀t ∈ T \ {0}, ∀m ∈ M(f) (7) y m f,t-1 -1 + 1 M • (T -t) f ∈F T -1 τ =t-p f m ∈M(f) x m f ,τ ≤ Y m f ∀t ∈ T \ {0}, ∀f ∈ F, ∀m ∈ M(f) (8) x m f,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F, ∀m ∈ M(f) (9) y m f,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F, ∀m ∈ M(f) (10) Y m f ∈ {0, 1} ∀f ∈ F, ∀m ∈ M(f) (11)
In this formulation, the objective function (1) is the weighted sum of the sum of completion times, i.e.

f ∈F C f , and the number of disqualications,

f ∈F m∈M(f) Y m f .
Note that C f is the sum of completion times of all jobs in family f and is therefore equal to i∈N ; f (i)=f C i . In our experiments, dierent values for parameters α and β are considered and the results are discussed in Section 5.

Constraints (2) ensure that exactly n f jobs of family f are scheduled. Constraints (3) are used to determine the sum of completion times of family f . Constraints (4) model both the fact that the execution of two jobs of the same family cannot occur simultaneously, i.e. t τ =t-p f +1 x m f,τ ≤ 1 and the fact that a machine has to be qualied to process a job, i.e. y m f,t = 0. Constraints (5) enforce the start of a job of a family f and the start of a job of family f to be separated by at least p f + s f , i.e. the processing time of the job of f plus the setup time for the job of f . Constraints (6) make sure that if no jobs of family f start on machine m during an interval]t -γ f , t], i.e. t τ =t-γ f +1 x m f,τ = 0, then m becomes disqualied for family f at time t. Constraints (7) maintain the disqualication of a machine once it becomes disqualied.

Finally, Constraints (8) are the main dierence between the model presented in this paper and (IP 2) in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF]. These constraints prevent the number of disqualications to depend on the scheduling horizon T . The constraints ensure that it is no longer necessary to maintain a qualication on machine m if no job is started on any machine in the remainder of the horizon, i.e.

1 M •(T -t) f ∈F T -1 τ =t-p f m ∈M(f) x m f ,τ = 0.

Constraint Programming

Traditionally, scheduling problems have been tackled with various approaches. In the last 20 years, some methods based on articial intelligence techniques have been successfully used to deal with dierent classes of scheduling problems, and in particular Constraint Satisfaction (CS) [START_REF] Brailsford | Constraint satisfaction problems: Algorithms and applications[END_REF]. The implementation of algorithms able to solve CS problems is known as Constraint Programming [START_REF] Van Hentenryck | The OPL Optimization Programming Language[END_REF].

CP is able to address optimization problems since they can be expressed as a sequence of CS problems.

To date, there are several CP approaches that have been successfully employed to tackle scheduling problems in manufacturing environments, such as batch plants (see [START_REF] Jain | Algorithms for hybrid MILP/CP models for a class of optimization problems[END_REF] and [START_REF] Maravelias | A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations[END_REF]). This section describes a CP model set up to solve PTC. First, the variables of the model are introduced and then the problem constraints are presented in detail.

In the CP model, the following set of variables are used:

• masterJob i , ∀i ∈ N : Interval variables that represent the jobs to schedule. Each variable masterJob i has a size p f (i) and its domain is dom(masterJob

i) = {[s, e)|[s, e) ⊆ [0, T), s + p f (i) = e}.
• altJobs mi , ∀m ∈ M; ∀i s.t. m ∈ M(f (i)): Optional interval variables that model the dierent execution modes of a job (the dierent machines on which it can be scheduled). More precisely, such a variable is created for each machine m and for each job i that can be executed on m. In the nal solution, only one variable altJobs mi is present for a job i and corresponds to the machine on which the job is scheduled. The domain of these variable is dom(

altJobs mi) = {[s, e)|[s, e) ⊆ [0, T), s + p f (i) = e}.
• disqualif f m , ∀f ∈ F; ∀m ∈ M(f): Optional interval variables of size 0 that are used to model machine disqualications. If the interval variable disqualif f m is present in the nal solution, then machine m becomes disqualied for processing jobs of family f . The start time of the variable corresponds to the time at which the machine becomes disqualied.

• C max : An integer variable that represents the end of the schedule. Its domain is dom(C max) = {0, . . . , T }.

The problem constraints are then presented one-by-one. The rst set of constraints concerns the assignment of jobs to machines. Alternative constraints are used to model these features. Constraint alternative(A, {a 1 , . . . , a n }) models an exclusive alternative between {a 0 , . . . , a n }. If time-interval A is executed, then exactly one of the time-intervals {a 0 , . . . , a n } is executed and A starts and ends together with the selected time interval.

Applying this constraint to our problem:

alternative(masterJob i , {altJobs mi | m ∈ M(f (i))}), ∀i ∈ N (12)
To model the setup time, noOverlap constraints are used. This constraint ensures that the execution of several interval variables do not overlap. It can also handle the setup time.

Let S be the matrix of setup times of the problem, i.e.

(S f ,f) = 0 if f = f , s f otherwise.
Then, the following noOverlap constraint makes sure that, for all pairs of jobs (i, j) s.t. both can be scheduled on m, either the start of altJobs mj occurs after the end of altJobs mj plus s f (j) or the opposite:

noOverlap({altJobs mi | i s.t m ∈ M(f (i))} , S), ∀m ∈ M (13)
The next set of constraints ensure that all jobs are scheduled before C max :

endOf (masterJob i) ≤ C max , ∀i ∈ N (14)
Finally, three sets of constraints are added to model machine disqualications. The rst set guarantees that once a machine m is disqualied for a certain family f , no job of family f is scheduled on m. In other words, if the interval variable disqualif f m is present in the solution, then there is no job of family f on m after disqualif f m .

startOf (altJobs

im) + γ f (i) ≤ startOf (disqualif f (i)m), ∀i ∈ N , ∀m ∈ M(f (i)) (15)
The second constraint set enforces a machine to become disqualied if there is no job of family f scheduled on the machine during an interval of duration γ f . More precisely, if a job of family f is scheduled on machine m, then either another job of f is scheduled in the next γ f units of time or machine m becomes disqualied for family f . There is another case to consider which is the case where the job of family f is executed at the end of the schedule and then the disqualication occurs after the makespan. In this case, the machine does not become disqualied. Given a machine m and a job i, let

t mi = startOf (altJobs mi) + γ f (i) . presenceOf (altJobs mi) ⇒   i =i ; f (i)=f (i) (startOf (altJobs mi) ≤ t mi)   ∨ startOf (disqualif f (i)m) = t mi ∨ (C max ≤ t mi) , ∀i ∈ N , ∀m ∈ M(f (i)) (16)
The last set of constraints imposes that if there is no job of family f scheduled on a qualied machine, then the machine becomes disqualied.

  i∈N ; f (i)=f (startOf (altJobs mi) ≤ γ f)   ∨ startOf (disqualif f (i)m) = γ f ∨ (C max ≤ γ f) , ∀f ∈ F, ∀m ∈ M(f) (17)
In our model, an additional constraint set is used to order the start time of jobs in the same family. Those ordering constraints are not mandatory but break some symmetries in the initial model.

j>i ; f (i)=f (j) (startOf (masterJob i) < startOf (masterJob j)) , ∀i ∈ N (18)
The objective of the CP model is to minimize both the sum of completion times, i.e. sum of endOf (masterJob i)), and the number of disqualications, i.e. the number of interval variables disqualif f m in the solution. When either the rst objective or the second objective is prioritized, experiments have been conducted to compare the use of the weighted sum of both objectives and of a lexicographical order. They show that the model, as this is the case for CP in general, does not perform well when combining objectives in a weighted sum. Therefore, in Section 5 and because one of the objectives is always prioritized, only results with a lexicographical order are presented.

