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EVALUATION OF CHARACTERS OF SMOOTH
REPRESENTATIONS OF GL(2,O) :

I.STRONGLY PRIMITIVE REPRESENTATIONS OF EVEN LEVEL.

PH.ROCHE

Abstract. Let F be a local field, let O be its integer ring and $ a uniformizer of its
maximal ideal. To an irreducible complex finite dimensional smooth representation
π of GL(2,O) is associated a pair of positive integers k, k′ called the level and the
sublevel of π. The level is the smallest integer k such that π factorizes through the
finite group GL(2,O/$kO), whereas the sublevel is the smallest integer k′ ≤ k such
that there exists χ, one dimensional representation of GL(2,O), such that π ⊗ χ

factorizes through the finite group GL(2,O/$k′
O). A representation of GL(2,O) is

said strongly primitive if the level and sublevel are equal. The classification of smooth
finite dimensional representations of GL(2,O) is equivalent to the classification of
strongly primitive irreducible representations of GL(2,O).

In this first article we describe explicitely the even level strongly primitive irre-
ducible finite dimensional complex representations of GL(2,O) along the lines of [13]
and [7] using Clifford theory. In the case where the characteristic p of the residue field
is not equal to 2, we give exact formulas for the characters of these representations
in most cases by reducing them to the evaluation of Gauss sums, Kloosterman sums
and Salié sums for the finite ring O/$kO. It generalizes the work of [7] which was
devoted to F = Qp. The second article [12] will give the evaluation of characters
in the odd level case and the exact expressions for certain generalized Zeta function
representations [11] of PGL(2,O).
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1. Introduction

Let F be a local field, O its ring of integers and p the characteristic of the residue field.
GL(2,O) is a maximal compact subgroup of GL(2, F ) and it is a fundamental theo-
rem that the smooth irreducible complex representations of GL(2, F ) are admissible
i.e decompose with finite multiplicities in terms of smooth irreducible representations
of GL(2,O). It is therefore of interest to have a classification of irreducible smooth
complex representations of GL(2,O) and to have closed expressions for the characters
of this group.
Classification of irreducible smooth complex representations of GL(2,O) has been ob-
tained in [13] using Clifford theory [5]. Finer results such as the explicit evaluation of
characters has been obtained in [7] only when F = Qp and p 6= 2.
In this article we generalize this last work for arbitrary local field F with p 6= 2 using
similar methods.
In section 2, we recall the classification of conjugacy classes of GL(2,O) following [1].
When p 6= 2 we give a classification of them in the form given in [7].
In section 3, we recall the classification of smooth irreducible representations ofGL(2,O)
which are strongly primitive of even level following [13] and give a detailed and simpler
description of these representations.
In section 4, we evaluate the characters of these representations using Frobenius for-
mula. The expression of the characters can in most cases be evaluated in a closed form
by reducing them to twisted Kloosterman sums associated to the finite ring O/$kO.
Note that, not to diminish the value of the work [7], we have simplified and sometimes
corrected their work.
The original motivation for our work was the evaluation of generalized Zeta represen-
tation function [15, 6, 11] of the group PGL(2,O). In order to keep the length of the
present article reasonable, we have computed the characters of the representations only
for those which are strongly primitive of even level. In a forthcoming article [12] we
evaluate the characters of representations which are strongly primitive of odd length
and by mixing these two results we give closed expression of the evaluation of certain
generalized Zeta representation functions of PGL(2,O)

2. Conjugacy classes

Let A be a local principal ring, let M be the maximal ideal of A, $ a uniformiser of
M, k the residual field of characteristic p. Let r ∈ N∪ {∞} be the length of A, i.e the
smallest positive integer r, if it exists, such that Mr = {0}, if not we define r = ∞.
By convention we denote $∞ = 0, and M∞ = {0}. If r 6= ∞, J0, rK = {0, · · · , r}
and J0,∞K = N ∪ {∞}. We recall the classification of similarity classes of matrices of
M2(A) as given in [1] (Theorem 2.2). For i ∈ J0, rK we denote Ai = A/Mi, and for
i 6= ∞ we choose si : Ai → A sections of the canonical projections pi : A → Ai. We
denote Ai ⊂ A the image of Ai under si for i 6=∞. We choose si such that A0 = {0},

s1(0) = 0, and for 0 < i <∞, Ai = {
i−1∑
j=0

aj$
j, aj ∈ A1}, Ai is in bijection with the set

Ai. Let j ∈ J0, rK, j 6=∞, we denote ρj : A → $jA, a 7→ $ja, which after quotienting

by the kernel defines an isomorphism of A-module ρ̄j : Ar−j
∼−→ $jA.
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The following easy lemma is central in the classification of [1].

Lemma 1. Let X ∈ M2(A), it can be written as X = A + $jB where j ∈ J0, rK is
maximal such that X is congruent modulo Mj to a scalar matrix A = αI, α ∈ A. If
j = ∞ then X = αI, α ∈ A. If j 6= ∞, α can be chosen in Aj and is unique, B is
unique mod Mr−j and moreover is a cyclic matrix i.e there exist v ∈ Ar−j such that
(v,Bv) is a basis of A2

r−j.

Note that α = 0 when j = 0.

If (a, b) ∈ A we denote C(a, b) =

(
0 1
a b

)
.

As a result one obtains the theorem (theorem 2.2 of [1]):

Theorem 1. Let X ∈M2(A) and j, α,B associated to X by the previous lemma, then

X is similar to the matrix αI+$jC(−det(B), tr(B)) =

(
α $j

−$jdet(B) α +$jtr(B)

)
.

Inversely, given j ∈ {0, ..., r}, j 6= ∞, α ∈ Aj , and a couple ($jβ,$jγ) ∈ ρ̄j(Ar−j),

there exists a unique class of similarity matrix having

(
α $j

−$jγ α +$jβ

)
as represen-

tative. If j =∞ and α ∈ A, the class of similarity matrix having αI as representative
consists only on this matrix.

As a result the conjugacy classes of GL(2,A) are in bijection with the subset of these
representatives defined by the additional condition that the determinant is invertible.
This last condition can also be written: if j = 0 then α = 0 and γ = det(B) ∈ A× and
if j ≥ 1 then α ∈ A×.
A further classification, simpler, is obtained when the characteristic of the residual field
k is different of 2.

Proposition 1. A set of representatives of similarity classes of M2(A) are given by

the set of matrices

(
α $j

$jβ α

)
, j ∈ J0, rK, j 6= ∞, α ∈ A, $jβ ∈ ρ̄j(Ar−j) with the

addition of the case j =∞ (when r =∞) and the set of matrices αI with α ∈ A.

Proof. Let y ∈ A, we denote Y =

(
1 0
y 1

)
, we have Y (αI + $jC(−γ, β))Y −1 =(

α−$jy $j

$j(−γ − y2 − βy)) α +$jβ +$jy

)
. Therefore if 2 is invertible inA, we can choose

y = −1

2
β in order to impose that the elements on the diagonal are equal. �

Remark: The proposition 1 is easily shown to be false when p = 2. Indeed fix j = 0
and β invertible. The matrix (αI+$jC(−γ, β)) has its trace equal to 2α+β, therefore
it cannot be similar to a matrix having the same elements on the diagonal which trace,
multiple of 2, is therefore non invertible.
Let F be local field, we assume that the characteristic p of the residual field is different
of 2 and let O be its integer ring. We will now use the previous classification when
A = O and the length r =∞.One obtains a generalisation of the classification obtained
in [7] for the case A = Zp. Let fix ε ∈ O× which is not a square, it always exists because
p 6= 2.
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Proposition 2. A set of representatives of conjugacy classes of GL(2,O) is given by:

• Iα =

(
α 0
0 α

)
, α ∈ O× (Scalar class)

• Bi,α,β =

(
α $i+1β
$i α

)
, i ∈ N, α ∈ O×, β ∈ O (Unipotent class)

• Ci,α,β =

(
α $iεβ
$iβ α

)
, i ∈ N, α ∈ O, β ∈ O×, α2 − εβ2$2i ∈ O× (Elliptic

class)

• Di,α,δ =

(
α 0
0 δ

)
, i ∈ N, α ∈ O×, δ ∈ O×, α− δ ∈ $iO× (Diagonal class).

