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EVALUATION OF CHARACTERS OF SMOOTH
REPRESENTATIONS OF GL(2,0):

I.STRONGLY PRIMITIVE REPRESENTATIONS OF EVEN LEVEL.

PH.ROCHE

ABSTRACT. Let F be alocal field, let O be its integer ring and w a uniformizer of its
maximal ideal. To an irreducible complex finite dimensional smooth representation
7 of GL(2,0) is associated a pair of positive integers k, k" called the level and the
sublevel of 7. The level is the smallest integer k£ such that w factorizes through the
finite group GL(2,0/ w®©), whereas the sublevel is the smallest integer k' < k such
that there exists y, one dimensional representation of GL(2,0), such that m ® x
factorizes through the finite group GL(2, 0/@" ). A representation of GL(2,0) is
said strongly primitive if the level and sublevel are equal. The classification of smooth
finite dimensional representations of GL(2,0) is equivalent to the classification of
strongly primitive irreducible representations of GL(2, O).

In this first article we describe explicitely the even level strongly primitive irre-
ducible finite dimensional complex representations of GL(2, Q) along the lines of [13]
and [7] using Clifford theory. In the case where the characteristic p of the residue field
is not equal to 2, we give exact formulas for the characters of these representations
in most cases by reducing them to the evaluation of Gauss sums, Kloosterman sums
and Salié sums for the finite ring O/w”O. It generalizes the work of [7] which was
devoted to F' = Q,. The second article [12] will give the evaluation of characters
in the odd level case and the exact expressions for certain generalized Zeta function
representations [11] of PGL(2,O).
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1. INTRODUCTION

Let F' be a local field, O its ring of integers and p the characteristic of the residue field.
GL(2,0) is a maximal compact subgroup of GL(2, F') and it is a fundamental theo-
rem that the smooth irreducible complex representations of GL(2, F') are admissible
i.e decompose with finite multiplicities in terms of smooth irreducible representations
of GL(2,0). It is therefore of interest to have a classification of irreducible smooth
complex representations of GL(2,0) and to have closed expressions for the characters
of this group.

Classification of irreducible smooth complex representations of GL(2, Q) has been ob-
tained in [13] using Clifford theory [5]. Finer results such as the explicit evaluation of
characters has been obtained in [7] only when F = Q, and p # 2.

In this article we generalize this last work for arbitrary local field F' with p # 2 using
similar methods.

In section 2, we recall the classification of conjugacy classes of GL(2,O) following [1].
When p # 2 we give a classification of them in the form given in [7].

In section 3, we recall the classification of smooth irreducible representations of GL(2, O)
which are strongly primitive of even level following [13] and give a detailed and simpler
description of these representations.

In section 4, we evaluate the characters of these representations using Frobenius for-
mula. The expression of the characters can in most cases be evaluated in a closed form
by reducing them to twisted Kloosterman sums associated to the finite ring O/ *O.
Note that, not to diminish the value of the work [7], we have simplified and sometimes
corrected their work.

The original motivation for our work was the evaluation of generalized Zeta represen-
tation function [15, 6, 11] of the group PGL(2,O). In order to keep the length of the
present article reasonable, we have computed the characters of the representations only
for those which are strongly primitive of even level. In a forthcoming article [12] we
evaluate the characters of representations which are strongly primitive of odd length
and by mixing these two results we give closed expression of the evaluation of certain
generalized Zeta representation functions of PGL(2, )

2. CONJUGACY CLASSES

Let A be a local principal ring, let 9t be the maximal ideal of A, w a uniformiser of
M, k the residual field of characteristic p. Let 7 € NU {oc} be the length of A, i.e the
smallest positive integer r, if it exists, such that 9" = {0}, if not we define r = oo.
By convention we denote w™ = 0, and IMM> = {0}. If r # oo, [0,7] = {0,--- ,r}
and [0, 00] = NU {oo}. We recall the classification of similarity classes of matrices of
M;(A) as given in [1] (Theorem 2.2). For i € [0,7] we denote A; = A/9, and for
i # oo we choose s; : A; — A sections of the canonical projections p; : A — A;. We
denote A; C A the image of A; under s; for ¢ # oco. We choose s; such that Ay = {0},
i1
51(0) =0, and for 0 <i < o0, A; = {Z a;w’ a; € A}, A, is in bijection with the set
=0
A;. Let j € [0,7], j # oo, we denote p; : A — @/ A, a — w’a, which after quotienting
by the kernel defines an isomorphism of A-module p; : A,_; = @’ A.
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The following easy lemma is central in the classification of [1].

Lemma 1. Let X € My(A), it can be written as X = A + @’ B where j € [0,7] is
mazimal such that X is congruent modulo 9 to a scalar matric A = oI, o € A. If
j=o00then X = al,a € A. If j # oo, a can be chosen in A; and is unique, B is
unique mod I and moreover is a cyclic matriz i.e there exist v € A,_; such that

(v, Bv) is a basis of AZ_;.
Note that & = 0 when j = 0.
If (a,b) € A we denote C(a,b) = 0 2

As a result one obtains the theorem (theorem 2.2 of [1]):

Theorem 1. Let X € My(A) and j, a, B associated to X by the previous lemma, then
X is similar to the matriz ol +w’C(—det(B),tr(B)) = (—chcl);t(B) ot ww]jtr(B)) .
Inversely, given j € {0,...,1}, j # oo, a € A; , and a couple (=B, v) € p;(A,_;),

o
—wly a+ @B
tative. If j = oo and « € A, the class of similarity matriz having ol as representative
consists only on this matriz.

there exists a unique class of similarity matriz having as represen-

As a result the conjugacy classes of GL(2,.A) are in bijection with the subset of these
representatives defined by the additional condition that the determinant is invertible.
This last condition can also be written: if j = 0 then o = 0 and v = det(B) € A* and
if 7 > 1 then a € A*.

A further classification, simpler, is obtained when the characteristic of the residual field
k is different of 2.

Proposition 1. A set of representatives of similarity classes of My(A) are given by

j .
’WOJ{B ?(ﬂl/) ’ ] € [[0,7"]], ] ?é 00, a € "4) ZUJB < ﬁj(AT—j) with the
addition of the case j = oo (when r = o0) and the set of matrices al with o € A.

Proof. Let y € A, we denote ¥ = (; 0

the set of matrices (

> , we have Y(al + @/C(—v,B))Y ! =

1
. a- @’y Wj , Therefore if 2 is invertible in A, we can choose
@ (—y—y* = By) at+w/B+aly) |
y=-3 B in order to impose that the elements on the diagonal are equal. O

Remark: The proposition 1 is easily shown to be false when p = 2. Indeed fix j =0
and 3 invertible. The matrix (af +w’C(—, 3)) has its trace equal to 2ac+ 3, therefore
it cannot be similar to a matrix having the same elements on the diagonal which trace,
multiple of 2, is therefore non invertible.

Let F be local field, we assume that the characteristic p of the residual field is different
of 2 and let O be its integer ring. We will now use the previous classification when
A = O and the length r = co. One obtains a generalisation of the classification obtained
in [7] for the case A = Z,. Let fix e € O™ which is not a square, it always exists because

p#2
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Proposition 2. A set of representatives of conjugacy classes of GL(2,0) is given by:
o[, = (a 2) ,a € OF (Scalar class)

0
i+l
e Binsg= (gz wa ﬁ) €N, ae O, B e O (Unipotent class)
o Cinp = <wcfﬁ w;ﬁ) i€ NaecO,pec0%a®—efm® € O (Elliptic
class)
¢ Dns= <g g) ie€Nac 0% 6€0 a—6€wmO* (Diagonal class).

Proof. One uses the proposition (1) giving a set of representatives of conjugacy classes

J .
of GL(2,0) to be (w?jﬁ “),jeN, a0, BeOwith a? — ©¥8 € O, with the
addition of the matrices al, o € O™ corresponding to j = oo.
Let 5 € N, if 8 is not invertible in O then 8 = wf and a representative of this

conjugacy class is given by Bj,g. If 3 is invertible, there are two possibilities: it

1 1
J 2 J
when p # 2 and we have P‘l(a- w’“)P— <OH—w/L y '>.Therefore

is a square or not. If § = p? let P = (,u _/l>, P is invertible (det(P) = 2u)

w! o« 0 a—wl
a representative of this conjugacy class is given by the matrix D; .4 wipa—wip-
have fixed e € O* which is not a square, therefore if 8 is not a square fe ' is a
square v?. This comes from the fact that by Hensel lemma an invertible element is a

e

square in O if and only if it is a square mod 9. If we denote P = ((1) 2) we have
J 1,2 J
pl® W )\p1_ @ ) _ Cjaw- As a result the set of matrices defined
w’ « v« “

in the proposition is a set of representatives of the conjugacy classes of GL(2,0).
The name of the classes comes from the name of the projection of the matrix in
GL(2,k).

O

3. IRREDUCIBLE FINITE DIMENSIONAL COMPLEX SMOOTH REPRESENTATIONS OF
GL(2,0)

In this section F' is a local field, v the additive valuation normalized by v(w) = 1, O
is the ring of integers of F' and p the characteristic of the residual field k. We denote
g the cardinal of k. We dot not assume in this section, unless explicitely stated, that
p# 2.

Let 7 € Nug, we denote O, = O/w" O, and we define G = GL(2,0,). GL(2,0) is the
profinite group I'&HG(”. We denote p, : GL(2,0) — GL(2,0,) the canonical maps.

Definition 3.1. If 7 is a finite dimensional complex smooth representation of GL(2, O)
then there exists an integer k such that m factorizes through py as ™ = m, o pp, where
is a representation of GL(2,0k). m is irreducible if and only if 7, is.
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The smallest of these k is by definition the level of .
A representation of G of level r is said to be primitive.

As a result the classifications of irreducible finite dimensional smooth representations
of GL(2,0) of level less than r is equivalent to the classification of irreducible finite
dimensional complex representations of the finite group GL(2, O,).

Remark 1: Note that the theorem 1 applies as well when A = O/@w"O where r is any
positive integer. Therefore a set of representative of conjugacy classes of GL(2, O/w"O)
is given by {al + C(-w/f,@’d’),a € Aj,j = 0,d = 0,8 € O,“or1 < j <

r,w! B, w'a’ € p;j(O,_;)}. The cardinal of this set is qr_l(q—1)+2(q—1)qj_1qr_jqr_j =
j=1

q" ' (¢"™ —1). Therefore the number n, of conjugacy classes of GL(2, 0/w"O) is equal
to n, = ¢" *(¢"™" — 1) which is also the number a, of irreducible finite dimensional
complex representations up to isomorphism of the finite group GL(2,0/w"O). As a
result the number b, of irreducible finite dimensional complex smooth representations
up to isomorphism of level r of GL(2,0) is b, = n, — n,_1.