Heuristics

Two constructive heuristics are presented in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF]: The Scheduling-Centric Heuristic (SCH) and the Qualication-Centric Heuristic (QCH). SCH tries to minimize the sum of completion times by minimizing the number of setup times in the nal solution, while QCH aims at minimizing the number of machine disqualications.

These heuristics are not described in this paper and the reader is referred to Obeid et al.

(2014) for more details.

As constructive heuristics each focusing on one of the criteria, SCH and QCH provide good solutions but that can still be improved. This section presents two approaches to improve the solutions provided by SCH and QCH: A Recursive Heuristic (RH) and a Simulated Annealing (SA) algorithm. RH can be seen as a multi-start algorithm that aims at diversifying the search while remaining very fast. SA is a standard neighborhood-based metaheuristic that is known to be eective for numerous discrete optimization problems.

Recursive Heuristic

The general idea of the Recursive Heuristic is to slightly change the instance data to modify the behavior of the heuristic and explore other solutions. More precisely, consider a solution s obtained by any of the constructive heuristics (SCH or QCH). In s, although some machines are becoming disqualied in the scheduling horizon, the heuristic tries as much as possible to maintain these qualications, sometimes at the expense of other qualications. Therefore, if the machine is disqualied from the beginning of the schedule, a better solution may be obtained. This reasoning can be extended to any subset of disqualied machines in s.

if s.disqualif ication > 0 then stopIter ← 2 s.disqualif ication ; cpt = 1;
while cpt ≤ stopIter do

I = DISQU ALIF Y (I, BIN ARY (cpt)); s ← HEU RIST IC(I); if s .score < s.score then s ← s ; cpt = cpt + 1; end if end while end if return s end if else return N ON E end if
In the algorithm, the function HEU RIST IC returns a solution obtained by a given heuristic on a given instance. s.disqualif ication is the number of disqualications in solution s. This number is used as the stopping criterion of the algorithm. The function BIN ARY transforms the integer cpt, which is a base-10 number, into the equivalent base-2 number. This guarantees that all possible combinations of machine disqualications are covered by the algorithm. The score of a solution s.score is based on the minimum of the sum of disqualications prior to the sum of completion times.

Example 4.1. Consider the following instance of PTC:

N = 10, M = {m 1 , m 2 }, F = {f 1 , f 2 }, M(1) = {1}, M(2) = {1, 2}, n f = {5, 5}, p f = {7, 5}, s f = {1, 5}, γ f = {27, 24}.
When applying QCH on this instance, the solution in Figure 3 is obtained. The sum of completion times is equal to 237 and the number of disqualications is equal to 2: Machine 1 becomes disqualied for family 2 at time t = 18 + 24 = 42, and Machine 2 becomes disqualied for family 2 at time t = 10 + 24 = 34.

In the rst iteration of the RH procedure, Machine 1 is removed from M(2), i.e. jobs of family 2 can no longer be scheduled on Machine 1. Applying QCH on this instance, the solution in Figure 4 is obtained. The sum of completion times is now equal to 180 and the number of disqualications is equal to 1: Machine 1 becomes disqualied for family 2 at time t = 24. The complexity of the recursive heuristic

f 2 f 2 m 1 m 2 f 1 f 1 f 1 f 1 f 2 f 2 f 2 f 1
f 1 f 1 m 1 m 2 f 1 f 1 f 1 f 2 f 2 f 2 f 2 f 2
RH is O(2 |D| • (|N ||M ||F |)) (respectively O(2 |D| • (|N | 2 |M | 2)))
for SCH (respectively for QCH), with D the number of qualication losses. Note that, for a large number of machine disqualications, RH may not be usable in practice. However, since the number of pairs (machine, family) is not too large in the considered instances and since one of the criteria is the minimization of the number of disqualications, RH can be used to solve the problem.

Simulated Annealing algorithm

Simulated Annealing (SA) belongs to the class of randomized local search algorithms and was developed by [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] to handle hard combinatorial problems.

SA has demonstrated its ability to solve scheduling problems [START_REF] Teghem | Optimisation Approchée en Recherche Opérationnelle : Recherche locale, Réseaux Neuraux et Satisfaction de Contraintes[END_REF].

The limitations related to exact methods for PTC regarding the maximum number of jobs, machines and families led to the need for a more exible method that can deal with large-scale instances. SA was chosen for this objective.

In a Simulated Annealing algorithm, an initial solution is used to generate a set of neighbouring solutions, which is considered to nd a solution which has a better score than the score of the initial solution. To nd the optimal or at least an improved solution, the solution search space needs to be explored eectively since the number of solutions is usually enormous. In SA, this exploration uses two major parameters which are: The temperature, and the number of iterations at each temperature. Actually, while exploring the solution space, we may step toward a solution which has a higher score than the current one. Hence, if the objective function is to minimize a certain criterion, then this solution should be ignored in a normal case. However, in SA, a worse solution is accepted with a probability that depends on the temperature. The acceptance of worse solutions helps to avoid the search to be stuck in a local optimum.

Other parameters of SA such as the cooling factor and the denition of a neighbouring solution are described later in the paper. First, we describe how the neighbourhood of a solution is generated, which impacts the eciency of SA. Based on our preliminary experiments on neighbourhood structures, two dierent ways of generating a neighbour have been selected for our problem:

• Intra-change insertion of jobs. A job on a given machine is selected from the jth position and inserted before another job at the ith position on the same machine (see Figure 5). Note that this move also covers another typical way of generating neighbours, the Intra-change Swapping, where two jobs are selected randomly and swapped on the same machine. Intra-change insertion is found to be more exible since any swap move may be achieved by two insertions but the inverse is not true. However, the diculty in our neighbourhood generation lies in machine qualications because some intra-change insertions may lead to an additional loss of qualications and to a non feasible sequence of jobs on a given machine. Thus, each time an intra-change insertion is performed, the obtained sequence is tested for feasibility. • Inter-change insertion of jobs. Two job positions i and j are randomly selected on two dierent machines m and m respectively. Then job j is inserted right before job i on machine m (see Figure 6). As for the intra-change insertion, the sequence on both machines should be checked for feasibility. Moreover, in an inter-change insertion, the problem of machines with no jobs after a move must be considered.