Proof. One uses the proposition (1) giving a set of representatives of conjugacy classes

of GL(2,O) to be

(
α $j

$jβ α

)
, j ∈ N, α ∈ O, β ∈ O with α2 −$2jβ ∈ O×, with the

addition of the matrices αI, α ∈ O× corresponding to j =∞.
Let j ∈ N, if β is not invertible in O then β = $β′ and a representative of this
conjugacy class is given by Bj,α,β′ . If β is invertible, there are two possibilities: it

is a square or not. If β = µ2, let P =

(
µ −µ
1 1

)
, P is invertible (det(P ) = 2µ)

when p 6= 2 and we have P−1

(
α $jµ2

$j α

)
P =

(
α +$jµ 0

0 α−$jµ

)
. Therefore

a representative of this conjugacy class is given by the matrix Dj,α+$jµ,α−$jµ. We
have fixed ε ∈ O× which is not a square, therefore if β is not a square βε−1 is a
square ν2. This comes from the fact that by Hensel lemma an invertible element is a

square in O if and only if it is a square mod M. If we denote P =

(
1 0
0 ν

)
we have

P

(
α $jεν2

$j α

)
P−1 =

(
α $jεν
$jν α

)
= Cj,α,ν . As a result the set of matrices defined

in the proposition is a set of representatives of the conjugacy classes of GL(2,O).
The name of the classes comes from the name of the projection of the matrix in
GL(2,k).

�

3. Irreducible finite dimensional complex smooth representations of
GL(2,O)

In this section F is a local field, v the additive valuation normalized by v($) = 1, O
is the ring of integers of F and p the characteristic of the residual field k. We denote
q the cardinal of k. We dot not assume in this section, unless explicitely stated, that
p 6= 2.
Let r ∈ N>0, we denote Or = O/$rO, and we define G(r) = GL(2,Or). GL(2,O) is the
profinite group lim←−G

(r). We denote pr : GL(2,O)→ GL(2,Or) the canonical maps.

Definition 3.1. If π is a finite dimensional complex smooth representation of GL(2,O)
then there exists an integer k such that π factorizes through pk as π = πk ◦ pk where πk
is a representation of GL(2,Ok). π is irreducible if and only if πk is.
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The smallest of these k is by definition the level of π.
A representation of G(r) of level r is said to be primitive.

As a result the classifications of irreducible finite dimensional smooth representations
of GL(2,O) of level less than r is equivalent to the classification of irreducible finite
dimensional complex representations of the finite group GL(2,Or).
Remark 1: Note that the theorem 1 applies as well when A = O/$rO where r is any
positive integer. Therefore a set of representative of conjugacy classes ofGL(2,O/$rO)
is given by {αI + C(−$jβ′, $jα′), α ∈ Aj, j = 0, α′ = 0, β′ ∈ Or× or 1 ≤ j ≤

r,$jβ′, $jα′ ∈ ρ̄j(Or−j)}. The cardinal of this set is qr−1(q−1)+
r∑
j=1

(q−1)qj−1qr−jqr−j =

qr−1(qr+1−1). Therefore the number nr of conjugacy classes of GL(2,O/$rO) is equal
to nr = qr−1(qr+1 − 1) which is also the number ar of irreducible finite dimensional
complex representations up to isomorphism of the finite group GL(2,O/$rO). As a
result the number br of irreducible finite dimensional complex smooth representations
up to isomorphism of level r of GL(2,O) is br = nr − nr−1.
Remark 2: When p 6= 2., we will use the following classification of conjugacy classes
of GL(2,Or), which is a direct application of proposition (2). Let fix ε ∈ O×r which is
not a square, it always exists because p 6= 2.

Proposition 3. A set of representatives of conjugacy classes of GL(2,Or) is given by:

• Iα =

(
α 0
0 α

)
, α ∈ O×r

• Bi,α,β =

(
α $i+1β
$i α

)
, i ∈ J0, r − 1K, α ∈ O×r , β ∈ Or

• Ci,α,β =

(
α $iεβ
$iβ α

)
, i ∈ J0, r − 1K, α ∈ Or, β ∈ O×r , α2 − εβ2$2i ∈ O×r

• Di,α,δ =

(
α 0
0 δ

)
, i ∈ J0, r − 1K, α ∈ O×, δ ∈ O×, α− δ ∈ $iO×.

The problem of classifying the irreducible finite dimensional complex representations
of GL(2,Or) can be completely understood and in great detail using Clifford theory,
this is what we review in the sequel.

For 0 ≤ i ≤ r, let K
(r)
i = {g ∈ G(r), g = I mod$i}. If the context is clear we will forget

the upper index r.

We have {I} = K(r)
r ⊂ K

(r)
r−1 ⊂ ... ⊂ K

(r)
0 = G(r). The isomorphism ρ̄j : Or−j → $jOr

is extended to an isomorphism ρ̄j : M2(Or−j) → $jM2(Or). Having fixed a set of
compatible section sj of Oj (like in section 1) for 0 ≤ j ≤ r, we denote Oj the image
of sj, Oj and Oj are in bijection. We denote O×j the invertible elements of Oj.
The following properties hold:

Proposition 4. (1) K
(r)
i is a normal subgroup of G(r).

(2) G(r)/K
(r)
i is isomorphic to G(i), i > 0.

(3) K
(r)
i = I +$iM2(Or) if i > 0.
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(4) K
(r)
i is abelian if i ≥ r/2 and (M2(Or−i),+) → K

(r)
i , x 7→ I + ρ̄i(x) is an

isomorphism of abelian group if i ≥ r/2 where M2(Or−i) is endowed with the
addition of matrix group law.

(5) |K(r)
i | = q4(r−i) if i > 0.

(6) |G(r)| = q4r−3(q + 1)(q − 1)2, r ≥ 1.

Proof. The only nontrivial result is the computation of |G(r)|. Let p : GL(2,Or) →
GL(2,k) the canonical map, the kernel of p is K

(r)
1 = I + $M(Or), which cardinal is

q4(r−1). We have |GL(2,Fq)| = q(q+ 1)(q− 1)2 from which the proposition follows. �

We will define l = br + 1

2
c and l′ = br

2
c. We have l+ l′ = r and l is the smallest integer

i with i ≥ r/2.
Let us fix a smooth additive character ψ(r) : (O,+)→ C× of level r which means that
the kernel of ψ(r) contains Mr but not Mr−1 (such character always exists). If the
context is clear we will denote it simply by ψ.

We first recall a simple description of characters of the abelian groups K
(r)
i for i ≥ r/2.

Let β ∈M2(Or), one defines ψβ : K
(r)
i → C× by ψβ(x) = ψ(Tr(β(x− I))). ψβ depends

only on $iβ, therefore the map M2(Or)→ Hom(K
(r)
i ,C×), β 7→ ψβ factorizes through

an isomorphism (because ψ(r) is of level r) M2(Or−i)
∼−→ Hom(K

(r)
i ,C×), β 7→ ψβ.

We use the following theorem of Clifford theory [5] recalled in [13] (Theorem 2.1): let
G be a finite group and N a normal subgroup of G. G acts on the set of representations
of N by conjugation: if ρ is a representation of N then for g ∈ G we denote ρg the
representation of N defined by ρg(n) = ρ(gng−1). For any irreducible representation ρ
of N , we define the stabilizer T (ρ) as being the subgroup of G defined by T (ρ) = {g ∈
G, ρg is isomorphic to ρ}, T (ρ) always contains N. Assume that ρ is an irreducible rep-
resentation of N, then the set of irreducible representations of G which restriction to
N contains ρ is in bijection with the set of irreducible representations of T (ρ) which re-

striction to N contains ρ. More precisely, if A = {θ ∈ Irr(T (ρ)), Res
T (ρ)
N (θ) contains ρ}

and B = {π ∈ Irr(G), ResGN(π) contains ρ}, then θ 7→ IndGT (ρ)(θ) is a bijection from

A to B. Moreover if π is an irreducible representation of G then ResGN(π) = e(
⊕
ρ∈Ω

ρ)

where Ω is an orbit of the action of G on the set of classes of irreducible representations
of N and e is a positive integer.