Remark 2: When p # 2., we will use the following classification of conjugacy classes
of GL(2,0,), which is a direct application of proposition (2). Let fix e € O, which is
not a square, it always exists because p # 2.

Proposition 3. A set of representatives of conjugacy classes of GL(2,0,) is given by:

o]a:(a O),ae(’),,x
0 «
i+1

e Cinp= <w(f/8 w;ﬂ) ie0,r—1],a€ 0, B€ 0 o —efPm* € OF

® Digs = <g g) ie0,r—1],ac 0*,6§€ O, a—6§ € z'O*.

The problem of classifying the irreducible finite dimensional complex representations
of GL(2,0,) can be completely understood and in great detail using Clifford theory,
this is what we review in the sequel.
For 0 <@ <, let Ki(r) ={g € G, g = I'mod w'}. If the context is clear we will forget
the upper index 7.
We have {I} = K" C Kr(r_)l C..C Kér) = G, The isomorphism p; : O,_; — @O,
is extended to an isomorphism p; : My(O,_;) — @’ My(O,). Having fixed a set of
compatible section s; of O; (like in section 1) for 0 < j < r, we denote Q; the image
of 55, O; and Oy are in bijection. We denote O the invertible elements of Q.
The following properties hold:
Proposition 4. (1) KZ-(T) is a normal subgroup of G,

(2) G /K" is isomorphic to G i > 0.

3) K" =T+ @' My(0,) ifi > 0.
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(4) Ki(r is abelian if i > r/2 and (Ms(O,—;),+) — Kz(r) = I+ pi(z) is an
isomorphism of abelian group if i > r/2 where My(O,_;) is endowed with the
addition of matrixz group law.

(5) |K"| = ¢ ifi > 0.
(6) |G| =g (g +1)(g—1)*r > 1.

Proof. The only nontrivial result is the computation of |G"|. Let p : GL(2,0,) —
GL(2,k) the canonical map, the kernel of p is Kl(r) = I +wM(0O,), which cardinal is
¢*"~Y. We have |GL(2,F,)| = q(q+ 1)(¢ — 1) from which the proposition follows. [J

r+1

We will define [ = |
i with ¢ > r/2.

Let us fix a smooth additive character ™ : (O, +) — C* of level 7 which means that
the kernel of 1™ contains M" but not M"~! (such character always exists). If the
context is clear we will denote it simply by .

We first recall a simple description of characters of the abelian groups Ki(r) fori > r/2.
Let 8 € M5(O,), one defines 95 : K, ) 5 C* by Yg(x) =¢(Tr(B(x—1))). s depends
only on w'f3, therefore the map MQ((’) ) = Hom(K; ) CX) S+ 15 factorizes through
an isomorphism (because 9" is of level ) My(O,_;) = Hom(K Z-T), C*), B+~ ¢g.

We use the following theorem of Clifford theory [5] recalled in [13] (Theorem 2.1): let
GG be a finite group and N a normal subgroup of G. GG acts on the set of representations
of N by conjugation: if p is a representation of N then for ¢ € G we denote p? the
representation of N defined by p?(n) = p(gng™'). For any irreducible representation p
of N, we define the stabilizer T'(p) as being the subgroup of G defined by T'(p) = {g €
G, p? is isomorphic to p}, T'(p) always contains N. Assume that p is an irreducible rep-
resentation of N, then the set of irreducible representations of G which restriction to
N contains p is in bijection with the set of irreducible representations of T'(p) which re-
striction to N contains p. More precisely, if A = {0 € Irr(T(p )) ResN(p)(Q) contains p}
and B = {r € Irr(G), Res%(r) contains p}, then 0 IndT(p (0) is a bijection from

| and I = Lg] We have [ +1" = r and [ is the smallest integer

A to B. Moreover if 7 is an irreducible representation of G' then Res$ (7) = e(@ )

peQ
where () is an orbit of the action of G on the set of classes of irreducible representations

of N and e is a positive integer.

We will use this theorem and apply it to G = GL(2,0,) and N = K with [ the
smallest integer greater than r /2, the reason being that K is abelian and therefore the
irreducible representations of K; are one dimensional and simple to describe and if p
is a one dimensional representation of K; the condition that [ is the smallest implies
that the stabilizer of K is bigger than K; but not too much. We will heavily use the
method of [13] but we will be more precise in the description of the representations of
the stabilisers. This is important for the computation of the characters of GL(2, O,).
G acts on Hom(K;,C*) ~ M,y(Oy), the orbits are analysed according to their re-
ductions mod IN.

In My (k) there are 4 types of similarity equivalence classes:
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e type ¢; (scalar): (g 2) ,a €k
e type ¢y (diagonal): (8 2) sa,d €k,a#d

e type c3 (elliptic): (_OA i) A, s €k, 2* — sz + A irreducible in k[z]

e type ¢4 (unipotent): (8 Cll) ,a € k.

If a € Oy we denote a € k its reduction mod 9, if B € My(Op) we denote 3 € My(k)

its reduction mod M. If B € M»(Op),vp| - depends only on 3, we denote it 5.

Let 7 be an irreducible representation of G acting on V, 7|k, decomposes as a direct

sum of one dimensional representations and we have

7T|Klm =e @wg where € is an orbit under G"). We have 7T|Kf]“jl =e @ 5. All these
BeQ BeQ

B are in the same orbit under the action of GL(2,k). Therefore we can distinguish

two cases: all # are the nul matrix or none of them are zero. In the first case this

means that 7| K, is a direct sum of trivial representations, therefore 7 factorises as

TG — G(’")/Kr@l — GL(V), which means, after using G(’”)/Kﬁ)l ~ GTY that
is of level less or equal to r — 1. If, on the contrary , one (all) of the 3 is not the nul
matrix then 7 is of level r.

The case 3 is of type ¢, i.e B = al with a # 0 is interesting. Let x € K,@l we
have g (z) = Y (a(Tr(z — 1)) = v (a(det(x) — 1)) = xaq o det(x) where x, is a
character Kﬁi)l — C*. From the theory of extension of characters of abelian group, x,
can be extended to a character x, : O, — C*. We will denote z/N)a a one dimensional
representation of G extending ¥, by 1, = Xq o det. Note that 1), is of level r because
a # 0. The representation 7 satisfies 7 = 1), @ «’ where 7' is of level less or equal to
r — 1. This result motivates the introduction of the notion of sublevel of a complex
finite dimensional irreducible smooth representation 7w of GL(2, O).

Definition 3.2. The sublevel is the smallest integer k such that there exists x, one
dimensional representation of GL(2,0), such that m ® x factorizes through the finite
group GL(2,Oy). Because the level always exists, the sublevel always exists and is less
or equal to the level. A representation of GL(2,0) of level k which sublevel is also k
will be called strongly primitive of level k.

Let n, the the number of conjugacy classes of G, let a, the number of non isomorphic
irreducible representations of G, b, (resp b)) the number of non isomorphic primitive
(strongly primitive) representations of G, From the discussion above we have b, =
b + (¢ — 1)a,_; which implies n, — qn,_, = b..

Finally one obtains the following proposition [13]:

Proposition 5. Let m be an irreducible representation of G") and let 8 be an element
in the orbit ) of the decomposition of 7| ., then 3 is conjugated under G") to one of
1

these elements:
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e (1) (8 2) va,d € Qp,a = d = 0 mod M. In this case w is of level less or

equal to r — 1.

o (C]) <(01 2>,a,d € Op,a = d mod M and a # 0 mod M. In this case ™ =

s @ 7 where © is a representation of G of level less than v — 1 and 1, is
a primitive character of G, In this case 7 is of level r and of sublevel less or
equal to r — 1.

.« (Cy) (g 2) “a,d € Op,a# dmod M.

e (C3) (_OA i) VA s € Qp,2® — sz + A is irreducible mod ON.

o (Cy) (Z 1§b>,a,b,c,d € Op,b,c,a—d e M. Then m = s @ 7 where 7

.

1S a primitive representations which restriction 7T,|K(r) =e @ Vg where ' is
l

5/691
0 1
S> A seQp, A s €M

—-A

In the case Cy, C5, Cy the representation is strongly primitive.

The orbit associated to (C1) and (CY) are not reqular in the sense of Hill [2]. The orbits
of type (C2), (Cs), (Cy) are reqular. The orbit (Cy) and (Cy) are split [2] whereas (C3)
is cuspidal in Hill’s terminology [3]. In all the cases where [ is reqular, we have

~

T(Yg) = (O.18]) Ky where B is an element in My(O,) having B as projection in
My (Op).

conjugated under G to Beya,s) = (

In [13] a complete classification (valid even for p = 2) of irreducible representation of
GL(2,0,) is given using an inductive process. These representations fall in two classes:
they can be strongly primitive of level r or they are twisted by a character from an
irreducible representation of level less or equal to  — 1. Therefore the knowledge of all
irreducible strongly primitive representations of GL(2, Oy) for every k < r gives, after
twisting by characters, the complete list of irreducible representations of GL(2, O,).
We now proceed and study in detail the strongly primitive representations of GL(2, O,).
They fall into classes according to the previous proposition.

Definition 3.3. The representations associated to the orbits Coy will be called principal
split representations.

The representations associated to the orbits Cs will be called cuspidal representations
The representations associated to the orbits Cy will be called non-principal split
representations.

At this point we have to distinguish two cases:

e the simplest case is when r is even, i.e [ =1 = 3 in this case K is abelian.

r —

e the more complicated case is when r is odd, i.e ' =1 -1 = , in this case

K is not abelian.
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In the rest of this work we study the case where r is even, the case where r is
odd is studied in [12].
We use the notations and results of of [13]. Let 3 be an element of M,(Oy ) belonging to

the orbits Cy, C5 or Cy and let 3 be any lift of 3 in M5(0,). Let 8 € Hom(O, [B]X,CX),

A

be a character such that 6 and 14 coincide on Ky N O, [3]*, one define 615 to be the

~

one dimensional representation of T'(¢3) = O,[5]* Ky by (0¢5)(xy) = 0(x)s(y),z €

O,[8]%,y € Ky. Then the representation (6, §) = Indg(r[)é]XK (61g) is an irreducible
[ I

representation. It is shown that the set of representations 7 (6, 8) up to isomorphism
depends only on the orbit of # and is independent of the choice of lift 5. Furthermore
up to isomorphism this is the complete list of strongly primitive representations of level
r.

We now proceed further and analyse in detail these representations. We have tried to
simplify as much the construction of these representations, this will be important for
computing their characters. Note that there is a neat construction for the Principal
split and Cuspidal representations, but the non principal split representations resist
such a description..