In some situations, there may still only be one job on a machine and an insertion of this job on another machine leads to a machine with no jobs, thus the machine is not used at all and the number of machines in this case is decreased by 1. To overcome this diculty, we check, each time a move is performed, whether the machine has strictly more than one job. This guarantees that there is no machine being idle on the whole scheduling horizon. In our implementation, 50% of the considered moves are intra-change insertions and 50% are inter-change insertions. Moves are randomly selected according to the uniform law. If a move is impossible due to a constraint violation, the previous solution is restored and another move is randomly selected.

The SA algorithm starts with an initial solution s 0 (found either by SCH or QCH in our case), and then tries to nd better solutions by searching in the neighbourhood of the current solution and by applying a stochastic acceptance criterion. When a neighbour

(a new solution s) of s 0 is selected, the dierence ∆c = c(s) -c(s 0) (c(.) is the score obtained with α • (f ∈F C f) + β • (f ∈F m∈M(f) y m f,T) as objective) is calculated.
If ∆c is negative, s has a better score than s 0 , and the neighbour s replaces the current solution s 0 . Otherwise, the neighbour s is accepted with a probability based on the Boltzmann distribution P accept (∆f) = exp(∆f /kT), where k is a constant and the temperature T is a control parameter.

The main idea is to start with a high initial temperature T o and then to decrease it step by step. In our implementation, we start with an initial temperature T 0 = 20, 000 and this temperature is gradually lowered following a geometrical function g(T) = δT with δ = 0.95.

Two other parameters need to be dened:

• The number of iterations at each temperature, N iter = 50.

• A stopping criterion for the algorithm, N stop . The algorithm stops because either the maximum number of temperature changes or the time limit of 600 seconds are reached. Parameters such as initial temperature and cooling schedule are taken into consideration for convergence to ensure that the temperature is suciently low when the stopping rule is satised. Experiments were conducted with dierent stopping rules, and 10, 000 temperature changes are used as the stopping criterion.

The pseudo code of the SA algorithm is given in Algorithm 2.

Numerical Experiments

Section 5.1 rst describes the framework used for the experiments. The results obtained with the exact methods are presented and compared in Section 5.2. Section 5.3 discusses the results of the dierent heuristics. This section also includes a comparison between exact methods and heuristics. The impact of the time threshold duration is analyzed in Sections 5.2 and 5.3. First, we ensure that, at the beginning of the schedule, each family has at least one machine on which it can be processed and each machine is qualied to process at least one job family. Furthermore, in order to ensure a minimal bias to nd a solution, the time thresholds of job families are chosen suciently large compared to their associated processing times. Indeed, short time thresholds may lead to very quick machine disqualications. Then, it will not be possible to process all jobs before machines become disqualied and then the instances will not be feasible. Thus, the initial family/machine qualication scheme is dened as follows. The minimum time threshold has to be larger than the longest processing time, i.e. max f ∈F p f ≤ min f ∈F γ f . To ensure diversity, each set of instances contains 10 instances with short time thresholds, 10 with medium time thresholds and 10 with large time thresholds. Short time thresholds for a family

f are in [p f + p max + s max + s f , p f + 2 • p max + s max + s f],
with p max = max f ∈F p f and s max = max f ∈F s f . These values correspond respectively to the duration needed to process one and two jobs of another family than f (see Figure 7). Then, medium time thresholds lie in

[p f + 2 • p max + s max + s f , p f + 3 • p max + s max + s f] and large time thresholds in [p f + 3 • p max + s max + s f , p f + 4 • p max + s max + s f].
In addition, setup times are not chosen too large so that the risk of disqualifying a machine due to a setup time insertion is acceptable, i.e. max f ∈F s f ≤ min f ∈F p f . Table 1 presents the parameters of the dierent instance sets. In the rst column of Table 1, each instance type is indexed by a corresponding number (N o.). These representative instance types summarize dierent possibilities of combinations between number of jobs N (second column), number of machines M (third column) and number of families |F| (fourth column). The fth column, max p f , gives the upper bound of the generated processing times of all families in a given instance (p f , ∀f ∈ F). The maximum possible sum of machine-family qualications M • |F| is given in the sixth column. Finally, the seventh column provides the initial sum of qualied machines for all families f, |M(f)| of a given instance.

Conguration

The experiments are conducted on an Intel Xeon E3-1240 processor of 3.5 GHz with 4 cores and 32 GB with a 64-bit Windows 10 operating system. The ILP model was solved using CPLEX 12.8 with 2 threads. The CP model was tested using CP Optimizer 12.8.

All heuristics are coded in C++. The time limit for all solution methods is set to 600 seconds.

Exact solution methods (ILP and CP) were tested:

1. While prioritizing the minimization of the sum of completion times, i.e. α = β = 1 and, 2. While prioritizing the minimization of the number of disqualications, i.e. α = 1, β = N • T .

The CP model is actually using the lexicographical order to model the priority between criteria.

The Recursive Heuristic (RH) and the Simulated Annealing (SA) algorithm are tested with SCH and QCH as constructive heuristics to obtain a rst feasible solution. The use of SCH corresponds to prioritizing the sum of completion times, while QCH corresponds to prioritizing the second objective, i.e. the number of disqualications.

Exact Methods

ILP Results

Inuence of rst solution. For each of the two objectives being prioritized, the model has been solved with and without a rst solution. When the sum of completion times (resp.

the number of disqualications) is prioritized, SCH (resp. QCH) is used to give the model a rst solution to improve. For the rst case (priority to the sum of completion times), the use of SCH has almost no impact on the quality of the solution of ILP and on the computational time. However, the use of QCH improves the number of instances solved by (IP 3). These results are detailed in Table 2. In this table, the rst column corresponds to the instances types. The second and third columns compare the time needed to solve the instances without (w/o) and with (w/) QCH. The fourth and fth columns show the dierence between the percentage of instances solved, i.e. when at least one solution is found, and nally the sixth and seventh columns compare the percentage of instances solved optimally.

As shown in Table 2 when the number of disqualications is prioritized, the use of QCH improves the performance of (IP 3). Indeed, the number of instances solved is larger when QCH is used to compute a rst solution. Therefore, in the following, when the sum of completion times is prioritized, the model alone is used while, when it is the number of disqualications which is prioritized, the model is used with QCH.

Detailed results of (IP 3). Tables 3 and4 present the detailed results obtained by (IP 3).

In these tables, the rst column corresponds to the instances types. The second column presents the time needed to solve the instance. In this column, either the instances are solved to optimality or the time limit of 600 seconds has been reached. The third column details the percentage of solved instances, i.e. when at least one solution not necessarily optimal is found. When the number of disqualications is prioritized (Table 4), the model also solves instances up to 50 jobs but not optimally. This illustrates that the complexity of the problem is also based on the chosen objective function, where prioritizing the qualication criterion over the scheduling criterion makes instances more dicult to solve.

Furthermore, the results for both criteria in both tables show that, when the number of disqualications is prioritized (Table 4), the sum of completion times is not minimized. In addition, when the sum of completion times is prioritized over the sum of disqualications (Table 3), the results show that the sum of disqualications is not minimized. The number of setups while prioritizing the sum of disqualications in Table 4 is larger than the number of setups in Table 3 for all instances. This is due to the fact that job families have to change frequently in order to satisfy the time threshold constraints, to minimize

f ∈F m∈M(f) y m f,T .
Inuence of the time threshold duration. Tables 5 and6 present the results on some instance sets according to the time threshold duration. The rst column corresponds to the instance types and the second column to the time threshold duration where S (resp.