We will use this theorem and apply it to G = GL(2,Or) and N = K
(r)
l with l the

smallest integer greater than r/2, the reason being that Kl is abelian and therefore the
irreducible representations of Kl are one dimensional and simple to describe and if ρ
is a one dimensional representation of Kl the condition that l is the smallest implies
that the stabilizer of Kl is bigger than Kl but not too much. We will heavily use the
method of [13] but we will be more precise in the description of the representations of
the stabilisers. This is important for the computation of the characters of GL(2,Or).
G(r) acts on Hom(Kl,C×) ' M2(Ol′), the orbits are analysed according to their re-
ductions mod M.
In M2(k) there are 4 types of similarity equivalence classes:
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• type c1 (scalar):

(
a 0
0 a

)
, a ∈ k

• type c2 (diagonal):

(
a 0
0 d

)
, a, d ∈ k, a 6= d

• type c3 (elliptic):

(
0 1
−∆ s

)
,∆, s ∈ k, x2 − sx+ ∆ irreducible in k[x]

• type c4 (unipotent):

(
a 1
0 a

)
, a ∈ k.

If a ∈ Ol′ we denote ā ∈ k its reduction mod M, if β ∈ M2(Ol′) we denote β̄ ∈ M2(k)
its reduction mod M. If β ∈M2(Ol′), ψβ|K(r)

r−1
depends only on β̄, we denote it ψβ̄.

Let π be an irreducible representation of G(r) acting on V , π|Kl decomposes as a direct
sum of one dimensional representations and we have

π|
K

(r)
l

= e
⊕
β∈Ω

ψβ where Ω is an orbit under G(r). We have π|
K

(r)
r−1

= e
⊕
β∈Ω

ψβ̄. All these

β̄ are in the same orbit under the action of GL(2,k). Therefore we can distinguish
two cases: all β̄ are the nul matrix or none of them are zero. In the first case this
means that π|

K
(r)
r−1

is a direct sum of trivial representations, therefore π factorises as

π : G(r) → G(r)/K
(r)
r−1 → GL(V ), which means, after using G(r)/K

(r)
r−1 ' G(r−1) that π

is of level less or equal to r − 1. If, on the contrary , one (all) of the β̄ is not the nul
matrix then π is of level r.
The case β̄ is of type c1 i.e β̄ = aI with a 6= 0 is interesting. Let x ∈ K

(r)
r−1 we

have ψaI(x) = ψ(r)(a(Tr(x − I))) = ψ(r)(a(det(x) − 1)) = χa ◦ det(x) where χa is a

character K
(r)
r−1 → C×. From the theory of extension of characters of abelian group, χa

can be extended to a character χ̃a : Or× → C×. We will denote ψ̃a a one dimensional
representation of G(r) extending ψaI by ψ̃a = χ̃a ◦det. Note that ψ̃a is of level r because
a 6= 0. The representation π satisfies π = ψ̃a ⊗ π′ where π′ is of level less or equal to
r − 1. This result motivates the introduction of the notion of sublevel of a complex
finite dimensional irreducible smooth representation π of GL(2,O).

Definition 3.2. The sublevel is the smallest integer k such that there exists χ, one
dimensional representation of GL(2,O), such that π ⊗ χ factorizes through the finite
group GL(2,Ok). Because the level always exists, the sublevel always exists and is less
or equal to the level. A representation of GL(2,O) of level k which sublevel is also k
will be called strongly primitive of level k.

Let nr the the number of conjugacy classes of G(r), let ar the number of non isomorphic
irreducible representations of G(r), br (resp b′r) the number of non isomorphic primitive
(strongly primitive) representations of G(r). From the discussion above we have br =
b′r + (q − 1)ar−1 which implies nr − qnr−1 = b′r.
Finally one obtains the following proposition [13]:

Proposition 5. Let π be an irreducible representation of G(r) and let β be an element
in the orbit Ω of the decomposition of π|

K
(r)
l
, then β is conjugated under G(r) to one of

these elements:



8 PH.ROCHE

• (C1)

(
a 0
0 d

)
, a, d ∈ Ol′ , a = d = 0 mod M. In this case π is of level less or

equal to r − 1.

• (C ′1)

(
a 0
0 d

)
, a, d ∈ Ol′ , a = d mod M and a 6= 0 mod M. In this case π =

ψ̃ā ⊗ π′ where π′ is a representation of G(r) of level less than r − 1 and ψ̃ā is
a primitive character of G(r). In this case π is of level r and of sublevel less or
equal to r − 1.

• (C2)

(
a 0
0 d

)
, a, d ∈ Ol′ , a 6= d modM.

• (C3)

(
0 1
−∆ s

)
,∆, s ∈ Ol′ , x

2 − sx+ ∆ is irreducible modM.

• (C4)

(
a 1 + b
c d

)
, a, b, c, d ∈ Ol′ , b, c, a − d ∈ M. Then π = ψ̃ā ⊗ π′ where π′

is a primitive representations which restriction π′|
K

(r)
l

= e
⊕
β′∈Ω′

ψβ′ where β′ is

conjugated under G(r) to βC′4(∆,s) =

(
0 1
−∆ s

)
∆, s ∈ Ol′ ,∆, s ∈M.

In the case C2, C3, C4 the representation is strongly primitive.
The orbit associated to (C1) and (C ′1) are not regular in the sense of Hill [2]. The orbits
of type (C2), (C3), (C4) are regular. The orbit (C2) and (C4) are split [2] whereas (C3)
is cuspidal in Hill’s terminology [3]. In all the cases where β is regular, we have

T (ψβ) = (Or[β̂])×Kl′ where β̂ is an element in M2(Or) having β as projection in
M2(Ol′).

In [13] a complete classification (valid even for p = 2) of irreducible representation of
GL(2,Or) is given using an inductive process. These representations fall in two classes:
they can be strongly primitive of level r or they are twisted by a character from an
irreducible representation of level less or equal to r− 1. Therefore the knowledge of all
irreducible strongly primitive representations of GL(2,Ok) for every k ≤ r gives, after
twisting by characters, the complete list of irreducible representations of GL(2,Or).
We now proceed and study in detail the strongly primitive representations of GL(2,Or).
They fall into classes according to the previous proposition.

Definition 3.3. The representations associated to the orbits C2 will be called principal
split representations.
The representations associated to the orbits C3 will be called cuspidal representations
The representations associated to the orbits C4 will be called non-principal split
representations.

At this point we have to distinguish two cases:

• the simplest case is when r is even, i.e l = l′ =
r

2
, in this case Kl′ is abelian.

• the more complicated case is when r is odd, i.e l′ = l − 1 =
r − 1

2
, in this case

Kl′ is not abelian.
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In the rest of this work we study the case where r is even, the case where r is
odd is studied in [12].
We use the notations and results of of [13]. Let β be an element of M2(Ol′) belonging to

the orbits C2, C3 or C4 and let β̂ be any lift of β in M2(Or). Let θ ∈ Hom(Or[β̂]×,C×),

be a character such that θ and ψβ coincide on Kl′ ∩ Or[β̂]×, one define θψβ to be the

one dimensional representation of T (ψβ) = Or[β̂]×Kl′ by (θψβ)(xy) = θ(x)ψβ(y), x ∈
Or[β̂]×, y ∈ Kl′ . Then the representation π(θ, β) = IndG

(r)

Or[β̂]×Kl′
(θψβ) is an irreducible

representation. It is shown that the set of representations π(θ, β) up to isomorphism

depends only on the orbit of β and is independent of the choice of lift β̂. Furthermore
up to isomorphism this is the complete list of strongly primitive representations of level
r.
We now proceed further and analyse in detail these representations. We have tried to
simplify as much the construction of these representations, this will be important for
computing their characters. Note that there is a neat construction for the Principal
split and Cuspidal representations, but the non principal split representations resist
such a description..

3.1. Principal Split representations. Let a, d ∈ Ol, a 6= d mod M, we define

β(C2(a, d)) =

(
a 0
0 d

)
. Let g =

(
1 +$lx $ly
$lz 1 +$lt

)
∈ Kl. We have ψβ(C2(a,d))(g) =

ψ($lax + $ltd). The number of characters of the form ψβ(C2(a,d)) is |Ol||Ol \M| =

ql(ql − ql−1) = (q − 1)qr−1. Because β(C2(a, d)) and β(C2(d, a)) are the only elements
in the same orbit under the conjugation action, the number of orbits of type C2 is
1

2
(q − 1)qr−1.