3.1. Principal Split representations. Let a,d € O;,a # d mod 9M, we define
a 0 l+alz oy

B(Cg(a,d)) = (0 d) . Let g = ( wlz 1 —I—wlt € Kl. We have ¢B(Cg(a,d))<g) =

Y(w'axr + w'td). The number of characters of the form ¥gcyaa) i3 |Qf|Q; \ M| =

¢'(¢" — ¢ = (¢ — 1)¢"*. Because B(Cs(a,d)) and 3(Cy(d, a)) are the only elements

in the same orbit under the conjugation action, the number of orbits of type Cs is
1

- _1 r—l'
2(61 )q

We have T'(¢g(cy(a,a))) = SK; with S = {(%1 SO) 51,85 € OX} = (O,[8])* where 8
2

l

S1 w

l Y ;51,52 €
wZz S92

is any lift of 3(Cy(a,d)) in My(O,). Note that T'(¢s(cy(aa) = {(
O),y,z € 0.} = T(Cy) and is independent of a, d.

We have [T (¢s(ca(aay)| = [0 *(d)* = (a — 1)*¢" .

Because K; NS = {(1+wla: 0 I ) r,y € O,} we have |K;N S| = ¢'¢' = ¢". The
0 1+w'y) ™’ " '
number of characters 6 : S — C* which are equal to 1g(cy(e,a) on K; NS is given by

S
ﬁ = ¢""%(g—1)2. The irreducible principal split representation 7 (6, 3((Cy(a,d)))
G|

~ +1 r—l'

Moreover from the counting above, the number of inequivalent irreducible principal

is strongly primitive and of dimension

1
split representations of G is é(q —1)3¢* 3,
We now give a precise description of these characters 6.
A one dimensional representation 6 of S is necessarily equal to 6, ,, where u,u’ are

characters of O, and 0, ,( (801 SO)) = pu(s1)p'(s2). The condition that 6 and ¥g(c, (a,a))
2
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are equal on S N K is given by:
p(l+ ') (1 4+ o'y) = Y(zlax + <'dy), Yo,y € O,,
which is equivalent to
p(1+o'z) = ¥(@lax), Vo € O,, 1 (1 + 'y) = Y(&'dy),Vy € O,.

Note that we can recover a,d € Q; from the characters u, ;' using the last condition.
In particular one has the important property that pu'~ ' (1+w'e) = (w'z(a—d)),Va €
O,. Asking that the restriction of ug/~" to the multiplicative group (14 @'0,) is of
level [ is equivalent to the fact that a # d mod .

We can therefore parametrize the set of principal split representations of G™ by a pair
of characters of 0. We say that a couple (u, 1') of characters of O is regular if and
only if u,u'*l|1+wz@r is primitive (i.e of level [).

For such regular couple (y, '), we will denote II,,, the irreducible representation
(0, V3(Ca(aa))) Where a (resp. d) are defined by g (resp. p'). The representation
11, ,s and I,/ , are isomorphic and up to equivalence depend only on the pair {u, '}
Remark: Note that the character 6,, /0 5(cy(a,a)) of SK;, denoted py’ has the following
simple expression on 7'(Cy)

Wz Sy

I
wEW( 2, TY) =i (s2) s € 0y € O,

and II, » = Indgégz)(,u X 1'). With this description we do not use (a, d), which can be

recovered from (p, u1').

3.2. Cuspidal representations. Let F“" be the maximal unramified extension of F,
we have Gal(F*" /F) ~ Gal(F,/F,), let o be the element of Gal(F""/F) corresponding
to the Frobenius automorphism Fr of F,. Let E be the unique unramified extension of
F of degree 2 i.e E = {x € F*",0*(x) = v}, we denote OF the ring of integers of F,
its maximal ideal is generated by w and its residual field is F .

We denote OF jw"OF = OF for k positive integer. We fix r integer and denote Oy,
for 0 < k < r the image of compatible sections of Of. As usual we define the maps
Tr,N:E — Fby Tr(z) =z +0(z), N(x) = zo(x).

For any 7 € Of such that 7—c(7) # 0 mod @, we define B(Cs(7)) = (_]\?<T) Trl T)) ,
which is a matrix of type C5. The reduction of B(Cs(7)) in My(k) is 5(Cs(7)) =
0 1 . _ .
(—TFT(T) i FT(T)) with Fr(7) # 7,1e T € Fp \ F,.
1+ o'z wly
Let g = < o 1+ot) € K;, we have ¢gcyrn(9) = ¥(@'z — @' N(r)y +
@' Tr(r)t).
1
The number of characters of the form ¥, (7)) is i(q —1)¢"!'. This is because the set

2(1—1

{r € OF 7 = o(7) mod w} is of cardinal ¢g¢*'~ and Va(0y(r)) = Va(Cs(o(r)))- Lherefore

1
the number of orbits of type Cj is §(q —1)g" .
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Let 7 a representative of 7 in OF , we define 3 alift of B(C5(7)), B = (_712(72) N -1-10(%)) )
A a b
T(¢5(03(T))) = SK; and we have S = Or[ﬂ]x = {(—Iﬁ'a(f') a—+ b(f'—l—a(%))) ,a,b €

Oy, (a4 b7)(a+bo(7)) € OF}. As a result we obtain

— z y
T = {<_y%a(%) + o'z x + y(f— + 0(7:>> + wlt) , T, Y, 2, t € (QT}‘

Let a,b € O,, because 7 € Fp \ F,, we have the equivalence: (a + b7)(a + bo(7)) =
0 mod w if and only if a and b are equal to 0 mod w.

. a b . . o 2
Therefore S = {(—bfa(%) o+ b7 + 0(%))) ,a,b € O, \ wO,} implying |S| = (¢
1)q2(7‘—1)‘

Moreover S N K; = {(_b;;(%) a+b(%b+ a(f-))> cab € O a =1 mod @, b=
0 mod @'}

We therefore have |S N K;| = (¢"")* = ¢", from which it follows that |T(¥g(csr))| =
(> = 1)g* 2.

The number of characters 6 : S — C*, which extend ¥g(c,(-)) on S N K, is given by

S .
|S|ﬂ|Kz| =@

From the counting argument above, the number of inequivalent cuspidal representations

1
of G™ is é(q —1)(¢* —1)¢* . These representations are all strongly primitive and of

G, -

We now give a precise description of these characters 6.
Let v,/ characters (OF)* — C*, we define a character 6,/ : S — C* by

a b N .
91,,1,/((_%_0(%) o+ b7 + 0(%)))) =v(a+ b))V (a+ bo(T)).

Each character of S is of this type.
The condition that 6 and v¥c,(r)) are equal on S N K is given by:

(1)

v(l+wat+olyr )V (1+wle+o'yo (1)) = Y(w'r(e4yr)+@'o(7) (z+yo (1)), Ve, y € O,.
Let OF®) = {2 € OF o(2) = +2}, (1 + @' OF® x) are subgroups of (OF)*. The
condition (1) implies that

dimension

v(1+ @)V (1 + ew'z) = Y(@'z(1 + eo(1)),¥V2 € OFF) Ve € {4, -}

In particular we obtain that v/~ (1+w@'z) = ¥(@'(r —0(7))z) for z € OF) ie v/
is a representation of (14 @'OF)) of level .

We say that a couple (v, /') of characters of (OF)* is regular if and only if v/~ is a
representation of (1 + @' OF)) of level 1.

In the case where p # 2, we can recover T € @F from the knowledge of v, /.
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Indeed if (v,1') is a regular couple of characters of (OF)* let ¢ € {+,—} then there
exists a unique 79 € OF such that v(1 + @'2)V/(1 + ew'z) = Y(='7), ¥z € OF
The regularity condition implies that 7(7) ¢ M. It is an easy exercise to show that if

1
we define 7 = §(T(+) + 7(7)) then the condition (1) holds.

Given (v, V') aregular couple of characters of (OF)*, we will denote v = 0, /(4 (r))s
where 7 is defined from (v, /).

We denote C,,,/ the representation m(6,,./,9Vs(cy(r)) = 1 ndgégg y(v X V). Note that
Cy, is isomorphic to Cyrop, oo

Remark: At this point, we want to make a connection with the work of [7]. They
are working with the case where p # 2 and O = Z,. They have chosen a different
representative of C3 and a different choice of 5 associated to C5. For F' any local field
with p # 2, denote O the ring of integer of F’ if p € O; and € € O, such that € is not a

1
element «, ¢ (page 1297) of [7] in the case where O = Z,). We have 5 = Pty P~"

square in O, and is invertible in @, we define § = <p ;) . (The elements p, € are the

— 1 1
with P = ( 1p (1)) , with p = 5(7’ +0(7)), € = (5(7' — o(7)))?. Note they have used

the same € to parametrize the conjugacy classes of type C5 as well as the representions
of cuspidal type. We will prefer to proceed as follows: once forall, we have fixed an
invertible element € in O, such that € is not a square. This € is used for the proposition
(3). We will denote ® a square root in OF of e. The cuspidal representations are
labelled by a regular couple (v,2). This couple defines 7 € @ from which we define

€ = (5(7 —o(7)))?: e is fixed whereas € depends on the choice of the regular couple

1
(v,1/). €€ is a square in O, and we have €€ = u® with u = §CI>(T —o(71)) € O;).

3.3. Non-Principal Split representations. Let A,s € O;NIM, we define Boya s =

0 1
(5 )
Let g = 1+§Dlx @y € K, we have g () Y(w'z — Awly + sw't).
oz 1+ oot I B(CH(A,s)\G Yy

The number of characters of the form g1 (a.s) is (g (r=1=12 — =2,

0 1 :
Let A, § lifts of A, s in O, and define 3(A, §) = (_ §> a lift of Beoy(a,s)-
We have T(i/),B(CjL(A s) ) = SK; with

. b .
S(A3) = S = (O,[8)* —{( A Hsb) b€ Op,a®+ sab + A € 0X}=

a b «
{(—Ab a—l—Ab)’an be O}
We have |(O,[5])*| = |0 [|0: \ @O, | = (¢ — 1)¢™ .
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a b r

Because SNK; = {(—Ab ot §b> ,a,b e wlOr}, |SNK;| = ¢" therefore |T(¢ﬁ(ci(A,s)))| =
S| K] 3r—1

LA B bt I — Do .

SAK] (g —1)g

S
The number of characters 6 : S — C* which extend Y5 on SNK is given by B ‘ﬂ ‘K | =
!

(g—1)g" "

Finally the number of inequivalent irreducible representations of type C} is (¢—1)¢" ' x
¢"? = (¢ — 1)¢* 3. These representations are all strongly primitive and of dimension
|GT| 2 r—2

| S Kl| _ (q 1>q .
Finally these representations can be tensored with one dimensional characters of G
of the type v,, a € k, which give all the inequivalent representations of type Cy. There
is therefore (¢ — 1)¢* 2 inequivalent representations of this type, all of them being
strongly primitive and of dimension (¢* — 1)g" .