M and L) stand for short time thresholds (resp. medium and large). The last ve columns are similar to Tables 3 and4. the fact that instances with short time thresholds are more constrained than instances with larger time thresholds.

Furthermore, the sum of completion times is almost always smaller for instances with large time thresholds. This is mainly due to the fact that, for shorter time thresholds, there are many family changes in the solution. Indeed, these changes are necessary to maintain machine qualications. Therefore, solutions have more setup times and thus larger completion times.

However, for instance type 19, the best results are obtained on instances with medium time thresholds. This can be explained by the fact that a model with too many or too few constraints can be harder to solve.

N o. Thres.

(α = 1, β = N • T).
Table 6 shows that, when α = 1 and β = N • T , instances with short time thresholds are also harder to solve for (IP 3). Indeed, for short time thresholds, less instances are solved optimally and it takes more time to solve them. Furthermore, the number of disqualications in the nal solution is larger for instances with short time thresholds.

CP Results

As for (IP 3), we investigate the inuence of using SCH and QCH to compute a rst solution to give to the model. When the number of disqualications is prioritized (resp. the sum of completion times), the use of QCH (resp. SCH) has almost no impact on the performances of the model (similar computational time and number of instances solved optimally or not). Therefore, SCH and QCH are no longer used in our experiments.

Detailed results of the CP model. Tables 7 and8 give the detailed results obtained by the CP model and have almost the same format than Tables 3 and4 with one extra column. This column, the third one in the table, shows the time needed by the solver to nd the best possible solution. For example, for instance type 1, after 12 seconds, the solver does not improve the solution.

N o. Time (sec.) Time best (sec.) Table 8 shows that, when the number of disqualications is prioritized, the CP model is able to solve almost all the instances up to 50 jobs but fails at proving the optimality for most solutions. For larger instances, fewer instances are solved and none of the solution found is proved optimal. Nevertheless, the quality of solutions is very good (cf.

%solved f ∈F C f #disqualif. #setups
Section 5.2.3) and the best solutions are found in less than 110 seconds.

Inuence of the time threshold duration. As for (IP 3), let us analyze the inuence of the time threshold duration on the performances of the model. Tables 9 and10 present the results on some instance sets according to the time threshold duration and have the same format than Tables 5 and6 with an extra column for the time needed by the solver to nd the best solution.

As for (IP 3), Tables 9 and10 show that instances with short time thresholds are harder to solve, in terms of both solution times and optimality gaps, and have a larger sum of completion times and a larger number of disqualications.

Comparison of exact methods

This section compares the results obtained by the CP model and (IP 3). Figure 8a shows the deviation of the sum of completion times, when this objective is prioritized, with respect to the best solution found either by the CP model or by (IP 3). For (IP 3), if the instances are solved both by the CP model and by (IP 3), it is computed as: . Figure 8b shows the deviation of the number of disqualications, when priority is given to the sum of completion times, with respect to the best solution found by either the CP model or (IP 3). For (IP 3), if the instance is solved by both the CP model and (IP 3), it is computed as: Figure 8 shows that, when the sum of completion times is prioritized, the CP model nds solutions as good as the ones determined by (IP 3) for the sum of completion times for instances with less than 50 jobs. For larger instances, (IP 3) nds better solutions when considering the sum of completion times, but the solutions found by the CP model are at most 2% far from the ones determined by (IP 3). When considering the number of disqualications, (IP 3) almost always nds better solutions than the CP model (except for instance types 8 and 16). Therefore, even if the CP model cannot prove the optimality of the solutions it determines, it can nd quite good solutions quickly. However, the solutions of (IP 3) are better, but the solutions of the CP model are not so far (3% for the sum of completion times and 20% for the number of disqualications which corresponds to less than one extra disqualication).

100 - 100 × OBJ IP 3 C f OBJ BEST C f N o.
         0 if OBJ IP 3 Y m f = 0 -100 × OBJ IP 3 Y m f if OBJ CP Y m f = 0 100 - 100×OBJ IP 3 Y m f OBJ BEST Y m f otherwise with OBJ IP 3 Y m f the value of f ∈F m∈M Y m f determined
Figure 9 shows the deviation of both the number of disqualications, when it is prioritized, and the completion time with respect to the best solution found by either the CP model or (IP 3).

Figure 9 shows that, when the number of disqualications is prioritized, the best solutions for the number of disqualication are found by the CP model (except for instance types 7 and 14). This is also true for the sum of completion times for which the CP model obtains the best results for instances larger than 30 jobs. Therefore, the solution found by the CP model tends to be better than the one determined by (IP 3) when the number of disqualications is prioritized. Thus, even if the CP model is not able to prove the optimality of the solution it determines, it can nd quite good solutions quickly.

Figures 8 and9 show the deviation of the objective value only for instances solved by both (IP 3) and the CP model. Note that, when considering the percentage of solved instances, (IP 3) obtains better results than the CP model. Table 11 compares the number of solved instances by (IP 3) and by the CP model. This table has two parts. In the upper part, the percentages of solved instances by (IP 3) and by the CP model for α = β = 1 are provided. The lower part shows the same data for α = 1 and β = N • T . In both parts, the rst line corresponds to the instance type (1 -9 means instance type 1 to 9).

The second line shows the percentage of solved instances by the CP model and the third line by (IP 3). Table 11 shows that, for small instances (up to 50 jobs), (IP 3) and the CP model solve a similar number of instances, with slightly better results for (IP 3). However, for larger instances, the number of instances solved by (IP 3) is signicantly larger than for the CP model.

Heuristics

Tables 12 and13 show the impact of the Recursive Heuristic (RH) and the Simulated Annealing (SA) algorithm on the constructive heuristics presented in [START_REF] Obeid | Scheduling job families on nonidentical parallel machines with time constraints[END_REF], SCH and QCH. In these tables, SCH (resp. QCH) denotes the constructive heuristic used alone to solve the instances, RHSCH (resp. RHQCH) corresponds to the use of RH together with SCH (resp. QCH) and SASCH (resp. SAQCH) the use of SA and SCH (resp. QCH). Then, the rst column corresponds to the instances types. The second column presents the percentage of instances solved by the heuristics. Note that the use of RH and SA has no impact on the number of solved instances, i.e. if the constructive heuristic fails to nd a solution, then neither RH nor SA solve the instance. Conversely, if the constructive heuristic nds a solution, then so do RH and SA. The third, fourth and fth columns compare the value of the sum of completion times for SCH/QCH, RHSCH/RHQCH and SASCH/SAQCH. The sixth, seventh and eighth columns compare the value of the number of disqualications and the last three columns show the dierent solution times. The quality of the solutions compared to the ones obtained by exact methods is discussed in the following paragraph. Table 12 shows that RH and SA signicantly improve the performances of SCH. Indeed, the objective value (sum of completion times as well as the number of disqualications) is reduced by the use of either RH or SA. However, the performances of RH and SA are not identical. For small instances (types 1 to 8), SA is more ecient in terms of objective value improvement than RH. For larger instances, RH becomes more ecient than SA. Furthermore, the time needed to solve the instances is larger for SA but does not exceed 60 seconds. Note also that SCH, and therefore SASCH and RHSCH, fails to nd a feasible solution in some cases. This is due to the fact that SCH focuses on setup time minimization and therefore sometimes let machine disqualication occurs. This implies that, at some point, there is no machine left to schedule one (or more) job family, and thus SCH cannot nd a feasible solution.