We have T (ψβ(C2(a,d))) = SKl with S = {
(
s1 0
0 s2

)
, s1, s2 ∈ O×r } = (Or[β̂])× where β̂

is any lift of β(C2(a, d)) in M2(Or). Note that T (ψβ(C2(a,d))) = {
(
s1 $ly
$lz s2

)
, s1, s2 ∈

O×r , y, z ∈ Or} = T (C2) and is independent of a, d.
We have |T (ψβ(C2(a,d)))| = |O×r |2(ql)2 = (q − 1)2q3r−2.

Because Kl ∩S = {
(

1 +$lx 0
0 1 +$ly

)
, x, y ∈ Or} we have |Kl ∩S| = qlql = qr. The

number of characters θ : S → C× which are equal to ψβ(C2(a,d)) on Kl ∩ S is given by
|S|

|S ∩Kl|
= qr−2(q−1)2. The irreducible principal split representation π(θ, β((C2(a, d)))

is strongly primitive and of dimension
|G(r)|
|SKl|

= (q + 1)qr−1.

Moreover from the counting above, the number of inequivalent irreducible principal

split representations of G(r) is
1

2
(q − 1)3q2r−3.

We now give a precise description of these characters θ.
A one dimensional representation θ of S is necessarily equal to θµ,µ′ where µ, µ′ are

characters ofO×r and θµ,µ′(

(
s1 0
0 s2

)
) = µ(s1)µ′(s2). The condition that θ and ψβ(C2(a,d))
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are equal on S ∩Kl is given by:

µ(1 +$lx)µ′(1 +$ly) = ψ($lax+$ldy),∀x, y ∈ Or,

which is equivalent to

µ(1 +$lx) = ψ($lax),∀x ∈ Or, µ′(1 +$ly) = ψ($ldy),∀y ∈ Or.

Note that we can recover a, d ∈ Ol from the characters µ, µ′ using the last condition.
In particular one has the important property that µµ′

−1
(1+$lx) = ψ($lx(a−d)), ∀x ∈

Or. Asking that the restriction of µµ′
−1

to the multiplicative group (1 + $lOr) is of
level l is equivalent to the fact that a 6= d modM.
We can therefore parametrize the set of principal split representations of G(r) by a pair
of characters of O×r . We say that a couple (µ, µ′) of characters of O×r is regular if and

only if µµ′
−1|1+$lOr is primitive (i.e of level l).

For such regular couple (µ, µ′), we will denote Πµ,µ′ the irreducible representation
π(θµ,µ′ , ψβ(C2(a,d))) where a (resp. d) are defined by µ (resp. µ′). The representation
Πµ,µ′ and Πµ′,µ are isomorphic and up to equivalence depend only on the pair {µ, µ′}.
Remark: Note that the character θµ,µ′ψβ(C2(a,d)) of SKl, denoted µ�µ′ has the following
simple expression on T (C2)

(µ� µ′)(

(
s1 $ly
$lz s2

)
) = µ(s1)µ′(s2), s1, s2 ∈ Or×, x, y ∈ Or,

and Πµ,µ′ = IndG
(r)

T (C2)(µ� µ′). With this description we do not use (a, d), which can be

recovered from (µ, µ′).

3.2. Cuspidal representations. Let F ur be the maximal unramified extension of F ,
we have Gal(F ur/F ) ' Gal(F̄q/Fq), let σ be the element of Gal(F ur/F ) corresponding
to the Frobenius automorphism Fr of F̄q. Let E be the unique unramified extension of
F of degree 2 i.e E = {x ∈ F ur, σ2(x) = x}, we denote OE the ring of integers of E,
its maximal ideal is generated by $ and its residual field is Fq2 .

We denote OE/$kOE = OEk for k positive integer. We fix r integer and denote OE
k ,

for 0 ≤ k ≤ r the image of compatible sections of OEk . As usual we define the maps
Tr,N : E → F by Tr(x) = x+ σ(x), N(x) = xσ(x).

For any τ ∈ OE
l such that τ−σ(τ) 6= 0 mod$, we define β(C3(τ)) =

(
0 1

−N(τ) Tr(τ)

)
,

which is a matrix of type C3. The reduction of β(C3(τ)) in M2(k) is β(C3(τ)) =(
0 1

−τ̄F r(τ̄) τ̄ + Fr(τ̄)

)
with Fr(τ̄) 6= τ̄ , i.e τ̄ ∈ Fq2 \ Fq.

Let g =

(
1 +$lx $ly
$lz 1 +$lt

)
∈ Kl, we have ψβ(C3(τ))(g) = ψ($lz − $lN(τ)y +

$lTr(τ)t).

The number of characters of the form ψβ(C3(τ)) is
1

2
(q − 1)qr−1. This is because the set

{τ ∈ OE
l , τ = σ(τ) mod $} is of cardinal qq2(l−1) and ψβ(C3(τ)) = ψβ(C3(σ(τ))). Therefore

the number of orbits of type C3 is
1

2
(q − 1)qr−1.
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Let τ̂ a representative of τ inOEr , we define β̂ a lift of β(C3(τ)), β̂ =

(
0 1

−τ̂σ(τ̂) τ̂ + σ(τ̂)

)
.

T (ψβ(C3(τ))) = SKl and we have S = Or[β̂]× = {
(

a b
−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

)
, a, b ∈

Or, (a+ bτ̂)(a+ bσ(τ̂)) ∈ O×r }. As a result we obtain

T = {
(

x y
−yτ̂σ(τ̂) +$lz x+ y(τ̂ + σ(τ̂)) +$lt

)
, x, y, z, t ∈ Or}.

Let a, b ∈ Or, because τ̄ ∈ Fq2 \ Fq, we have the equivalence: (a + bτ̂)(a + bσ(τ̂)) =
0 mod $ if and only if a and b are equal to 0 mod $.

Therefore S = {
(

a b
−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

)
, a, b ∈ Or \$Or} implying |S| = (q2 −

1)q2(r−1).

Moreover S ∩ Kl = {
(

a b
−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

)
, a, b ∈ Or a = 1 mod $l, b =

0 mod $l}
We therefore have |S ∩Kl| = (qr−l)2 = qr, from which it follows that |T (ψβ(C3(τ)))| =
(q2 − 1)q3r−2.
The number of characters θ : S → C×, which extend ψβ(C3(τ)) on S ∩Kl, is given by
|S|

|S ∩Kl|
= (q2 − 1)qr−2.

From the counting argument above, the number of inequivalent cuspidal representations

of G(r) is
1

2
(q− 1)(q2− 1)q2r−3. These representations are all strongly primitive and of

dimension
|Gr|
|SKl|

= (q − 1)qr−1.

We now give a precise description of these characters θ.
Let ν, ν ′ characters (OEr )× → C×, we define a character θν,ν′ : S → C× by

θν,ν′(

(
a b

−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

)
) = ν(a+ bτ̂)ν ′(a+ bσ(τ̂)).

Each character of S is of this type.
The condition that θ and ψβ(C3(τ)) are equal on S ∩Kl is given by:
(1)
ν(1+$lx+$lyτ)ν ′(1+$lx+$lyσ(τ)) = ψ($lτ(x+yτ)+$lσ(τ)(x+yσ(τ))),∀x, y ∈ Or.

Let OE(±)
r = {z ∈ OEr , σ(z) = ±z}, (1 + $lOE(±)

r ,×) are subgroups of (OEr )×. The
condition (1) implies that

ν(1 +$lz)ν ′(1 + ε$lz) = ψ($lz(τ + εσ(τ)),∀z ∈ OE(±)
r ,∀ε ∈ {+,−}.

In particular we obtain that νν ′
−1

(1+$lz) = ψ($l(τ−σ(τ))z) for z ∈ OE(−)
r , i.e νν ′

−1

is a representation of (1 +$lOE(−)
r ) of level l.