We now give a precise description of the characters 8 extending ¢/5> on SN K; . Because

BQ = —AI+ §B the group law on S'is given by
(al +b3)(d'T +V'B) = (aa’ — AbY)I + (abl + a'b + 8bb')3

with a,a’ € 0,0, € O,. Let 6§ : S — C* be a character, the center of S being
Z(S) ={al,a € O}, the restriction 6|z(g) defines a multiplicative character, denoted
o of OX. Therefore we have 0(al + bf) = o(a)n(b/a) where n : O, — C* defined by
n(z) = 0(1 + zf), z € O, satisfies:

n(z)n(y) = o(1 — Azy)n(z xy)
with
T+ y+ sxy
2 T,y —= ——J——.
(2) y I~ Any

(O, *) is a commutative group.
Let ¢: O, x O, — C*, be the map defined by ¢(x,y) = (1 — Azy), ¢ is a two cocycle

in the sense that c(z *xy, z)c(x,y) = c(x,yx 2)c(y, 2),Vx,y, 2 € O,, and 7 is therefore a

projective representation of the additive group (O,,*) associated to the 2-cocycle ¢ ™.

The condition that 6 extends 5 reads:

0((1+ w'a)l + @'bf) = Y(—2Aw'b + sw'a + s*w'b) Va,be O,
=o(1 + @d'a)n(@'v/(1 + @'a)) = o(1 4+ w'a)n(='d)
which is equivalent to
o(1+w'a) = Y(sw'a),Va € O,
n(w'b) = ¥((s* — 20)w'b), Vb € O,..
Therefore the restriction of o to the group 1 + w'O, is not primitive and it defines

uniquely s € OQ; N 9. Note that the restriction of x and + to @' O, coincide and the
restriction of the cocycle ¢ to @' O, is trivial. Therefore the restriction of 1 to (='O,, +)
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is a one dimensional representation. It is not primitive, and once s is known through
the knowledge of o, it defines uniquely A € O@; N 9T when p # 2.

Remark 1. One can endow O with an internal law * defined by the same formula as
(2), but with 3, A € wO. By the theory of formal group it is shown that (O, %) is
isomorphic to (O, +) when F' is of 0 characteristic (Exercice 2 of [8] page 345). This
is however not the case when we consider O, and this prevent us to construct all the
characters of S using only projective characters of (O,,+).

Remark 2. In [7] it is said in the introduction that their methods could be applied to
find the character value of GL(2, O) which is the content of our work. They say that it
is easier for them to count the number of irreducible representations in the case where
O = Z, but from the work of [13] there is no counting argument involved because the list
of irreducible representations is known to be complete by Clifford theory. Nevertheless
we can check by a counting argument that the list of representations is indeed complete
as follows. The number of irreducible representations that we have constructed which
fall into the classes of principal or non principal split and cuspidal representations is
by = %(q —1)%¢ % + %(q —1)(¢" = 1)¢* 4+ (¢—1)¢* % = (¢—1)¢*" ! which is equal
to n, — gqn,_1 = b... Therefore the list of strongly primitive representations is complete.

In the case where p # 2 we can give a somewhat simpler descriptions of nonprincipal

split representations which is closer to the classification given in [7]. For A, 5 € Q;NIMN,
52 1 . . .
denote 50;{(5,5) = <—A 5/2) . The matrix B¢y (as) 18 conjugated under G to the

matrix ﬁq,l,(A_ﬁ o
4

Proposition 6. We use the same notation as in proposition 5. If w is an irreducible
representation of GU) which orbit has a representative Beor(a,s), with Ay s € OpNM, we

have m = 1;3/2 @ " where 7 is a strongly primitive representatzon which restriction

7T”|Kl(r) =e @ Yar where B is conjugated under G to BCQ(A—%,O) and 155 is a one
ﬁ//EQ//

dimensional representation of G™) of the form Ys = X odet with X one dimensional

representation of O and the restriction of 1;% to K is given by s .
Proof. Same proof as in [13]. O

Therefore we have ”absorbed” s by tensoring with a one dimensional representation,
and we are left with the analysis of the representations associated to Scr(a ). Let A
be a lift in @O, of A. Let 6 be a character of S(A,0) — C*. One can associate to it
n, o satisfying the same relations as (3, 3) but with § = 0. In particular o is trivial on
1 + @'O,. The representation (0, 50;;(A,0)) will be denoted Za ¢g. Up to isomorphism
it does not depend on the choice of the lift of A. In order to obtain the complete
set of representations which are non principal split, we have to tensor them with (U1

s € O, NM and with @bao,ao € 0.
We shall also denote Z, a9 = wa ®ZEa9, with a € O; and wa is a one dimensional repre-
sentation of G of the type wa Xa0det where x, a one dimensional representation of
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O, and the restriction of @a to K is given by 1,7, we have a = ag + s/2 with ay € Oy
and s € O, NM.

The following table summarizes the essential informations on strongly primitive repre-
sentations:

’ Strongly primitive irrep of odd level r \ Dimension \ Number of inequivalent irrep
1
Principal Split representations II,, (q+ 1) §(q —1)3¢* 3
1
Cuspidal representations C, (q— gt i(q —1)(¢* — 1)g* 3
Non Principal Split representations Z, 0 | (¢* — 1)¢" > (q—1)g* 2

4. CHARACTERS

We will use the formula of Frobenius giving the character of an induced representa-
tion. Let G a finite group, H a subgroup of G and 7 a finite dimensional complex
representation of H having character y,, then the character of Ind$ () is given by:

1 _
(3) tr(9linag () = szg(tﬁ Y, Vged
teG
(4) = > xtgt™),
tex

where for any function ¢ on H, ¢° denotes the extension of ¢ on G by ¢°(g9) = ¢(g) if
g € H and zero otherwise, and X denote any section of the right cosets of H in G. We
will apply this formula to the case where G = G™, r even and H = T(¢g) = SK;.
We will assume that p # 2 in the rest of this work and we will use the proposition (3)
to obtain a representative set of conjugacy classes.

Remark: Although representatives of conjugacy classes are known in the case p = 2
as well as an exhaustive list of irreducible representations, computing characters using
Frobenius formula appears to be very complicated.

4.1. Principal split representations. Having chosen (3 ot type C5, we obtain:

Proposition 7. A section of the right cosets of SK; is given by the following set of
matrices X = {egy, fo;0,y € Oz € O_1} where e,, = ((1) f) (1 O> S =

y 1
1 x wz 1
0 1 1 wz)°

!
Proof. We have SK; = { wsll

w
z So
to show that the right coset associated to the elements of X are disjoints. Moreover
1X| = (¢")* + ¢'¢"* = |G/SK| therefore X is a section of the right cosets of SK;. O

, 81,82 € Oy, z € O, }. It is an easy exercise
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We will denote ¢ : O, — O the function defined by &(z) = 1 — w?2? = det(f,..).
Frobenius formula therefore gives:

(5) tr(ghn, )= (LB u)(tgt™") = Se(g) + S¢(9),
teX
where Se(g) = > (n® ) (eayge,,) and Sp(g) = > (uBp) (forgfsl).
z,yeOy z€0;,2€0;_4

e Conjugacy class of type I.

G
I, being central we have tr(la|n, ,) = %u(a)u’(a) =q" g+ Dpla)' ().

e Conjugacy class of type C.
Proposition 8. tr(Cjqzslu, ) = 0.

o (a—dPy+a'fr(l-e?)  (1+ay)’w'ef —2’w’f
PT’OOf- ex,ycz,a,ﬂex,y - < wlﬁ(l — €y2) o+ wleﬂy — wzﬁl‘(l - ey2)

fore this matrix does not belong to SK; if i <1 (because [ is invertible) and its value
on (X /)" is 0. When i > I, we necessarily have a € O,

> . There-

Se(Ciap) = Y plo—w'eBy+ @' Ba(l — )i (o + @' eBy — @' Ba(1 — e?))
z,ye0y
= (@) 3 (a0~ Zo(eBy + Ba1 — ).
z,ycOy

Because the restriction of pu’ - to the multiplicative group (1 +w@'0,) is primitive and

i < r, we have Z(uu”l)(l - %(eﬁy + Bz(1 — €y?))) = 0, therefore S.(Cjqp5) = 0.

€0y
We have
f:c,zci,a,ﬁfgc_,; =
a+ §Z)(_B(lj wzx)wz + €f(wz + 7)) | *
d Be — w?2%) at — (wzB(1 + zwz) — ef(x + wz)),

£(2) £(2)

in order to have a non zero value by (1 X u/)? it is necessary that i > [. In that case «
is invertible and

S¢(Ciap) =
i (B(1 + wzx)wz — ef(wz + ), , ot o (B(1 + wzx)wz — ef(wz + x))
oo ) e &)
@' (wz — efwz) + x(w?2? — €f)

= playl(@) Y (1= o ))-

Ba
z€0,2€0;_4

£(2)

)
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The sum over x gives again 0 for the same reason as the one used for proving that
Se(Ciap) = 0. Therefore S;(C;qop5) = 0. The evaluation of the character on elliptic
elements is 0. U

e Conjugacy class of type D.

Lemma 2. Let A : 1 + @'O, — C* be a primitive character with r = 2l. Let u € O
and i € [0,r — 1], the following identity holds:

Z M1+ uw'zy) = ¢
@,y€0
v(y)>1—i,0(x)>1—i
Proof. Up to changing the primitive character, we can always assume u = 1.
If 7 > [ then there is no constraint on z,y. We can write ¢ = [ + i and we have
to evaluate A = Z A1+ wlxwi/y). y being fixed, the sum over z is nul unless
z,y€0y
v(w'y) > 1 and in this case it gives |Q;]. The summation over x,y gives therefore
A=10|{y € O, v(=@"y) > I}| = |O|=" " 0s| = ¢'¢" = ¢"
If i <1, weset z = w2’y = @, 2,y € O, therefore A = Z A1 +
'y’ €0;
w'@'i2'y’). Noting that z — A(1 + @'’ "2) is a primitive character of O;, we obtain
that for ¢/ fixed the sum over 2’ gives 0 unless ¢ = 0. The summation over 2,1 gives
therefore A = |Q;] = ¢".
O

Proposition 9. tr(D;aslu, ,) = q'(u(a) ' (8) + p'(a)p(6)).
Proof. From

e D ot (at(a=d)ry (b —a)z(l+zy)
Ty hadCry (v —0)y d—(a—d)ay )’

we see that only the matrix such that v((a — d)y) > 1 and v((0 — a)x(1 4+ xy)) > can
contribute to Se¢(D; o). Because v(aw — §) = i, we necessarily have v(y) > 1 —i. As a
result we have to distinguish two cases: ¢ > [ or ¢ < [.