f ∈F C f #disqualif.
f ∈F C f #disqualif. Table 12 shows that RH and SA also improve the performances of QCH. The number of disqualications (as well as the sum of completion times) is reduced by the use of either RH or SA. However, the performances in terms of solution quality of SA are better than the performances of RH for all instances when the number of disqualications is prioritized. Furthermore, the time needed to solve the instances for SA does not exceed 100 seconds. Note also that SCH has more diculty to nd a feasible solution than QCH, since QCH focuses on keeping machines qualied.

Comparison with Exact Methods.

         0 if OBJ SA Y m f = 0 -100 × OBJ SA Y m f if OBJ IP 3 Y m f = 0 100 - 100×OBJ SA Y m f OBJ BEST Y m f otherwise and          0 if OBJ SA Y m f = 0 -100 × OBJ SA Y m f if OBJ CP Y m f = 0 100 - 100×OBJ SA Y m f OBJ BEST Y m f otherwise with OBJ IP 3 Y m f (resp. OBJ CP Y m f and OBJ SA Y m f) the objective value of f ∈F m∈M Y m
OBJ BEST Y m f = min OBJ IP 3 Y m f , OBJ CP Y m f
The same deviations are computed for RH, replacing SA by RH in the previous formulas.

Time (sec.) Table 14 shows that, when the sum of completion times is prioritized, (IP 3) is better than SA for small instances (up to 50 jobs). Indeed, the computational time needed to solve the instances is smaller when (IP 3) is used. Furthermore, the number of instances solved is larger with (IP 3). Also, the sum of completion times determined by SA is close to the sum of completion times determined by the exact methods.

%solved f ∈F C f f ∈F C f #disqualif. #disqualif.
When compared to RH, the exact methods can solve more instances but require much longer computational times than RH. However, the solutions determined by RH are not optimal and the sum of completion times determined by RH can be 5% larger than the one determined by the exact methods.

For larger instances, the gap between the solutions of SA and the exact methods increases with the size of the instances, but this gap decreases for RH when comparing with the solutions of the exact methods. Furthermore, the time needed to solve the instances is signicantly smaller with SA than with the exact methods, and is even smaller for RH (less than 0.01 seconds). However, the number of solved instances remains larger with (IP 3).

(α = 1, β = N • T).
Table 15 shows that, when the number of disqualications is prioritized (with QCH), SA performs better than SCH. Indeed, the time needed to solve the instances is almost always shorter with SA compared to (IP 3) or the CP model. This time does not exceed 100 seconds for SA and almost always exceeds 100 seconds with (IP 3) and the CP model.

Furthermore, the performances of SA in terms of objective value are very good as well.

Indeed, for some instance types, the number of disqualications is as good as the one determined by the exact methods. For the other instances, the dierence is smaller than 60%, which is, in the case of qualication losses, a good performance. Finally, the number of solved instances is slightly smaller with SA than with (IP 3), but for large instances (> 50 jobs), SA solves more instances than the CP model (which provides the best results

for the number of disqualications).

Inuence of the time threshold duration. As for exact methods, the inuence of the time threshold duration on the performances of SA is analyzed. Tables 16 and17 have the same format than Tables 5 and6. Table 16 shows that the time needed to solve the instances is smaller for instances with short time thresholds. However, the number of solved instances is larger when the time thresholds are large because problems are less constrained than with small time thresholds and thus easier to solve. Computational experiments were conducted on randomly generated instances. The results showed that both (IP 3) Indeed, (IP 3) allows more instances to be solved optimally but produces on average solutions that are of lower quality than the CP model. This is particularly true when the number of disqualications is the primary criterion. The numerical results also showed that RH and SA are signicantly improving the initial constructive heuristics SCH, prioritizing the sum of completion times, and QCH, prioritizing the number of disqualications.

RHSCH, respectively SASCH, corresponds to using SCH in RH, respectively SA, while RHQCH, respectively SAQCH, corresponds to using QCH in RH, respectively SA. When the sum of completion times is prioritized, SASCH is more ecient than RHSCH on small instances (up to 50 jobs) and RHSCH is more ecient than SASCH on larger instances.

On the opposite, when the number of disqualications is prioritized, SAQCH is better than RHQCH on all instances. The comparison between SA and the exact methods showed that SASCH and SAQCH are capable of producing good solutions with much shorter computational times. The numerical experiments also emphasized the diculty of solving instances with short time thresholds.

Future research includes developing other neighborhood-based metaheuristics, such as Tabu Search, population-based metaheuristics, such as Genetic Algorithms, or combinations of both types of metaheuristics, such as Genetic Local Search. This could be particularly relevant when investigating the integration of time constraints to maintain machine qualications in other types of workshops, such as workshops with batching machines and multiple processing stages. Other criteria will probably have to be considered.

Studying the possible balance between the two criteria considered in this paper is another interesting research avenue. Finally, following the recent work of [START_REF] Kao | Impact of integrating equipment health in production scheduling for semiconductor fabrication[END_REF], considering the dynamic status of machines ("equipment health") seems very relevant to allow a machine to "lose" its qualication depending on its status.

Another relevant research perspective consists in scheduling jobs on a longer time horizon, where lost qualications could be automatically recovered after a given qualication procedure. Qualication procedures, requiring time on machines, would then also be scheduled. From a broader perspective, dening the "critical" qualications of job fa-milies to machines to maintain in a schedule, based on the work on exibility measures in [START_REF] Johnzén | Flexibility measures for qualication management in wafer fabs[END_REF] and [START_REF] Rowshannahad | Capacitated qualication management in semiconductor manufacturing[END_REF], should be appealing for production managers.

 Figure (1c) represents the situation where a machine is no longer qualied to process a job family because no job of the family is scheduled during the considered time interval. Time threshold violated: The machine can no longer schedule jobs of this family.

Figure 1 :

 1 Figure 1: Illustration of time constraints.

Figure 2 :

 2 Figure 2: Illustration of machine qualication lost in [C max , T].

Figure 3 :

 3 Figure 3: Example of a solution obtained by QCH before applying RH.

Figure 4 :

 4 Figure 4: Example of a solution obtained by RH.

 Before intra-change move of j.j i(b) After intra-change move of j: j is scheduled right before i.

Figure 5 :

 5 Figure 5: Intra-change insertion.

 Before inter-change insertion of j on m: i is scheduled on m and j on m .

 After inter-change insertion of j on m: j is inserted before i on m.