We say that a couple (ν, ν ′) of characters of (OEr )× is regular if and only if νν ′
−1

is a
representation of (1 +$lOE(−)

r ) of level l.
In the case where p 6= 2, we can recover τ ∈ OE

l from the knowledge of ν, ν ′.
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Indeed if (ν, ν ′) is a regular couple of characters of (OEr )×, let ε ∈ {+,−} then there
exists a unique τ (ε) ∈ OE

l such that ν(1 + $lz)ν ′(1 + ε$lz) = ψ($lτ (ε)), ∀z ∈ OE(ε)
r .

The regularity condition implies that τ (−) /∈ M. It is an easy exercise to show that if

we define τ =
1

2
(τ (+) + τ (−)) then the condition (1) holds.

Given (ν, ν ′) a regular couple of characters of (OEr )×, we will denote ν�ν ′ = θν,ν′ψβ(C3(τ)),
where τ is defined from (ν, ν ′).

We denote Cν,ν′ the representation π(θν,ν′ , ψβ(C3(τ))) = IndG
(r)

T (C3(τ))(ν � ν ′). Note that
Cν,ν′ is isomorphic to Cν′◦σ,ν◦σ.
Remark: At this point, we want to make a connection with the work of [7]. They
are working with the case where p 6= 2 and O = Zp. They have chosen a different
representative of C3 and a different choice of β associated to C3. For F any local field
with p 6= 2, denote O the ring of integer of F, if ρ̃ ∈ Ol and ε̃ ∈ Ol such that ε̃ is not a

square in Or and is invertible in Or we define β̃ =

(
ρ̃ ε̃
1 ρ̃

)
. (The elements ρ̃, ε̃ are the

element α, ε (page 1297) of [7] in the case where O = Zp). We have β̃ = Pψβ(C3(τ))P
−1

with P =

(
−ρ̃ 1
1 0

)
, with ρ̃ =

1

2
(τ + σ(τ)), ε̃ = (

1

2
(τ − σ(τ)))2. Note they have used

the same ε to parametrize the conjugacy classes of type C3 as well as the representions
of cuspidal type. We will prefer to proceed as follows: once forall, we have fixed an
invertible element ε in Or such that ε is not a square. This ε is used for the proposition
(3). We will denote Φ a square root in OEr of ε. The cuspidal representations are
labelled by a regular couple (ν, ν ′). This couple defines τ ∈ OE

l from which we define

ε̃ = (
1

2
(τ − σ(τ)))2: ε is fixed whereas ε̃ depends on the choice of the regular couple

(ν, ν ′). εε̃ is a square in Or and we have εε̃ = u2 with u =
1

2
Φ(τ − σ(τ)) ∈ O×r .

3.3. Non-Principal Split representations. Let ∆, s ∈ Ol∩M, we define βC′4(∆,s) =(
0 1
−∆ s

)
.

Let g =

(
1 +$lx $ly
$lz 1 +$lt

)
∈ Kl, we have ψβ(C′4(∆,s))(g) = ψ($lz −∆$ly + s$lt).

The number of characters of the form ψβ(C′4(∆,s)) is (q(r−l−1))2 = qr−2.

Let ∆̂, ŝ lifts of ∆, s in Or and define β̂(∆̂, ŝ) =

(
0 1

−∆̂ ŝ

)
a lift of βC′4(∆,s).

We have T (ψβ(C′4(∆,s))) = SKl with

S(∆̂, ŝ) = S = (Or[β̂])× = {
(

a b

−∆̂b a+ ŝb

)
, a, b ∈ Or, a2 + ŝab + ∆̂b2 ∈ O×r }=

{
(

a b

−∆̂b a+ ŝb

)
, a ∈ O×r , b ∈ Or}

We have |(Or[β̂])×| = |Or||Or \$Or| = (q − 1)q2r−1.



CHARACTERS 13

Because S∩Kl = {
(

a b

−∆̂b a+ ŝb

)
, a, b ∈ $lOr}, |S∩Kl| = qr therefore |T (ψβ(C′4(∆,s)))| =

|S||Kl|
|S ∩Kl|

= (q − 1)q3r−1.

The number of characters θ : S → C× which extend ψβ̂ on S∩Kl is given by
|S|

|S ∩Kl|
=

(q − 1)qr−1.
Finally the number of inequivalent irreducible representations of type C ′4 is (q−1)qr−1×
qr−2 = (q − 1)q2r−3. These representations are all strongly primitive and of dimension
|Gr|
|SKl|

= (q2 − 1)qr−2.

Finally these representations can be tensored with one dimensional characters of G(r)

of the type ψ̃a, a ∈ k, which give all the inequivalent representations of type C4. There
is therefore (q − 1)q2r−2 inequivalent representations of this type, all of them being
strongly primitive and of dimension (q2 − 1)qr−2.
We now give a precise description of the characters θ extending ψβ̂ on S∩Kl . Because

β̂2 = −∆̂I + ŝβ̂ the group law on S is given by

(aI + bβ̂)(a′I + b′β̂) = (aa′ − ∆̂bb′)I + (ab′ + a′b+ ŝbb′)β̂

with a, a′ ∈ O×r , b, b′ ∈ Or. Let θ : S → C× be a character, the center of S being
Z(S) = {aI, a ∈ O×r }, the restriction θ|Z(S) defines a multiplicative character, denoted

σ of O×r . Therefore we have θ(aI + bβ̂) = σ(a)η(b/a) where η : Or → C× defined by

η(x) = θ(1 + xβ̂), x ∈ Or satisfies:

η(x)η(y) = σ(1− ∆̂xy)η(x ? y)

with

(2) x ? y =
x+ y + ŝxy

1− ∆̂xy
.

(Or, ?) is a commutative group.

Let c : Or ×Or → C×, be the map defined by c(x, y) = σ(1− ∆̂xy), c is a two cocycle
in the sense that c(x ? y, z)c(x, y) = c(x, y ? z)c(y, z),∀x, y, z ∈ Or, and η is therefore a
projective representation of the additive group (Or, ?) associated to the 2-cocycle c−1.
The condition that θ extends ψβ̂ reads:

θ((1 +$la)I +$lbβ̂) = ψ(−2∆$lb+ s$la+ s2$lb) ∀a, b ∈ Or
= σ(1 +$la)η($lb/(1 +$la)) = σ(1 +$la)η($lb)

which is equivalent to

σ(1 +$la) = ψ(s$la),∀a ∈ Or
η($lb) = ψ((s2 − 2∆)$lb),∀b ∈ Or.

Therefore the restriction of σ to the group 1 + $lOr is not primitive and it defines
uniquely s ∈ Ol ∩M. Note that the restriction of ? and + to $lOr coincide and the
restriction of the cocycle c to $lOr is trivial. Therefore the restriction of η to ($lOr,+)
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is a one dimensional representation. It is not primitive, and once s is known through
the knowledge of σ, it defines uniquely ∆ ∈ Ol ∩M when p 6= 2.
Remark 1. One can endow O with an internal law ? defined by the same formula as
(2), but with ŝ, ∆̂ ∈ $O. By the theory of formal group it is shown that (O, ?) is
isomorphic to (O,+) when F is of 0 characteristic (Exercice 2 of [8] page 345). This
is however not the case when we consider Or and this prevent us to construct all the
characters of S using only projective characters of (Or,+).
Remark 2. In [7] it is said in the introduction that their methods could be applied to
find the character value of GL(2,O) which is the content of our work. They say that it
is easier for them to count the number of irreducible representations in the case where
O = Zp but from the work of [13] there is no counting argument involved because the list
of irreducible representations is known to be complete by Clifford theory. Nevertheless
we can check by a counting argument that the list of representations is indeed complete
as follows. The number of irreducible representations that we have constructed which
fall into the classes of principal or non principal split and cuspidal representations is

b′′r =
1

2
(q− 1)3q2r−3 +

1

2
(q− 1)(q2− 1)q2r−3 + (q− 1)q2r−2 = (q− 1)q2r−1 which is equal

to nr− qnr−1 = b′r. Therefore the list of strongly primitive representations is complete.

In the case where p 6= 2 we can give a somewhat simpler descriptions of nonprincipal
split representations which is closer to the classification given in [7]. For ∆̃, s̃ ∈ Ol∩M,

denote βC′′4 (∆̃,s̃) =

(
s̃/2 1

−∆̃ s̃/2

)
. The matrix βC′4(∆,s) is conjugated under G(r) to the

matrix β
C′′4 (∆− s2

4
,s)
.