In the first case i > [, there is no condition on z,y. In the second case we necessarily
have v(y) > [—1 > 0, therefore 1+ xy is invertible and we necessarily have v(z) > [ —1.
Therefore:

Se(Dias) = > pa+ (o = 8)ay)p' (6 — (o = 6)ay)
z,y€0;
v(y)>l—iv(z)>1—1

(o —9)

= ) DD a1 - )
v(y)Zfigi?i)Zl—i
= p(a)p'(9) Z u(l+ (aa;a)l'y)//(l _ @xy)

z,y€0y
v(y)2l—iv(z)>l—i
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-0 -0
the last equality holds because the equality (o 5 )xy = (o ):r;y holds from the
o
valuation condition on x,y. As a result:
_ a—90
5Dis) = ne)d@) Y 1+ Dy
ooy 31i
= q'u(a)'(9),

where for the last equality we have used the preceeding lemma with A = (uu/~") and

(o —9)

7

Fro?én i |
fz,zDi,a,éfz_,; =
L wz(x +wz) (1+zwz)(z+wz)(a—9)
A € |
wz(a —9) ot (a—d) wz(r + wz)
£(2) £(2)

only the matrix with v((a — §)wz) > [ and v((a — §)(z + wz) > [ can contribute to
St(D; as)- This last condition is also equivalent to v(wz) > [ — i and v(x) > [ —1i. We
therefore have:

St(Dias) = > u(6 — (a—9)

2€0;,2€0;_
v(z)>l—i,v(wz)>l—1

wz(x + wz)

£(2)

wz(x + wz)

B

ARG

a—dwz(r+wz)
= Ny 1—
1(0)p (@) > 1( 5
z€0;,2z€0;_1
v(z)>l—i,v(wz)>1l—1

, (0 —0) wz(z + wz)
o MU T T

)

(0 —0) wz(z + wz)
8 §(2)

a—dwz(r+wz)

=pOp'la) Y - — &

z€0;,2€0;_1
v(z)>l—i,v(wz)>1—1

)

)i (1+

/ —1 a—0wz(r +wz
—ue) Y - S5t T

z€0;,2€0;_1
v(z)>l—i,v(wz)>l—1

= ¢'u(d)1 (ev).
The proof of the last equality follows the same analysis as the preceeding lemma with

minor adjustments. Indeed we have to distinguish two cases. If ¢ > [ then i = ' + 1,
the summation on z, z being fixed, 2is 0 unless v(wi/wz) > [ and in this case it gives

/ —1 a—0 (wz)
L ’/
0, therefore S(D;as) = p(0)p' (@)|Oi|[{z € Oy, v(w’ wz) > 1} = p(d)p' ()| O||{z €
O, w2z € wl’i/@i/| = () (a)g". If i < I, we proceed as in the previous lemma
setting z = wl’ix’, the summation on 2’ forces @z to be zero, in order to get a non
zero sum. As a result Sp(Dias) = p(0)p'()|Qi] = ¢’ u(d)p/ ().

)

). From the condition on i we have (a—0)(wz)? =

O
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e Conjugacy classes of type B

Proposition 10. tr(B;asln, ,) = Sir1q" () ().
Proof.
o _ (et @ (@ —ymb(ltay) @1+ ay)? - e
em,yBi,a,Jex,y = i1 2 it+1 i ]
@' (1 — fwy”) a+w " fy(l+ay) —w'e
This matrix is in SK; only when i > [.
i+1 o
a+ ——B(wz+ ) —2(1+ wzx)) (1 +w2z)? — (v + w2)*wp))
fz sz o 5f_1 = 6(2) +1 é(Z) +1
, ,0,0J 2 ot o’
B — wx? o+ 2(xwz+1) — Bz + wz
- o w1 = B+ 2))
This matrix is in SK; only when ¢ > [.
Therefore if i <1 then Sc(D;as) = Sf(Dias) = 0.
If i > [ we have
Se(Biag) = Y mla+@ (@ —y=wB(1+ay)p'(a+ = By(1 + zy) — ='x)
z,ye0y
!/ /— wl
= pla)'(@) Y (™)1 + —(@(1 = =y*B) —y=h))),
z,yc0y
the sum over x gives 0 for ¢+ < r — 1.
S¢(Bias) =
it ot
Z p(a+ (B(wz+2) — 2(1 + wza)))p (o« — —(B(wz + z) — 2(1 + wzx)))
z€0;,z€0;_4 é-(Z) £<’Z)
l /—1 wi+1
= pla)d(@) Y (T (B(wz + z) — 2(1 + wzx))).
z€0;,2€0;_1 Oéf(Z)

The sum over x gives 0 unless ¢ = r — 1 where the result is u(a)p'(@)|0y||Oy| =

¢ () (). O

The following table give the complete list of evaluation of characters of principal split
representations:

| \ Iy \ Di s | Ciag | Biag |

L tr(uy) () [ ¢ (g + Du(a)p' (@) [ ¢' (@) () + p'(a)pu(0)) | 0 | Girm1d” pla)pr' (@) |

4.2. Cuspidal representations. Having chosen S of type (s, and a lift B we obtain:

Proposition 11. A section of the right cosets of SK; are given by the following set of

matrices Y = {hcq4,c € O, d € O} where heq = (Ccl (1)
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! l
a+wr b+ w'y
b t :
—bio(?) +w'z a+b(T+ o)) + wlt> :0,2,4,2,¢ € Or}
It is an easy exercise to show that the orbits associated to the elements Y are disjoints.
Moreover |Y| = ¢'(¢' — ¢"") = |G/SK;| therefore Y is a section of the right cosets of
SK;.

Proof. We have SK; = {<

O

Frobenius formula therefore gives:

tr(gle,,) = > (&R (tgt™") = Su(g, v, V).

tey
e Conjugacy class of type I.
I, being central we have
G| : 1 :
tr(lyle ) = =q" -1 .
r(Iale,,) ’SK[|V(Q)V (@) =q¢" (¢ —Dv(a)/ ()

e Conjugacy class of type D.
Proposition 12. tr(D;aslc, ) =0
Proof.
‘ 4 o 0
heaDioshea = <(a —§)c/d 5) !
therefore

Su(DiasviV) = Y. (MV’)O(((Q_OS)C/d g>)

c€0y,de0)
X / « 0
_(0; %mm%((a_é)c )
ceQy

We have a — § = w'u with u invertible therefore hc,dDiva,(;hc_Cll € SKj only if i > [ (this
comes from the fact it is lower triangular).
In the case where ¢ > [ we have

1 0
Q 0 . )
< > =1, | @wtuc 1 wu |,

(—0d)e o —
therefore
(v RV)( <(a 35)0 g)) = V(a)y’(a)w(é(wiuc — Tr(t)@'u)).
As a result
S1(Dig, v,¥) = OF () (0) 3 w(é(wiuc  Tr(r)win)) = 0,

ceOy

the summation on ¢ giving 0 because ¢ is primitive and ¢ < r.

e Conjugacy class of type B.



CHARACTERS 21

r—1

Proposition 13. tr(B;aslc, ) = —di (@) (a)g

Proof. We prefer to work with the representative wBi,aﬁw_l where w = (é ?) , 1t

will be easier to compare with results of [7]. We have

- a— cw’ doo'
heqwBiosw "h ;= ¢ .
AThes o %(wﬁ -4 a+wc
This matrix belongs to SK; only when i > [.
Indeed, if wi& - v | = a—i:wlw ! b—HAﬂly 1, | we nec-
7(7;5_02) a+ wle —ON(7)+ @'y a+bIr(7)+w't
essarily have b = dw' mod @', a = oz—§T7’( Yo' mod @', = §TT( #H)w'modw!, w g—
Ao’ = —d*@'N(#) modw'. Assuming i < [ the last equation implies that (¢* —
d .

dQN(A))w = Omod @', but using ¢ = §T7"( #)modw' ™, we necessarily have that

dQ(( Tr( ))?> — N (7)) = d*¢ = 0mod w which contradicts d and € invertible.

Let us therefore assume that ¢ > [, we have hc7dei7a,gw_1h;§ € SK;, and:

Sh(Bi,a,Ba v, 7/) = Sh(U)Bi,a,ﬂw_la v, Vl) =

—vap (@) Y w(E(wh )~ TN + D))
c€0y,de0;

—vap (@) Y (@ (e~ dTr(r)?) + T o(7))

)%)

« 2
c€0y,de0;
wide, , .. . 7—0(T))y
—v(0) Y w( (@b - )+ 2 withe = (=2
c€0;,de0)
_ 10N A 20i-1) 22 e widé
W @D Y o (wh - ) + Z),
c€0,_;,de0)_,

Using Proposition.18 of the Appendix, because @ is not invertible, this sum is equal
to 0 unless w'™'3 =0, i.e 7 — i = 1, and the result is equal to —v(a)v/(a)q" .

e Conjugacy class of type C.

Recall that we have denoted ® € OF a solution of ®* = «.

Proposition 14.
r(Crasle,,) = (—a) (Vo + T BB (o — = BB) + v(a — T BA (a + D))
Proof. We have
a— cw'ef dw'efs
hc,dci,a,ﬁhc_’cll = 6@

y — (1 —c%) a+w'ceB
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We have to distinguish two cases ¢+ > [ and ¢ < [.
<& If ¢ > | then this last matrix belongs to SK; and is equal to I,k where k € Kj.
Therefore

51 (Coapr) = v@W/(@) Y (=)~ TN ) £ D (r)eep)

da o
c€0y,de0;
= v(a)V () Z w(ﬁdzl (1—(c+ gTT(T))2€) — wZ;leBN<T> + %TT(T)(C + gTT(T))EB)
c€0y,de0;
—vapa) Y w0 g+ TP
CG(O)l,dE@ZX
—vap(e) Y (Tl e+ T
c€0y,de0;
—vap/a) Y w(E (e )+ T
c€0y,de0;

_ V(Oz)l//(a)qz(i_l) Z w(wlﬁ (6 . 02) 4 wlﬁdg)'

da Qo
c€0,_;,d€0)_,

Applying Proposition (18) of the Appendix (evaluation of Salié sums), this is equal to
w'B @'

(Chasle,) = P (@)g D —ay () + v(-ZLou)
(where u? = €€, 2u = <I>(T —o(1))) |
= (o) () (-0} Z (s — o () + (- L0~ o(7))),
= v(a)V (a)(—q) (v(1 + wiq)g)y’(l — wiq)g) +v(l— wiq)g)y’(l + wiq)g))

= (—¢)'(v(a+@T'h)V (a — @' F) + v(a — 'RV (a + &' DP))

which gives the announced result.