Figure 6 :

 6 Figure 6: Inter-change insertion.

 used to perform our experiments are inspired by the ones of Obeid et al. (2014): 19 instance sets are generated with dierent number of jobs (N), machines (M), families (|F |) and qualication schemes. Each of the instance sets is a group of 30 instances and are generated as follows.

 Upper bound on the time threshold for short time thresholds.

Figure 7 :

 7 Figure 7: Time threshold generation.

 (α = 1, β = N • T):Minimizing the number of disqualications and the sum of completion times.

 model, the deviation is computed with the same formula, exchanging OBJ IP 3 Deviation of sum of completion times.

 Deviation of number of disqualications.

Figure 8 :

 8 Figure 8: Deviation of the objective values wrt. the best solution found (α = β = 1).

 Deviation of sum of completion times.

 Deviation of number of disqualications.

Figure 9 :

 9 Figure 9: Deviation of the number of disqualications wrt. the best solution found (α = 1, β = N • T).

 f deter- mined by (IP 3) (resp. by the CP model and by SA) and

6.

 Conclusions and perspectivesAn original parallel machine scheduling problem was studied where some Advanced Process Control constraints are integrated: Minimal time constraints between jobs of the same family to be processed on a qualied machine to avoid losing the qualication. Two criteria to minimize are considered: The sum of completion times and the number of disqualications. An integer linear programming model (IP 3) and a constraint programming (CP) model were proposed to solve the problem, as well as two heuristics improving existing constructive heuristics: A Recursive Heuristic (RH) and a Simulated Annealing (SA) algorithm.

 In addition, variable y m f,t is dened to model machine disqualications, i.e. y m

f,t is equal to 1 if and only if machine m is disqualied for family f at time t. Unfortunately, this model can only solve small size instances and poorly considers time constraints. Indeed, the model forces one and only one job of a family f to be scheduled in]t -γ f , t]. However, in our problem, at least one job of f should be processed in]t -γ f , t] but several jobs of f can be scheduled in this time interval.

To solve larger instances, a new model, called (IP 2), is introduced in Obeid et al.

 The pseudo-code for RH is displayed in Algorithm 1.

	Algorithm 1: Recursive Heuristic

Data: An instance I of PTC Result: A solution s for I or N ON E if no solution is found if HEU RIST IC(I) found a solution then s ← HEU RIST IC(I);

 Algorithm 2: Simulated Annealing algorithm Data: An instance I of PTC Result: A solution s for I or N ON E if no solution is found if HEU RIST IC(I) found a solution then

	s ← HEU RIST IC(I);	
	currentT emp ← T 0 ; repeat	
	cpt = 0; repeat	
	s ← N EIGHBOR(s);	
	∆ ← c(s) -c(s);	
	if ∆ < 0 then	
	s ← s ; end if else	
	s ← s with probability exp end if	-∆ currentT emp ;
	cpt ← cpt + 1;	
	until cpt = N iter ;	
	currentT emp ← g(currentT emp); until stopping criterion is met N stop ; return s end if else return N ON E end if	

Table 1 :

 1 Instance type characteristics.

			3	4	10	12	8
	2	20	3	5	10	15	9
	3	20	4	2	10	8	6
	4	20	4	3	10	12	7
	5	20	4	4	10	16	11
	6	20	4	5	10	20	13
	7	30	3	2	10	6	4
	8	30	3	3	10	9	7
	9	30	3	4	10	12	8
	10	30	3	5	10	15	13
	11	30	4	4	10	16	10
	12	30	5	5	10	25	14
	13	40	3	3	10	9	5
	14	50	3	3	10	9	6
	15	60	3	4	10	12	9
	16	60	3	5	10	15	11
	17	70	3	5	10	15	12
	18	70	4	4	10	16	9
	19	70	4	5	10	20	14

Table 2 :

 2

		Time (sec.)	%solved		%opt.	
		w/o QCH w/ QCH w/o QCH w/ QCH w/o QCH w/ QCH
	1	119.7	120.4	100	100	97	93
	2	250.9	265	100	100	77	70
	3	15.2	21.2	100	100	100	100
	4	43	36.9	100	100	97	100
	5	199.5	184.5	100	100	80	77
	6	187.1	189.3	100	100	80	77
	7	54.3	41.5	100	100	97	97
	8	419.5	425.2	100	100	43	43
	9	431.2	450.5	100	100	40	40
	10	563.7	562	100	100	10	10
	11	325.7	323.3	100	100	57	60
	12	332.7	326.4	100	100	50	53
	13	204.5	202.4	100	100	83	80
	14	529.4	530.5	100	100	17	17
	15	600	600	93	97	0	0
	16	600	600	87	90	0	0
	17	600	600	47	83	0	0
	18	600	600	87	93	0	0
	19	600	600	60	93	0	0
	1	3.5	100	336	3.47	2.73	100
	2	7.8	100	384	4.47	3.17	100
	3	1.9	100	336	1.2	0.97	100
	4	2.7	100	351	2.23	1.47	100
	5	8.3	100	314	2.93	3.57	100
	6	9.4	100	268	3.23	3.77	100
	7	1.9	100	894	1.73	0.7	100
	8	22	100	956	3.9	2.7	100
	9	30.5	100	816	4.57	3.53	100
	10	147.4	100	743	8.23	4.77	87
	11	19.2	100	629	4.8	2.63	100
	12	26	100	530	5.9	3.83	100
	13	14.9	100	1527	2.73	1.7	100
	14	59.1	100	2141	3.73	2.03	97
	15	308.3	100	3068	6.3	5.07	63
	16	429.4	97	2692	8.38	8	47
	17	559.5	73	3567	8.86	11.41	17
	18	260.8	97	3490	6.21	3.76	77
	19	411.9	93	2616	10.25	7.04	50

The fourth and fth columns show the objective values. The number N o. Inuence of using QCH to give a rst feasible solution when optimizing with (IP 3)

(α = 1, β = N • T).

of setup times in the solution is given in the sixth column. Finally, the seventh column presents the percentage of instances solved optimally.

N o. Time (sec.) %solved f ∈F C f #disqualif. #setups %opt.

Table 3 :

 3 can solve instances up to 40 jobs optimally when the sum of completion times is prioritized over the sum of disqualications. Indeed, for these instances, the model nds the optimal solution in less than 30 seconds (except for one instance type: N o. 10). For the instances of larger size (instance types N o. 14 -19), (IP 3) nds solutions for most of the instances but is not able to solve them optimally.

	N o. Time (sec.) %solved	f ∈F C f #disqualif. #setups %opt.
	1	120.4	100	399	0.47	7.17	93
	2	265	100	447	1.43	7.37	70
	3	21.2	100	365	0.03	2.80	100
	4	36.9	100	420	0.20	3.77	100
	5	184.5	100	360	0.57	6.27	77
	6	189.3	100	305	1	5.97	77
	7	41.5	100	1099	0.10	3.70	97
	8	425.2	100	1133	0.70	9.53	43
	9	450.5	100	970	1.10	10.57	40
	10	562	100	901	3.73	15.03	10
	11	323.3	100	723	1.17	8.47	60
	12	326.4	100	609	2	8.47	53
	13	202.4	100	1775	0.27	8.63	80
	14	530.5	100	2488	0.90	12.07	17
	15	600	97	3639	3.21	23.76	0
	16	600	90	3345	5.30	28.44	0
	17	600	83	5517	7.28	44.84	0
	18	600	93	4252	3.46	20.75	0
	19	600	93	3466	7.89	31.32	0

Model (IP 3), (α = β = 1): Minimizing the sum of completion times and the number of disqualications.