Proposition 6. We use the same notation as in proposition 5. If π is an irreducible
representation of G(r) which orbit has a representative βC′4(∆,s), with ∆, s ∈ Ol ∩M, we

have π = ψ̃s/2 ⊗ π′′ where π′′ is a strongly primitive representation which restriction

π′′|
K

(r)
l

= e
⊕
β′′∈Ω′′

ψβ′′ where β′′ is conjugated under G(r) to β
C′′4 (∆− s2

4
,0)

and ψ̃ s
2

is a one

dimensional representation of G(r) of the form ψ̃ s
2

= χ̃ ◦ det with χ̃ one dimensional

representation of O×r and the restriction of ψ̃ s
2

to Kl is given by ψ s
2
I .

Proof. Same proof as in [13]. �

Therefore we have ”absorbed” s by tensoring with a one dimensional representation,
and we are left with the analysis of the representations associated to βC′′4 (∆,0). Let ∆̂

be a lift in $Or of ∆. Let θ be a character of S(∆̂, 0) → C×. One can associate to it
η, σ satisfying the same relations as (3, 3) but with ŝ = 0. In particular σ is trivial on
1 + $lOr. The representation π(θ, βC′′4 (∆,0)) will be denoted Ξ∆,θ. Up to isomorphism
it does not depend on the choice of the lift of ∆. In order to obtain the complete
set of representations which are non principal split, we have to tensor them with ψ̃ s

2

s ∈ Ol ∩M and with ψ̃ā0 , a0 ∈ O1.

We shall also denote Ξa,∆,θ = ψ̃a⊗Ξ∆,θ, with a ∈ Ol and ψ̃a is a one dimensional repre-

sentation of G(r) of the type ψ̃a = χ̃a◦det where χ̃a a one dimensional representation of
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O×r and the restriction of ψ̃a to Kl is given by ψaI , we have a = a0 + s/2 with a0 ∈ O1

and s ∈ Ol ∩M.

The following table summarizes the essential informations on strongly primitive repre-
sentations:

Strongly primitive irrep of odd level r Dimension Number of inequivalent irrep

Principal Split representations Πµ,µ′ (q + 1)qr−1 1

2
(q − 1)3q2r−3

Cuspidal representations Cν,ν′ (q − 1)qr−1 1

2
(q − 1)(q2 − 1)q2r−3

Non Principal Split representations Ξa,∆,θ (q2 − 1)qr−2 (q − 1)q2r−2

4. Characters

We will use the formula of Frobenius giving the character of an induced representa-
tion. Let G a finite group, H a subgroup of G and π a finite dimensional complex
representation of H having character χπ, then the character of IndGH(π) is given by:

tr(g|IndGH(π)) =
1

|H|
∑
t∈G

χ0
π(tgt−1), ∀g ∈ G(3)

=
∑
t∈X

χ0
π(tgt−1),(4)

where for any function φ on H, φ0 denotes the extension of φ on G by φ0(g) = φ(g) if
g ∈ H and zero otherwise, and X denote any section of the right cosets of H in G. We
will apply this formula to the case where G = G(r), r even and H = T (ψβ) = SKl.
We will assume that p 6= 2 in the rest of this work and we will use the proposition (3)
to obtain a representative set of conjugacy classes.
Remark: Although representatives of conjugacy classes are known in the case p = 2
as well as an exhaustive list of irreducible representations, computing characters using
Frobenius formula appears to be very complicated.

4.1. Principal split representations. Having chosen β ot type C2, we obtain:

Proposition 7. A section of the right cosets of SKl is given by the following set of

matrices X = {ex,y, fx,z;x, y ∈ Ol, z ∈ Ol−1} where ex,y =

(
1 x
0 1

)(
1 0
y 1

)
, fx,z =(

1 x
0 1

)(
$z 1
1 $z

)
.

Proof. We have SKl = {
(
s1 $ly
$lz s2

)
, s1, s2 ∈ O×r , y, z ∈ Or}. It is an easy exercise

to show that the right coset associated to the elements of X are disjoints. Moreover
|X| = (ql)2 + qlql−1 = |G/SKl| therefore X is a section of the right cosets of SKl. �
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We will denote ξ : Or → O×r the function defined by ξ(z) = 1 − $2z2 = det(fx,z).
Frobenius formula therefore gives:

(5) tr(g|Πµ,µ′ ) =
∑
t∈X

(µ� µ′)0(tgt−1) = Se(g) + Sf (g),

where Se(g) =
∑
x,y∈Ol

(µ� µ′)0(ex,yge
−1
x,y) and Sf (g) =

∑
x∈Ol,z∈Ol−1

(µ� µ′)0(fx,zgf
−1
x,z ).

• Conjugacy class of type I.

Iα being central we have tr(Iα|Πµ,µ′ ) =
|G|
|SKl|

µ(α)µ′(α) = qr−1(q + 1)µ(α)µ′(α).

• Conjugacy class of type C.

Proposition 8. tr(Ci,α,β|Πµ,µ′ ) = 0.

Proof. ex,yCi,α,βe
−1
x,y =

(
α−$iεβy +$iβx(1− εy2) (1 + xy)2$iεβ − x2$iβ

$iβ(1− εy2) α +$iεβy −$iβx(1− εy2)

)
. There-

fore this matrix does not belong to SKl if i < l (because β is invertible) and its value
on (µ� µ′)0 is 0. When i ≥ l, we necessarily have α ∈ O×r ,

Se(Ci,α,β) =
∑
x,y∈Ol

µ(α−$iεβy +$iβx(1− εy2))µ′(α +$iεβy −$iβx(1− εy2))

= µ(α)µ′(α)
∑
x,y∈Ol

(µµ′−1)(1− $i

α
(εβy + βx(1− εy2))).

Because the restriction of µµ′
−1

to the multiplicative group (1+$lOr) is primitive and

i < r, we have
∑
x∈Ol

(µµ′−1)(1 − $i

α
(εβy + βx(1 − εy2))) = 0, therefore Se(Ci,α,β) = 0.

We have

fx,zCi,α,βf
−1
x,z =α +

$i

ξ(z)
(−β(1 +$zx)$z + εβ($z + x)) ?

$i

ξ(z)
β(ε−$2z2) α +

$i

ξ(z)
($zβ(1 + x$z)− εβ(x+$z)),


in order to have a non zero value by (µ� µ′)0 it is necessary that i ≥ l. In that case α
is invertible and

Sf (Ci,α,β) =∑
x∈Ol,z∈Ol−1

µ(α−$i (β(1 +$zx)$z − εβ($z + x))

ξ(z)
)µ′(α +$i (β(1 +$zx)$z − εβ($z + x))

ξ(z)
)

= µ(α)µ′(α)
∑

x∈Ol,z∈Ol−1

(µµ′−1)(1− $i

βα
(
($z − εβ$z) + x($2z2 − εβ)

ξ(z)
)).
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The sum over x gives again 0 for the same reason as the one used for proving that
Se(Ci,α,β) = 0. Therefore Sf (Ci,α,β) = 0. The evaluation of the character on elliptic
elements is 0. �

• Conjugacy class of type D.

Lemma 2. Let λ : 1 + $lOr → C× be a primitive character with r = 2l. Let u ∈ O×r
and i ∈ J0, r − 1K, the following identity holds:∑

x,y∈Ol
v(y)≥l−i,v(x)≥l−i

λ(1 + u$ixy) = qi.

Proof. Up to changing the primitive character, we can always assume u = 1.
If i ≥ l then there is no constraint on x, y. We can write i = l + i′ and we have

to evaluate A =
∑
x,y∈Ol

λ(1 + $lx$i′y). y being fixed, the sum over x is nul unless

v($i′y) ≥ l and in this case it gives |Ol|. The summation over x, y gives therefore

A = |Ol||{y ∈ Ol, v($i′y) ≥ l}| = |Ol||$l−i′Oi′| = qlqi
′
= qi.

If i < l, we set x = $l−ix′, y = $l−iy′, x′, y′ ∈ Oi, therefore A =
∑

x′,y′∈Oi

λ(1 +

$l$l−ix′y′). Noting that z 7→ λ(1 +$l$l−iz) is a primitive character of Oi, we obtain
that for y′ fixed the sum over x′ gives 0 unless y′ = 0. The summation over x′, y′ gives
therefore A = |Oi| = qi.