Remark: This corrects misprints in [7] (Page 1306 it should be p' and not p'~* in the
expression of tr(C; o,lc, ,) and moreover they have considered the case were € = € = u).
<& We now proceed with i < [. The same method as developped in [7] can be applied
and this is a non trivial result. We can ask what are the (¢, d) € O; x O] such that
hc,dC’i,aﬁhc_Cll € SK;, this condition is equivalent to the existence of XY, Z,T € O,
such that

he.aCiash l = X Y
cd iaslled =\ _yio(3) + w2 X+ Y(F+0(f)+@'T)
) ) d )
This imply Y = dw'ef, 2cw'e = YTr(+) + @w'T. Therefore ¢ = 5Tr(%) + @7, T €

)

BYdE (1 —c%) = —YN(7)+ @' Z , alittle algebra implies that d = 4u~" +

0;. From
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-1
. U .
dw'™ d € 0;, and ¢ = iTT'r’(%) + @' ¢ € 0;. Inversely this is a sufficient

condition on ¢, d for having hqu’i,a,ghc_é € SK;.
-1

We now fix d = ™' + d'w" c = %T?”(T) + d@'™, the other choice of sign follows
the same method.

Under this condition, we now factorise: hc7dCi7a,gh;§ = sk,s € S,k € K;. This is not
unique, we can choose s = (_b;;(%) o b<7A_b+ o(%))) , witha = a—%_lTr(?)wieB, b=
u”'w'ef. The matrix k = s_lhqum,ﬁh;; = <1 —;le 1 flélt) . Note that det(s) =
a® 4 abTr(7) +b*N(7) which after simplifications gives det(s) = o — w*e3?. Therefore
the matrix k£ can be computed as

1 b a — cw'eB dwo'efs
k= ——+— N . . Bt ,
a? — wef3? <_b7‘7(7> a+b(7 + 0(7))> y (1—c%) a+w'eef

From this equation we obtain, after a direct lengthy computation

(0 — w¥ef?) (w2 - @yN(T) + Tr(1)(1 + @'t)) =
= 2baN(T) + %(1 — c*€) — adw'eBN (1) + a(a + w'ceB)Tr(T).

This expression can be simplified by different changes of variables. Defining ¢ = ¢ —

d
—Tr(7), we obtain

d(o® — w¥ef?)(w'z — w'yN (1) + Tr(r)w't) =
= 2bdaN (1) + adaTr(7) + aBw' (1 — &) + ad*w' Beé — d(a® — w*ef?)Tr(T)
= ad*w'u*B — 2uw'Bad + afw’ — Feaf’.

= with e, f € ©; in the last expression, we obtain:

1 uafen?

a? — w?ef? 1+ fuw!?

Setting d = u™' + fw' ™, ¢ = ew

w'z — @yN(r) + Tr(r)w't = (f?e—e?).

As a result we obtain for d = u™! + fw' ', é = ew' " :

(v X V’)(hcydC’i,aygh;;) =v(a+ b (a + bo(?))('z — @'yN(7) + Tr(r)='t)
We can simplify:
via+br) (a+bo(7)) =
-1 -1

=v(a— %wieﬁTr(f') +u eV (a — %wieﬂTr(f') +utw'eBo(7))

w'e(r —a(1))8, , w'e(r —a(1))B
via+ o W(a— o )

=v(a+ TP (a — T'®B).
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As a result
Si(Ciap, v, V) =v(a+ @ PB) (a — @' ®B)ST + v(a — D' ®B)V (a + ' ®B)S™

where
20—

1 8 )
S = 2 U e )
e, fe0;

tuaBen? iz
a2 — 2ief3? )-

Let us define the characters A\* : O; — C*, A\ (2) = ¢(
We have

= NE(f2% — ¢?) with ¢ = ——o = S S
e,fZE:Oi 4 ) V 1+ fuwh? V1 =+ fuwl—i

= (—q)".

We have used to conclude the proposition 17 of the appendix using properties of Gauss

sums. O
As a result

Si(Ciap, v, V) = (=)' (v(a+ @' ®B)V (o — @' PB) + v(a — @' ®B)V (a + ' ®B)),
which is the desired result. 0J

The following table give the complete list of evaluation of characters of cuspidal repre-
sentations:

| \ Iy | Dias | Ciap \ Biag
1 : (=q)'(v(a+ @BV (0 — w'DP) 1oy
tr(‘|cyyyl) q ((] - 1)1/((Jé)l/ (Oé) 0 —|—I/(O./ _ wi@ﬂ)yl(a + wchﬁ)) - i,r—l’/(a)l/ (Oé)q

4.3. Non principal split representations. Let A € Q; NN, let A a lift in O, of A.
A b

We have T(Q/}ﬁ(CQ(A,O))) = SK; with S = S(A, 0) = {(—zb a) ,a € O;(,b c OT}

Proposition 15. A section of the right cosets of SK; is given by the following set

of matrices Y U Z where Y = {hcq,c € O, d € O} with heq = (Ccl (1)) and Z =

{hweaw,c € Op_1,d € O} and w = <(1) é) )

X Y
Proof. We use SK; = {(—AY—l—wlZ X 4 2T
direct verification. 0

>,X €c 0, Z,T € O.}. Itisa
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An important remark: note that w is put on the right of h..4 and this is essential for
the proposition to be true. In [7] an analog of this proposition is stated in Lemma 6.1
and in section 6.2 page 1315 but w is incorrectly put on the left and the corresponding
set of elements E.; and F,; (in their notations) do not provide a set of representative
of right cosets. Indeed with the notations of Lemma 6.1, if we define the group L =
r wlyB 1 dd™! 0 : .
{ (y - ) b, we have FouF 5 = | (c— d)w L) this matrix belongs to L as soon as
!

d=d,vic—d)>i—7—1(j <i) with tclileir notations. Therefore there exist ¢, ¢ such
that F.qy # Fu.q and LF.y; = LF.4 contradicting the Lemma 6.1. Our remark applies
as well for the section 6.2. As a consequence the results obtained in [7] concerning the
value of the characters of the split non principal representations cannot be trusted.

e Conjugacy class of type I.
I, being central we have
G
tr(lalz, n) = |g—K||>~(a(a2)9(]a) = (¢* — 1)¢" *Ya(a?)o(a), where o is the multiplica-
l
tive character associated to 6.
e Conjugacy class of type D.

We have he,gD; o 5hy L = <C “ 0

_ ) 0

(a — 6)/d 5) and ficoeatv Do sty = <wc((5 —a)/d a) ’
as a result the conjugacy class of D, , s intersects SK; only when ¢ > [ because the
valuation of the difference of the matrix elements on the diagonal has to be greater or
equal to [.
Therefore we obtain that ¢r(D; a5z, ,,) = 0 when i <.
When ¢ > [ we have both hqui,a’(;h;Cll e SKy, hm,dem,gwh;i’d € SK;. Noting that

-l 1 0 . ‘ _1
hc,dDz,a,(Shc,d =1, <c(a _5))/(da) 1—(a—-24)/a and similarly for hwc’deZ,av(;whwc’d

we obtain
r(Dinslzes) = Y 0UEED 4 Y 9(15)@&(%053&).

d «
c€0y,de0) c€0y_1,de0;/

The first sum is always 0, because o — § € 'O, with i < r, and therefore for fixed d
the sum over ¢ gives 0. The second sum is zero for the same reason unless i = r — 1.
In the case i = r — 1 we have w(a — §) = 0, therefore the second sum is equal to
0(15) 07 1011 | = 0(15)(q — L)'

We finally obtain

tr(Dislzng) = Gir 1 %a(@)Ta(0)0(8) (g — 1)

Note that because the restriction of o to 1 +w@'Q, is trivial we have o(a) = o(§) when
1 =r — 1, the result is symmetric in the exchange of a and ¢, as it should be.

e Conjugacy class of type C.
We have

o o — cww'efs dw'efs
hc,doua,ﬁhc,d - <6w’(1 — 626)/d o+ cwieﬁ)

this matrix does not belong to SK; when i < [.
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X Y
~AY +@'Z X +o'T
but —AY + ©'Z is of valuation strictly bigger to ¢ because A is of positive valuation
and i < I, therefore one cannot have —AY +©'Z = fw’(1—c?*¢)/d which is of valuation
0.

We have

Indeed if hc7dCi7a,5h;; = ( ) then Y = dw'ef is of valuation 4,

hwcdwczaﬁwhwcd ( o — wew'f dw' 8 >’

Bw'(e — (we)?)/d o+ wew' B

for the same reason if ¢ < [ then hgqwCi Bthcd ¢ SK;.
As a result we get tr(Ci |z, ,) =0 when i <.

If i > [, we have
he,aCiaph. d—[ 3 o o ' e SK;.

Therefore we obtain

tr<0i,a,ﬂ ’EA,G) =

S DA G RS N N SR (AT
c€0y,de0; c€0y_1,de0/

=0y Q(JQ)@/)(ﬁwi (1—c%) — Agwieﬁ) +

od
c€0p_;,d€0)_,

+P YT A1)

c€Qr_;_1 ,dE@;ii

fw’ 2 d_;
7 (e — (wc) )—Aaw B).

In order to compute the first term of this sum we remark that 1 — c2e is invertible and

1
that the map d — i dAu from O); to O

we have

where u € O,_;, is bijective. As a result

r—1)

> w0 - alei) -

ad
c€0,_;,de0)_,

- Y wZaoe)

c€0,_;,de0)_,

c€0,_;,de0)_,

- Y o acan- Y e coma

(6]
c€Qy_;,de0Q,_; c€Qy_;,d€Qr_;_1
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Fixing ¢ the sum over d gives 0 when r —¢ > 1. When 7 = r — 1, we have to evaluate

Z w(ﬂi(l — c®¢)d). For fixed ¢ the sum over d gives —1, therefore the value of
a
c€@1,d€@i<

this sum is equal to —|O;| = —¢. We obtain that
fw'’ 2 A d r—1
Y. (- (=) = A-a'ef) = —0(L)g" 5.
cE@l,de@)f

The second sum is evaluated with the same technique and we obtain

S 000 e (o)~ Al =~ (100,

CE@lfl,de@lx

As a result we get:

tT(Ci,a,B|EA,9) = _qr—2<q + 1)9(Ia)5i,r—1 = —QT_Q((I + 1)U(a)5i,r—1-
Finally:
tr(Ciaplz,ns) = —Xa(det(Ciag))o(a)q (g + 1)di,1.

Because o® — 1%¢? = o when i = r — 1, we finally obtain:

tr(Ciiaplz,a0) = —Xa(@®)o (@) (g + 1)1

e Conjugacy class of type B.

The case of conjugacy class of type B is much more involved than the other conjugacy
classes. This comes from two difficulties: there is no neat description of the non
principal split representations and moreover the character depends on three positive
integers i, 7, k. We have done a careful analysis of this case but there are cases where
we cannot give explicit closed formulas.