The results of Table

3

show that

(IP 3)

Table 4 :

 4 Model (IP 3).

Table 5

 5 Thres. Time (sec.) %solvedf ∈F C f #disqualif. #setups %opt.

		L	8.4	100	247	1.1	3.8	100
	6	M	8.8	100	271	2.6	3.7	100
		S	16.3	100	287	6	3.7	100
		L	13	100	771	4	2.8	100
	9	M	36.8	100	795	4.4	3.4	100
		S	60.4	100	882	5.5	4.3	100
		L	7.7	100	1345	2.2	2.2	100
	13	M	23.2	100	1500	3	1	100
		S	13.9	100	1735	3	1.9	100
		L	312.7	100	2598	8.1	6.3	80
	16	M	426.2	100	2349	7.8	7.5	50
		S	549.2	90	3176	9.33	10.44	10
		L	398.5	80	2648	9.75	6	50
	19	M	302.7	100	2462	9.7	7.6	70
		S	534.4	100	2744	11.2	7.3	30

shows that instances with short time thresholds are harder to solve for (IP 3) compared to instances with larger time thresholds, since computational times are larger and percentages of instances solved to optimality are smaller. This can be explained by N o.

Table 5 :

 5

Model (IP 3): Inuence of time threshold duration (α = β = 1).

Table 6 :

 6

		L	23.2	100	282	0.3	4.4	100
	6	M	135	100	305	0.6	5.6	80
		S	409.6	100	329	2.1	7.9	50
		L	357.5	100	911	0.3	9.5	60
	9	M	469.7	100	934	0.6	10.4	40
		S	524.1	100	1066	2.4	11.8	20
		L	40.8	100	1422	0	5.8	100
	13	M	253	100	1769	0	10.1	70
		S	313.5	100	2134	0.8	10	70
		L	600	100	3337	5	27.8	0
	16	M	600	100	2996	4.3	29.7	0
		S	600	70	3854	7.14	27.57	0
		L	600	100	3944	8.1	28.1	0
	19	M	600	100	3026	5.9	32.7	0
		S	600	80	3416	10.13	33.63	0

Time (sec.) %solved f ∈F C f #disqualif. #setups %opt. Model (IP 3): Inuence of time threshold duration

Table 7 :

 7 %opt. CP Model: Minimizing the sum of completion times and then the number of disqualications.

	1	600	12	100	336	3.53	2.73	0
	2	600	22.5	100	384	4.53	3.3	0
	3	600	0.7	100	336	1.20	0.97	0
	4	600	1.5	100	351	2.23	1.47	0
	5	600	5.5	100	314	3.17	3.27	0
	6	600	5.3	100	268	3.23	3.67	0
	7	600	2.2	100	894	1.73	0.7	0
	8	600	22.7	100	958	3.97	2.6	0
	9	600	56.1	100	817	4.7	3.57	0
	10	600	116.7	93	716	8.18	5.07	0
	11	600	53.1	100	630	4.8	2.67	0
	12	600	50.5	100	530	6.17	3.83	0
	13	600	8.6	100	1527	2.73	1.7	0
	14	600	19.9	100	2148	3.8	1.93	0
	15	600	92.3	77	2793	6.3	4.87	0
	16	600	69	47	2323	8	6.29	0
	17	600	71.7	23	2455	8.57	8	0
	18	600	70.1	93	3521	6.14	4.32	0
	19	600	52.6	57	2777	10.65	6.18	0

Table 7

 7 shows that, when priority is given to the sum of completion times, the CP model is able to nd a solution for all instances up to 50 jobs (except for instance type 10). It can also solve larger instances but not all the instances. Another remark is that the model fails at proving the optimality of the solutions. Consequently, it always reaches the time limit of 600 seconds. However, the quality of the solutions found is good as

			Time					
	N o. Time (sec.)	best	%solved	f ∈F C f #disqualif. #setups %opt.
			(sec.)					
	1	270	19.7	100	400	0.47	7.23	63
	2	365	2.6	100	452	1.37	7.07	43
	3	106	0.4	100	365	0.03	2.8	93
	4	124	11.1	100	420	0.2	3.77	83
	5	335	14.9	100	367	0.5	6.57	60
	6	371	27.2	100	314	0.87	6.23	47
	7	325	6.5	100	1047	0.23	2.87	67
	8	583	50.8	100	1120	0.67	9.67	3
	9	595	35.9	100	949	1.03	10.4	3
	10	600	128	87	843	2.65	14.15	0
	11	542	7.5	100	724	0.97	8.87	10
	12	600	12.9	100	624	1.7	9.43	0
	13	538	45.1	100	1678	0.43	7.4	20
	14	600	53.2	100	2302	1.43	7	0
	15	600	87.8	80	3029	2.63	15.83	0
	16	600	109.6	47	2698	3.64	19.21	0
	17	600	64	23	3375	4.14	27.29	0
	18	600	102.5	90	3729	3.04	10.26	0
	19	600	75.4	50	2886	5.67	16.93	0

shown in Section 5.2.3. Finally, the best solution determined by the solver is found in less than 120 seconds. Therefore, this model can be used as a heuristic to quickly nd a good solution but with no guarantee of optimality.

Table 8 :

 8 CP Model: Minimizing the number of disqualications and the sum of completion times.

Table 9 :

 9 Thres. Time (sec.) CP Model: Inuence of time threshold duration (priority on sum of completion times).

				Time					
				best	%solved	f ∈F C f #disqualif. #setups %opt.
				(sec.)					
		L	600	2.4	100	247	1.1	3.8	0
	6	M	600	1.6	100	271	2.6	3.5	0
		S	600	12	100	287	6	3.7	0
		L	600	40.9	100	771	4	2.8	0
	9	M	600	78.4	100	799	4.5	3.6	0
		S	600	49.1	100	882	5.6	4.3	0
		L	600	3.3	100	1345	2.2	2.2	0
	13	M	600	1.7	100	1500	3	1	0
		S	600	20.9	100	1735	3	1.9	0
		L	600	135.4	70	2381	7.86	7.29	0
	16	M	600	67.9	50	2210	8	5.8	0
		S	600	3.6	20	2399	8.5	4	0
		L	600	71.6	70	2766	9.71	6.71	0
	19	M	600	40.5	50	2376	10.4	7	0
		S	600	45.7	50	3192	12.2	4.6	0
				Time					
	N o. Thres. Time (sec.)	best	%solved	f ∈F C f #disqualif. #setups %opt.
				(sec.)					
		L	261	2.2	100	282	0.3	4.3	70
	6	M	335	16	100	315	0.5	5.9	50
		S	516	63.4	100	344	1.8	8.5	20
		L	584	7.3	100	905	0.3	9.3	10
	9	M	600	14	100	938	0.5	11.1	0
		S	600	86.6	100	1004	2.3	10.8	0
		L	443	0.7	100	1422	0	5.9	50
	13	M	600	49.2	100	1658	0.3	7.8	0
		S	572	85.5	100	1954	1	8.5	10
		L	600	188.1	70	2886	2.86	21.14	0
	16	M	600	97.7	50	2498	3.8	19.2	0
		S	600	43	20	2536	6	12.5	0
		L	600	34	60	2821	3.67	20.83	0
	19	M	600	121.7	50	2637	5.2	17.8	0
		S	600	70.5	40	3294	9.25	10	0