�

Proposition 9. tr(Di,α,δ|Πµ,µ′ ) = qi(µ(α)µ′(δ) + µ′(α)µ(δ)).

Proof. From

ex,yDi,α,δe
−1
x,y =

(
α + (α− δ)xy (δ − α)x(1 + xy)

(α− δ)y δ − (α− δ)xy

)
,

we see that only the matrix such that v((α− δ)y) ≥ l and v((δ− α)x(1 + xy)) ≥ l can
contribute to Se(Di,α,δ). Because v(α − δ) = i, we necessarily have v(y) ≥ l − i. As a
result we have to distinguish two cases: i ≥ l or i < l.
In the first case i ≥ l, there is no condition on x, y. In the second case we necessarily
have v(y) ≥ l− i > 0, therefore 1+xy is invertible and we necessarily have v(x) ≥ l− i.
Therefore:

Se(Di,α,δ) =
∑
x,y∈Ol

v(y)≥l−i,v(x)≥l−i

µ(α + (α− δ)xy)µ′(δ − (α− δ)xy)

= µ(α)µ′(δ)
∑
x,y∈Ol

v(y)≥l−i,v(x)≥l−i

µ(1 +
(α− δ)
α

xy)µ′(1− (α− δ)
δ

xy)

= µ(α)µ′(δ)
∑
x,y∈Ol

v(y)≥l−i,v(x)≥l−i

µ(1 +
(α− δ)
α

xy)µ′(1− (α− δ)
α

xy)
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the last equality holds because the equality
(α− δ)

δ
xy =

(α− δ)
α

xy holds from the

valuation condition on x, y. As a result:

Se(Di,α,δ) = µ(α)µ′(δ)
∑
x,y∈Ol

v(y)≥l−i,v(x)≥l−i

(µµ′−1)(1 +
(α− δ)
α

xy)

= qiµ(α)µ′(δ),

where for the last equality we have used the preceeding lemma with λ = (µµ′−1) and
(α− δ)
α

= u$i.

From

fx,zDi,α,δf
−1
x,z =

=

δ + (δ − α)
$z(x+$z)

ξ(z)

(1 + x$z)(x+$z)(α− δ)
ξ(z)

$z(α− δ)
ξ(z)

α + (α− δ)$z(x+$z)

ξ(z)

 ,

only the matrix with v((α − δ)$z) ≥ l and v((α − δ)(x + $z) ≥ l can contribute to
Sf (Di,α,δ). This last condition is also equivalent to v($z) ≥ l− i and v(x) ≥ l− i. We
therefore have:

Sf (Di,α,δ) =
∑

x∈Ol,z∈Ol−1
v(x)≥l−i,v($z)≥l−i

µ(δ − (α− δ)$z(x+$z)

ξ(z)
)µ′(α + (α− δ)$z(x+$z)

ξ(z)
)

= µ(δ)µ′(α)
∑

x∈Ol,z∈Ol−1
v(x)≥l−i,v($z)≥l−i

µ(1− α− δ
δ

$z(x+$z)

ξ(z)
)µ′(1 +

(α− δ)
α

$z(x+$z)

ξ(z)
)

= µ(δ)µ′(α)
∑

x∈Ol,z∈Ol−1
v(x)≥l−i,v($z)≥l−i

µ(1− α− δ
δ

$z(x+$z)

ξ(z)
)µ′(1 +

(α− δ)
δ

$z(x+$z)

ξ(z)
)

= µ(δ)µ′(α)
∑

x∈Ol,z∈Ol−1
v(x)≥l−i,v($z)≥l−i

(µµ′−1)(1− α− δ
δ

$z(x+$z)

ξ(z)
)

= qiµ(δ)µ′(α).

The proof of the last equality follows the same analysis as the preceeding lemma with
minor adjustments. Indeed we have to distinguish two cases. If i ≥ l then i = i′ + l,
the summation on x, z being fixed, is 0 unless v($i′$z) ≥ l and in this case it gives

µ(δ)µ′(α)|Ol|(µµ′−1)(1−α− δ
δ

(
($z)2

ξ(z)
). From the condition on i we have (α−δ)($z)2 =

0, therefore Sf (Di,α,δ) = µ(δ)µ′(α)|Ol||{z ∈ Ol−1, v($i′$z) ≥ l}| = µ(δ)µ′(α)|Ol||{z ∈
Ol−1, $z ∈ $l−i′Oi′| = µ(δ)µ′(α)qi. If i < l, we proceed as in the previous lemma
setting x = $l−ix′, the summation on x′ forces $z to be zero, in order to get a non
zero sum. As a result Sf (Di,α,δ) = µ(δ)µ′(α)|Oi| = qiµ(δ)µ′(α).

�
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• Conjugacy classes of type B

Proposition 10. tr(Bi,α,β|Πµ,µ′ ) = δi,r−1q
r−1µ(α)µ′(α).

Proof.

ex,yBi,α,δe
−1
x,y =

(
α +$i(x− y$β(1 + xy)) $i+1β(1 + xy)2 − x2$i

$i(1− β$y2) α +$i+1βy(1 + xy)−$ix

)
.

This matrix is in SKl only when i ≥ l.

fx,zBi,α,δf
−1
x,z =

α +
$i+1

ξ(z)
(β($z + x)− z(1 +$zx))

$i

ξ(z)
((1 +$zx)2 − (x+$z)2$β))

$i+1

ξ(z)
(β −$x2) α +

$i+1

ξ(z)
(z(x$z + 1)− β(x+$z)))

 .

This matrix is in SKl only when i ≥ l.
Therefore if i < l then Se(Di,α,δ) = Sf (Di,α,δ) = 0.
If i ≥ l we have

Se(Bi,α,β) =
∑
x,y∈Ol

µ(α +$i(x− y$β(1 + xy)))µ′(α +$i+1βy(1 + xy)−$ix)

= µ(α)µ′(α)
∑
x,y∈Ol

(µµ′−1)(1 +
$i

α
(x(1−$y2β)− y$β))),

the sum over x gives 0 for i ≤ r − 1.

Sf (Bi,α,β) =∑
x∈Ol,z∈Ol−1

µ(α +
$i+1

ξ(z)
(β($z + x)− z(1 +$zx)))µ′(α− $i+1

ξ(z)
(β($z + x)− z(1 +$zx)))

= µ(α)µ′(α)
∑

x∈Ol,z∈Ol−1

(µµ′−1)(1 +
$i+1

αξ(z)
(β($z + x)− z(1 +$zx))).

The sum over x gives 0 unless i = r − 1 where the result is µ(α)µ′(α)|Ol||Ol−1| =
qr−1µ(α)µ′(α). �

The following table give the complete list of evaluation of characters of principal split
representations:

Iα Di,α,δ Ci,α,β Bi,α,β

tr(Πµ,µ′)(.) qr−1(q + 1)µ(α)µ′(α) qi(µ(α)µ′(δ) + µ′(α)µ(δ)) 0 δi,r−1q
r−1µ(α)µ′(α)

4.2. Cuspidal representations. Having chosen β of type C3, and a lift β̂ we obtain:

Proposition 11. A section of the right cosets of SKl are given by the following set of

matrices Y = {hc,d, c ∈ Ol, d ∈ O×l } where hc,d =

(
d 0
c 1

)
.
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Proof. We have SKl = {
(

a+$lx b+$ly
−bτ̂σ(τ̂) +$lz a+ b(τ̂ + σ(τ̂)) +$lt

)
, a, b, x, y, z, t ∈ Or}.

It is an easy exercise to show that the orbits associated to the elements Y are disjoints.
Moreover |Y | = ql(ql − ql−1) = |G/SKl| therefore Y is a section of the right cosets of
SKl.

�

Frobenius formula therefore gives:

tr(g|Cν,ν′ ) =
∑
t∈Y

(ν � ν ′)0(tgt−1) = Sh(g, ν, ν
′).

• Conjugacy class of type I.
Iα being central we have

tr(Iα|Cν,ν′ ) =
|G|
|SKl|

ν(α)ν ′(α) = qr−1(q − 1)ν(α)ν ′(α).