Note also that there are numerous mistakes in the analysis of [7] concerning this case:
the given set of representatives of right cosets is not a set of representatives as already
mentionned, the evaluation of the sum denoted P of [7] is mistaken as noted and cor-
rected in [4] (but only for the case Z,) and moreover they have used the same parameter
B for the parametrisation of the conjugacy classes and also for the parametrisation of
the representation =, A ¢ (i.e they have called our A also /3). Therefore their evaluation
of the characters, which was nevertheless not given in a closed form for some cases in
1, J, k cannot be trusted for these conjugacy classes.

We have - -
i+ i+
B I =
hc,de,a,,th’d == ((wz - C2wz+1ﬁ>/d o+ szJrlﬂ) )
_ a—cw'tt dw'
hwc,dWBi,ozﬁwhwi,d = ((wiJrlﬁ _ wi+202)/d o4 sz‘ﬂ)
At this point let us define j = v(f), we have 0 < j < r — 1 and let k = v(A) we have

1 <k <r. Note that 1 +i+ j < r. It will be convenient to chose 8" and A’ inversible
such that 8 = @/f', A = w*A’.

Lemma 3. hadBi’a”th_,; belongs to SK; only if i > [.
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Proof. Assume that hc,dBiya”gh;; € SKj, then there exists Y, Z € O, such that Y =
dw't'B, (w' — o™ ) /d = =AY +w'Z. Therefore v(Y) =i+j+1and i = v((w' —
Ao B)/d) = v(—~AY + @' Z). We have v(AY) =i+ j+k+1and v(z'Z) = 1 +v(2).
As aresult ¢ > min(i 4+ j + k + 1,1 + v(y)) which is possible only if i > [.

U

We consider as usual two cases.
<& The first case is when ¢ > [, in this case both hc,dBi,a”Bh;Cll and he g B; o gwh_

we,d

_ 1 - o™B/a do'™ B/
belong to SK;. From thBi,avﬁhc’é =1, ((wl B c%i“%/(ad) 14 cwiﬁ/ﬁ/c) , the

contribution of the elements hc’dBl-,aﬁh;é to the character of the representation =a p is
given by the following sum:
wt 1—ccwhB
xi= ) 0 (——— — Adwp))
c€0;,de0;

= @6Dg(1,) Z w(i(# — Adwp)).

«Q
c€0,_;,de0)_,

1 o
Using the fact that d — s dAu from O, ; to O, where u € O,_; is a bijection, the

evaluation of this sum follows the same procedure as in the case of conjugacy classes
of type C' and we obtain:

X1 =—0(1)q" 601
_ 1 —czm't/a dw' /o :
F B, Lo—_ 7 , , : h -
rom Nge g Bj o gwh_, 4 o ((wlﬂﬁ — o 2) J(ad) 1+ e /a the contribu
tion of the elements hwc,dei,a,ﬂwh;i,d to the character of the representation = g is
given by the following sum:

it1g _ oit2:2
SR NS E A R ST G Aoy L

ad
c€0y_1,de0;]
i glRr 22 o
—o) Y (T ITE i) -
a
06@171,d€@lx

‘ i _j+lgr 2.2 o
(O DI ol Gt V)

«

c€Qr_i_1 ,de@:_i

Note that when i = r—1, 1) is evaluated on the 0 element, therefore xo = 6(1,)|0;_1]|O0) | =
0(1,)q¢" (¢ — 1). Therefore when i = r — 1, we obtain that the character of S is
X1+ X2 = —0(1.)q >

When i < r — 1, the value of the character reduces to x2(i,7, k). This sum can be
simplified as explained by [4] in the case of Z,, the generalisation to the case of O is
provided in the appendix of our work.

<& The second case is when 7 < [.
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We have hgeqwB; o gthcd € SK; if and only if there exists X,Y, Z,T € O, such that

X Y
hwc del Cx,ﬁwhwc d <_AY + wlZ X + wlT) ’

l—i—1

In this hypothesis we have 2cw'™ = @w'T, ie c = w e,e € O,. We now look for a

necessary condition on d. We also have

(6) ~AYw' + @' Z = (@ — w"ie?) /d.

From this last equation we have to distinguish two cases: 1 +j+1<lori+j+1>1[.
OOIn the first case i4+j7+1 < [. Because Y = dw', —AY is necessarily of valuation i+k,
but from the equation (6) and the inequality i +j+ 1 < [, we must have k = j+ 1. We
therefore have that if k # j 4+ 1 then hocqwB; o nghwC 4 1s not in SK;. The character

of the representation is zero.
If Kk =7 + 1 then we have to solve the equation

(7) ~Ndw'™* + @' Z = (@ — w'ie?) /d.
There are two cases to consider. This equation modulo @' gives:
—A/dek — wi+j+lﬁl/d mod wl.
A/
The first case is when —E is not a square, then there is no solution in d to this equation
implying heeqwB; o ﬁthc 4 1snot in SK;. The value of the character is therefore equal

to zero. )
/!

A ,
The second case is when ——- = I'~2, the equation (7) implies that d = +T + @' ~"* f
with f € O,. As a result we obtain

a— e dw

wz“rkﬁ/ o w2l7i62)/d o+ wle

%

hee awB; a,gwhmd (( ) = sk € SK;

with

B Q deo’
5= —do'A  a

1 o? — awle — kg _dettie
a2 + 2w A adw™ A — deo A e + ad (w z+k6 2l 2) o + awle 4+ iR R A/

(one can very that indeed k belongs to K;.) Therefore the character of Za g evaluated
on the conjugacy class is equal to

- a dwl i-‘y—k/\/ _ ’L+k 2l i,2
S > e N O R )
d=+T+wl=i=kf feo, 4

© )
a2+d2w2iA )

We have not been able to simplify this formula further.
OOIn the second case ¢+ 7+ 1 > [. In order for hm,dei,aﬁwh;’d to belong to SKj,

we necessarily have ¢ = @'~ e, and there must exists Z € O, such that —A/dw** +
w'z = (@ E — w"e?)/d. We have to distinguish 2 cases:
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OO 1+ k < [. There is no solution Z to the previous equation because v(A’dw”k +
w8 — " "e?)/d) = i + k. Therefore the value of the character is zero on the
conjugacy class.

OOO i+ k > 1 Then hg, dewgwh
analogously as in the previous case

belong to SK; if ¢ = w'""'e. We proceed

we,d

a— e dw’

Pse dela,Bwhwcd ((wi+j+1ﬁ/ . w2l7'i€2)/d a—+ wle) = sk € SKI
with
. Q dw’
—d'A  «
1 CYZ . awle . w2i+j+1ﬁ' _dlerze
o2 i dQWQiA a<dwi+kA/ + d_l(’wH—j—Hﬁ, . le—i62)) 012 + awle + w2i+kd2A/
Therefore the character of Zx y evaluated on the conjugacy class is equal to
S 0(_gmia 7 Pt a o )

2 2 2”)'
pprsy o a? + d*w? A
de@f

1 A/
Noting that LA =—(1-=Sw
[0}

2ith 2
2 | 2p2A  « a2

, the value of the character is:

_ « do' 1 ik Ar il 21— 2
X4_§9((—dwiA a>)¢(a(dw A +d @B — o)),

deo/

We have not been able to simplify this formula further.
To summarize:

’ ‘ ]a ‘ Di,a,(s ‘ Oi,oz,,@ Bi,a,ﬁ
| @ D7 @) | G val0)%0) | —,ava(e?) Many cascs
a0t o(w) o(9)(q — 1)qr_2 U(Oé)qT_z(q +1) | No "simple” formula

APPENDIX A. GAUSS SUMS, KLOOSTERMAN SUMS, SALIE SUMS

We use the notations of section 3.

Let A : (Ok,+) — C* a primitive character, let a € Oy, we will denote the quadratic

Gauss sum G(a, A) to be:

A) = Z Maz?)

€0y

Let a,b € Oy, the Kloosterman sum K (a,b, \) is defined as:

K(a,b,\)

Z /\ax+bx

xEOX
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Let p be a multiplicative character O — C*, the twisted Kloosterman sum K (a, b, A, p)
is defined as:

K(a,b,\,p) = Z p(x)A(az + bx™h).

IGO;

Important example of twisted Kloosterman sum which appear in our work is the Salié
sum S(a, b, \) defined as:

S(a,b,N) =Y (Oik)A(aH bab),

xEO;

where (Oi) denotes the Legendre symbol in Oy, which is defined for every x € O, and

k
is equal to

0 if  is not invertible
x e
(O—) =<1 if  is a square
k —1 otherwise.

Note that the Legendre symbol restricted to O; is a group morphism with value in
{+1, —1} which factor through the group k*.

Remark: In order to keep track of the dependence of k, we will sometimes use the
notation Gy, Ky, Sy for the Gauss, Kloosterman, Salié sum associated to Oy.

In [14] quadratic Gauss sum are studied and computed for any finite commutative
ring of odd characteristic. We apply his results to the case of the ring Of. With his
notations, we have do, = k, and the theorem 6.2 of [14] can be stated as:

Proposition 16.

2 Lk
G = (5)'s
G(ab, \) = (—)*G(b,\),a,b € OF.
Ok

From this theorem we obtain the following result which is needed for the evaluation of
the characters of cuspidal representations for conjugacy class of type C.

Proposition 17. Let X\ : (Ok,+) — C* be a primitive character, let n € O an
wnvertible element which is not a square, we have:

> M —nf?) = (—q).
e, feOy

Proof. Let S = Z e —nf?) = G(1,\)G(—n, ). We have S = G(1, \)G(—n, ) =
e, feOy
Mk /NN M \k k k
G(1L,N)(—=)"G(1,\) = (=)"(—= =(—= = (—q)". OJ
LN(GDELN = (G (G = (g = (-a)
In the evaluation of characters of cuspidal representations, one needs an explicit expres-
sion for T'(b,n, \) = Z Md (b —¢*) +dn) where b € Oy, n € O, 1 not a square
c€0},,deO)
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and A : (Ok,+) — C* is a primitive character. This sum is a twisted Kloosterman
sum. Indeed we have:

T A= > Md'(b—c?) +dn)

CEO,deO)
= > Adb+d'n)G(—d, N
deOy
= > Adbyp+d)G(—dn, N
deO)
= G(-1,)) Z(d”) A(dbn + d ™)
’ Ok;
deOy
d
_ _1\k Y —1
= G(-1,N)(-1) Z(Ok) Adbn +d ™).
deOy

As a result when k is even we get a Kloosterman sum and when k is odd we obtain a
Salié sum. The following result give a simple formula of the evaluation of this sum for
any k. When k is even, and Oy, = Z/p*Z, this is the classical formula for evaluation
of Kloosterman sum obtained by H.Salié¢ in 1931. In the case where O is the ring of
integer of a p-adic field F', we could obtain the evaluation of these sums by applying
the results of [9, 10] to a number field having F' at some place. This is not completely
direct and do not cover the case where the local field is of positive characteristic, we
prefer to give a direct proof of it using a generalization of the method of [7].