Table 10 :

 10 CP Model: Inuence of time threshold duration (priority on number of disqualications). ∈F C f determined by either (IP 3) or the CP model. For the CP model, the deviation is computed with the same formula, replacing OBJ IP 3

	with OBJ IP 3 C f	the value of	f ∈F C f determined by (IP 3) and OBJ BEST C f	the best value of
	f C f	by OBJ CP C f

Table 11 :

 11 Comparison of the percentages of solved instances for (IP 3) and CP.

			α = β = 1
	type 1-9	10 11-14 15 16 17 18 19
	CP 100 93	100	76 46 23 93 56
	IP 3 100 100	100	100 96 73 96 93
			α = 1, β = N • T
	type 1-9	10 11-14 15 16 17 18 19
	CP 100 86	100	80 46 23 90 50
	IP 3 100 100	100	96 90 83 93 93

Table 12 :

 12 Impact of RH and SA on SCH.

	Time (sec.)

Table 13 :

 13 Impact of RH and SA on QCH.

	Time (sec.)

 Table14compares the results obtained by the exact methods ((I P 3) and the CP model) with the results obtained by SA and RH. In this table, the rst column corresponds to the instances types. The second, third, fourth and fth columns compare the computational time needed to solve the instances with the CP model, (IP 3), SA and RH, respectively. The sixth, seventh and eighth columns show the dierence between the percentage of solved instances with the CP model, (IP 3) and SA/RH (the number of solved instances is the same for SA and RH), respectively. Finally, the ninth, tenth, eleventh and twelfth columns present the deviation of the objective value for SA and RH with respect to the best solution found by either the CP model or (IP 3).

			dev SA/CP = 100 -C f	100 × OBJ SA C f OBJ BEST C f
	with OBJ SA C f	the objective value of	f ∈F C f determined by SA and OBJ BEST C f	the best
	objective value of	f ∈F C f determined by either (IP 3) or the CP model.
	The deviation of the number of disqualications for SA is computed as the minimum
	of:			
	The deviation of the sum of completion times for SA is computed as:

Table 14 :

 14

Comparison of SASCH and exact methods (α = β = 1).

Table 15 :

 15 Table 15 compares the results obtained with the exact methods ((I P 3) and the CP model) with the results obtained with SA. The format of the table is the same than Table 14 minus the columns corresponding to RH. Comparison of SAQCH and exact methods

			Time (sec.)		%solved		f ∈F C f #disqualif.
	No	CP	IP3	SAQCH CP IP3 SAQCH	SAQCH	SAQCH
	1	269.6 120.4	32.4	100 100	97	-4.1%	-12.1%
	2	365.4	265	29.1	100 100	87	-3.6%	-14.7%
	3	105.8 21.2	50.1	100 100	100	-0.5%	-6.7%
	4	124.3 36.9	38.2	100 100	100	-1%	-10%
	5	334.5 184.5	40	100 100	93	-4.4%	-33.9%
	6	370.7 189.3	37.4	100 100	93	-6.3%	-41.7%
	7	325.5 41.5	98.8	100 100	100	-0.8%	0%
	8	582.6 425.2	38.1	100 100	97	-7.2%	-6.9%
	9	594.8 450.5	30.9	100 100	90	-12.2%	-11.1%
	10	600	562	24.4	87	100	77	-19.6%	-34.1%
	11	542	323.3	48.7	100 100	97	-8.7%	-39.1%
	12	600	326.4	50.5	100 100	90	-8.4%	-56.8%
	13 538.3 202.4	46.6	100 100	93	-5.9%	0%
	14	600	530.5	59.1	100 100	100	-16.9%	-3.3%
	15	600	600	57.3	80	97	93	-23.2%	-10.7%
	16	600	600	45	47	90	83	-18.7%	-6%
	17	600	600	57	23	83	80	-11.7%	0%
	18	600	600	74.3	90	93	90	-18.4%	-16%
	19	600	600	78.3	50	93	87	-17.9%	-8.3%

Table 16 :

 16 Table17also shows that the time needed to solved the instances is smaller for instances with short time thresholds. Furthermore, as for SASCH, the number of solved instances is larger when the instances have larger time thresholds. This is due to the diculty of the instances. As a consequence, the number of disqualications is also smaller with larger time thresholds.N o. Thres. Time (sec.) %solved f ∈F C f #disqualif. #setups SASCH: Inuence of time threshold duration.

		L	50	100	250	0.30	7.60
	6	M	40.6	100	280	2.80	7
		S	25.9	100	293	8.60	7.30
		L	46.5	100	809	4.30	9.30
	9	M	26.6	90	800	4.78	9.56
		S	7.1	30	693	7	7.33
		L	76.5	90	1306	2.33	7.89
	13	M	25.9	70	1364	3.43	12.43
		S	13.2	50	1549	3.60	12.80
		L	45.8	80	2482	8.75	12.25
	16	M	24.1	50	2129	9.40	8.60
		S		0			
		L	77.2	70	3040	10.14	20.86
	19	M	65.8	80	2538	12.13	10.75
		S	23.9	30	2593	12	11.33

Table 17 :

 17 and the CP model are eciently solving the problem. N o. Thres. Time (sec.) %solved f ∈F C f #disqualif. #setups SAQCH: Inuence of time threshold duration.

		L	50	100	251	0	8.30
	6	M	40.5	100	293	0.20	9.50
		S	21.6	80	321	3.38	10.38
		L	47.3	100	939	0	17.40
	9	M	29.6	100	1019	0.50	18.20
		S	15.8	70	946	2.29	17.86
		L	81.6	100	1482	0	14.90
	13	M	36.8	100	1645	0	19.40
		S	21.4	80	1941	0.38	23
		L	61.7	100	3641	1.90	44.70
	16	M	50	100	3390	3.10	44.70
		S	23.3	50	3494	4.80	45
		L	108.5	100	4189	2.90	53.20
	19	M	83.1	100	3394	4.10	51.80
		S	43.4	60	3735	8.17	48.83

Acknowledgements

This work was supported in part by Agence Nationale de la Recherche (ANR), France, under grants ANR-15-CE10-0003 and the Ministry of Science and Technology, Taiwan, ROC, under grants MOST 104-2917-I-002-030, MOST 103-2221-E-002-220-MY2, MOST 103-2911-I-002-513, MOST 105-2923-E-002-009-MY3.