Proposition 18. Let A : (Of,+) — C* be a primitive character, let n € Oy an

tvertible element which is not a square, we have:

(—q)*(M(2u) + A(=2u)), ifu® =nb is invertible,
> oM b—*) +dn) =< —q ifk=1andb=0,
€O, deO) 0 otherwise.

Proof. The sum T'(b,n, \) can be expressed as:

TN = > Md'(b—¢)+dn)

c€0},,deO)
=Y Ma){(c,d) € O x OF yx =nd+ (b— c*)d '}
€0y
= Z )\ Ok X O )‘
€Oy

where E(x) = {(c,d) € Oy x O, xd =nd* + (b — c*)}.
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Noting that E(x) ((’)k x wO;) = E(x + @™ 1) N (O x w®},), we obtain that

> A=) N(Ox x @O = Y Aa)|E(z + @) N (O x @O))|
€0y z€0y
= Z Mz — " HD|E(z) N (O x wO4)|
€0y
BPIRE: N (O, x wOy)]
€0y
= 0.
As a result we obtain: T'(b,n, A Z Az
€0y,

Let F(z) = {(c,d) € O},d* — nc® = z}, a simple computation shows that E(z) =
F((g)2 —nb). As a result, if we introduce p : O — N, p(y) = |F(y)|, and noting that
p(y) = p(u*y) if u is invertible,
T(b,n, A Z Mz)p(z® — 4nb).
€0y,

Using a straighforward generalization of the argument of [7], p can be evaluated exactly
and is a function of the valuation

20— ity =0
p(y) =19 (¢+1)g" "W if y(y) even (including 0)
0 if v(y) odd.

Let us recall the argument of [7] generalized in our setting. We consider the different
cases.

(1) b invertible and is a square

(2) b invertible and is a non-square

(3) b non invertible
In the case 1), nb is not a square, this is also equivalent by Hensel lemma to the fact
that it is not a square in the residual field. Therefore z* — 4nb is invertible for all
x € O, because otherwise it would vanish in the residual field contradicting that nb is
not a square. Therefore

T(b,n, \) ZA p(x® — 4nb)

€0y

=) AMz)(g+1)g =0.

€Oy
In the case 3) b belongs to wOy. When k > 2, we have

T(b,n, \) Z Mz)p(2? — 4nb) + Z z)p(x? — 4nb)

z€0; X r€wOy

= AM@)(g+ D"+ D Aa)pla® — 4nd)

xe@x rewOy
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The first sum is 0 after having used the following property, direct generalisation of the
lemma 5.1 of [7]

0 ifj<k—1
(8) Y o AMa)=9 -1 ifj=k—1
— 1 ifj=k

To evaluate the second sum we notice that (z + wkil)2 = 2° when x € @Oy, hence:

Z Az)p(x? — 4nb) = Z M2)p((z + @12 — 4nd)

r€wOy r€wOy
= Z Mz — @ Hp(a? — 4nb) = A\(— Z Az)p(2? — 4nb),
z€wOy z€wOy

implying the vanishing of the second sum. Therefore T'(b,n, A) = 0.
Note that when k = 1, we necessarily have b = 0, and

T(b,n,A) =Y Aa)p

ze0q

Z)\ (g+1)

xek*
=1—-(¢g+1)=—q.
In the remaining case 2), we have eb = u® with u invertible, therefore T'(b,n,\) =

D AM@)p((x — 2u)(z + 2u)).
€0y,
(x — 2u)(x + 2u) is non invertible if and only if x — 2u or = + 2u has a strictly positive

valuation. We denote Xi = +2u + wj(’)k,j > 1. We have

T(b,n, A ; A2)p((x — 2u)(z + 2u))
— ) \2; i/\(m)p(l) +;§;z§§A(w)p(wJ)
. g@: Mz)p(1) + > gg}; M) (p(@”) = p(1))
- x; Az)p(1) + Ezﬂé GZJ_O Aeu)M (@) (p(w?) — p(1)).

Using Z AMz) =0 for j =0,...,k — 2 we obtain

r€wI O

T(b,m, A) Z Y (A2u) + A(=2u))A (@) (p(=) = p(1)).

j=k—12€wiO,
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Applying (8) we end up with:
T (b1, \) = —(A(2u) + A(=2u)) (p(@" ™) = p(1)) + (A(2u) + A(=2u))(p(0) — p(1))
= (M(2u) + A(=2u))(p(0) — p(=""1))

= ()" ((M2u) + A(=2u))).

This ends the proof of the proposition.

The rest of this section is devoted to the evaluation of the sum

. IO w' wj+15/ — w’c? i+k A1l
xali g k) = ?00(L) Y (o — dw AR

CE@r,ifl,dE@;ii

with the conditions [ <i<r—1,0<j<r—1,1<k<r,1+i+j <r. This sum is
the character of Z g evaluated on the conjugacy class B; , 3 when [ <7 <7 — 1.
Precise evaluation of these kind of sums have been given by Maeda in [4] for the case
O = Z,. We will show that x2(7, j, k) can always be expressed in term of Gauss Sums,
Kloosterman sums and Salié sums. In most cases one can further evaluate them but
in the case where £ = 1 there are cases where the evaluation amount to evaluate
Kloosterman sums in the case where there is no closed formula for them.

) i+1 2/ 2.2
. _ 261 w B —wie
X?(Z>]7 k) = dq O(Ia) Z w( a ( d

c€0,_;,de0_,

— dw Tt A))

w3 — w?c?

= ¢y Y X y — d A )

c€0y_;,deO)

) ) j+kA/ /
q2(7,—l)—10(1a) Z )\((wg—i-l/ﬁl _ wQCZ)d . w - 5

c€0,_;,d€O)_,

where A\ : O,_; — C* is the primitive character factor map of the character z —
z

(@' —).
Whenaz’ = r — 2 then the elements on which A is evaluated are all 0. Therefore we
obtain x»(4, j, k) = ¢*“"V71O04)|O5| = ¢" (¢ — 1). We now assume i < 7 — 2.

We have to distinguish two cases: 7 > 1 and 7 =

OCIfj>1
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Denoting p : O,_;_5 — C* the primitive character factor map of the character z —
Mw@?z), we obtain:

’wj_H_k_lA,ﬁ,

xolinj, k) = U0 Y (@ = )l - )

c€Op_;_2o

X
deO; . o

_ qz(ifl)+39(1) Z Iu(wjflﬁld_

deO*

r—i—2

i k-2 Alﬁl

d )GrfifQ(,ua _d)

wj+k—2A’ﬁ’ d

UIT0(1,)Grmima(p, —1) Z p(w’ 1 p'd — P )(O ) )R
de0* , , T
When ¢ + 75+ 1 =17, we have
s i— d r—i—
xz2(i, j, k) = ¢ l)+39(fa)Gr—i—2(M7 —1) Z (0—2) ?
deor , , 7
. O ,_5| ifiiseven
= V(1) Groia(pt, 1) X { l) . if ¢ is odd.

When i+ 54+ 1 < r we denote fo: Op_i_j—1 — C* the primitive character factor map
of the character z — u(w’~'2),
o D) Ke_ij (B, =" A8 i) ifiis even
k) = @O0(10)Gria(p, —1) x & T o
x2(i.5.k) = ¢ Ua)Grimali =1 X\ "7 ' ktArg 7y i s odd.
When k£ > 1 we can further simplify these expressions. Indeed using the fact that the

k—1 A
y 1to O

map d — d — is a bijection from O , when k£ > 1, we can

r—i—j— r—i—j—

write
. - K, j1(0',0,1) ifiis even
_ 2(i=1)+3 ) _ r—i—j—1 )
X2(l7.]7 k) = dq 0<]a)Gr—z—2(,u7 ]-) X { Sr—i—j—l(ﬁ/7 07 ﬁ) if 7 is odd.
When k = 1; we have
. i K,_ij1(8,—AN'B i) ifiis even
) = 2(1 l)+39 I, Gr—i— -1 r—i—j—1 » o )
X2<Z7.]7 ) q ( ) 2(1“7 ) X Sr_i_j_l(B,,_Alﬁly,a) lflls Odd
Note that only the case r —i — 7 — 1 =1 and 7 even cannot be further simplified.
& If j = 0 we have

. . ) ka/ /
CO0K) = 0 S M@ - wrei- T2
ceO,_;
deo)
oF=1A B
= P0120(r Z M(B —wc?)d — Tﬁ)

c€Op_; 1

X
ae0; . 4
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with A\ : O0,_;_; — C primitive character factor map of z — A(wz). If we still denote
i Op_i—g — C* the primitive character factor map of the character z — A\(wz), we
obtain

0 k) = 2D-1.2000T by /d_wkflA/B/ —o(d) 2
x2(4,0,k) = ¢ Caf(l) Y B ——u(=pld)c’)
c€0p_j_2
dio::ifl

’wk_lA/ﬁ/

_ q2(i—l)+26(1a) Z :\(ﬁ,d—

deox

r—i—1

d )Gr—i2(p, —p(d)).

where p(d) is the projection of d in O,_;_5. As a result we get:

. i < wk_lAlﬁl p(d) .
XQ(Z? 07 k) = q2( l)+29([a)Gr—i—2(ua _1) Z )\(ﬁ d - d )<O ( ) 2) 2
deO;_; e
i ~ wkflA//Bl d i
POI(1)G oo (p—1) Y MBd - ; )(O _‘_1) 2

deox

r—i—1

- Ko 1(f, =" TA'F',\) ifiis even
— 2(1 l)+29 G i 1) x r—i—1 ) - )/
1 (o) Groicat =L)X g7 7 b1Arg %) if s odd.
When k > 1 we can further simplify these expressions. Indeed using the fact that the
k—lA/
map d +— d — —0 is a bijection from O . ;to O . | when k > 1, we can write

. - K,_i_1(f,0,\) ifiis even
_ 2(i—1)+2 I ) —1 r—i—1 » s 7
x2(i,0.k) = ¢ O(La)Crizalyt, 1) x { Soi1(B,0,X) ifiis odd.
When k£ = 1; we have
Ko_i1(8,—=A'B',\) ifiis even
S,_ia (B, =A'B" N ifiis odd.

Note that only the case i = r — 2 cannot be further simplified.

XQ(Z.aOa 1) = q2(i_l)+29(]a)G7‘—i—2(,uﬂ _1) X {
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