• Conjugacy class of type D.

Proposition 12. tr(Di,α,δ|Cν,ν′ ) = 0

Proof.

hc,dDi,α,δh
−1
c,d =

(
α 0

(α− δ)c/d δ

)
,

therefore

Sh(Di,α,δ, ν, ν
′) =

∑
c∈Ol,d∈O×l

(ν � ν ′)0(

(
α 0

(α− δ)c/d δ

)
)

= |O×l |
∑
c∈Ol

(ν � ν ′)0(

(
α 0

(α− δ)c δ

)
)

We have α− δ = $iu with u invertible therefore hc,dDi,α,δh
−1
c,d ∈ SKl only if i ≥ l (this

comes from the fact it is lower triangular).
In the case where i ≥ l we have(

α 0
(α− δ)c δ

)
= Iα

 1 0
$iuc

α
1− $iu

α

 ,

therefore

(ν � ν ′)(

(
α 0

(α− δ)c δ

)
) = ν(α)ν ′(α)ψ(

1

α
($iuc− Tr(τ)$iu)).

As a result

Sh(Di,α,δ, ν, ν
′) = |O×l |ν(α)ν ′(α)

∑
c∈Ol

ψ(
1

α
($iuc− Tr(τ)$iu)) = 0,

the summation on c giving 0 because ψ is primitive and i < r.
�

• Conjugacy class of type B.
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Proposition 13. tr(Bi,α,β|Cν,ν′ ) = −δi,r−1ν(α)ν ′(α)qr−1.

Proof. We prefer to work with the representative wBi,α,βw
−1 where w =

(
1 0
0 1

)
, it

will be easier to compare with results of [7]. We have

hc,dwBi,α,βw
−1h−1

c,d =

 α− c$i d$i

$i

d
($β − c2) α +$ic

 .

This matrix belongs to SKl only when i ≥ l.

Indeed, if

 α− c$i d$i

$i

d
($β − c2) α +$ic

 =

(
a+$lx b+$ly

−bN(τ̂) +$ly a+ bTr(τ̂) +$lt

)
we nec-

essarily have b = d$i mod$l, a = α−d
2
Tr(τ̂)$i mod$l, c$i =

d

2
Tr(τ̂)$imod$l, $i+1β−

c2$i = −d2$iN(τ̂) mod$l. Assuming i < l the last equation implies that (c2 −
d2N(τ̂))$i = 0 mod$i+1, but using c =

d

2
Tr(τ̂)mod$l−i, we necessarily have that

d2((
1

2
Tr(τ̂))2 −N(τ̂)) = d2ε̃ = 0 mod$ which contradicts d and ε̃ invertible.

Let us therefore assume that i ≥ l, we have hc,dwBi,α,βw
−1h−1

c,d ∈ SKl, and:

Sh(Bi,α,β, ν, ν
′) = Sh(wBi,α,βw

−1, ν, ν ′) =

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$i

dα
($β − c2)− $id

α
N(τ) +

$i

α
Tr(τ)c)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$i

dα
($β − (c− dTr(τ))2) +

$id

α
(
τ − σ(τ))

2
)2)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$i

dα
($β − c2) +

$idε̃

α
) (with ε̃ = (

τ − σ(τ))

2
)2)

= ν(α)ν ′(α)q2(i−l)
∑

c∈Or−i,d∈O×r−i

ψ(
$i

dα
($β − c2) +

$idε̃

α
).

Using Proposition.18 of the Appendix, because $β is not invertible, this sum is equal
to 0 unless $i+1β = 0, i.e r − i = 1, and the result is equal to −ν(α)ν ′(α)qr−1.

• Conjugacy class of type C.
Recall that we have denoted Φ ∈ OEr a solution of Φ2 = ε.

Proposition 14.

tr(Ci,α,β|Cν,ν′ ) = (−q)i(ν(α +$iΦβ)ν ′(α−$iΦβ) + ν(α−$iΦβ)ν ′(α +$iΦβ))

Proof. We have

hc,dCi,α,βh
−1
c,d =

 α− c$iεβ d$iεβ
β$i

d
(1− c2ε) α +$icεβ

 .
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We have to distinguish two cases i ≥ l and i < l.
3 If i ≥ l then this last matrix belongs to SKl and is equal to Iαk where k ∈ Kl.
Therefore

Sh(Ci,α,β, ν, ν
′) = ν(α)ν ′(α)

∑
c∈Ol,d∈O×l

ψ(
β$i

dα
(1− c2ε)− $idεβ

α
N(τ) +

$i

α
Tr(τ)cεβ)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
β$i

dα
(1− (c+

d

2
Tr(τ))2ε)− $idεβ

α
N(τ) +

$i

α
Tr(τ)(c+

d

2
Tr(τ))εβ)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$iβ

dα
(1− c2ε) +

$iεβdε̃

α
)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$iβ

dα
(ε− c2ε2) +

$iβdε̃

α
)

= ν(α)ν ′(α)
∑

c∈Ol,d∈O×l

ψ(
$iβ

dα
(ε− c2) +

$iβdε̃

α
)

= ν(α)ν ′(α)q2(i−l)
∑

c∈Or−i,d∈O×r−i

ψ(
$iβ

dα
(ε− c2) +

$iβdε̃

α
).

Applying Proposition (18) of the Appendix (evaluation of Salié sums), this is equal to

tr(Ci,α,β|Cν,ν′ ) = ν(α)ν ′(α)q2(i−l)(−q)r−i(ψ(
$iβ

α
2u) + ψ(−$

iβ

α
2u))

(where u2 = εε̃, 2u = Φ(τ − σ(τ)))

= ν(α)ν ′(α)(−q)i(ψ(
$iβ

α
Φ(τ − σ(τ))) + ψ(−$

iβ

α
Φ(τ − σ(τ))),

= ν(α)ν ′(α)(−q)i(ν(1 +$iΦ
β

α
)ν ′(1−$iΦ

β

α
) + ν(1−$iΦ

β

α
)ν ′(1 +$iΦ

β

α
))

= (−q)i(ν(α +$iΦβ)ν ′(α−$iΦβ) + ν(α−$iΦβ)ν ′(α +$iΦβ))

which gives the announced result.
Remark: This corrects misprints in [7] (Page 1306 it should be pi and not pl−i in the
expression of tr(Ci,α,β|Cν,ν′ ) and moreover they have considered the case were ε = ε̃ = u).

3 We now proceed with i < l. The same method as developped in [7] can be applied
and this is a non trivial result. We can ask what are the (c, d) ∈ Ol × O×l such that
hc,dCi,α,βh

−1
c,d ∈ SKl, this condition is equivalent to the existence of X, Y, Z, T ∈ Or

such that

hc,dCi,α,βh
−1
c,d =

(
X Y

−Y τ̂σ(τ̂) +$lZ X + Y (τ̂ + σ(τ̂)) +$lT

)
.

This imply Y = d$iεβ, 2c$iεβ = Y Tr(τ̂) +$lT. Therefore c =
d

2
Tr(τ̂) +$l−iT, T ∈

Oi. From
β$i

d
(1 − c2ε) = −Y N(τ) + $lZ , a little algebra implies that d = ±u−1 +
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d′$l−i, d′ ∈ Oi, and c = ±u
−1

2
Tr(τ̂) + c′$l−i, c′ ∈ Oi. Inversely this is a sufficient

condition on c, d for having hc,dCi,α,βh
−1
c,d ∈ SKl.

We now fix d = u−1 + d′$l−i, c =
u−1

2
Tr(τ) + c′$l−i, the other choice of sign follows

the same method.
Under this condition, we now factorise: hc,dCi,α,βh

−1
c,d = sk, s ∈ S, k ∈ Kl. This is not

unique, we can choose s =

(
a b

−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

)
, with a = α−u

−1

2
Tr(τ̂)$iεβ, b =

u−1$iεβ. The matrix k = s−1hc,dCi,α,βh
−1
c,d =

(
1 +$lx $ly
$lz 1 +$lt

)
. Note that det(s) =

a2 +abTr(τ̂)+b2N(τ̂) which after simplifications gives det(s) = α2−$2iεβ2. Therefore
the matrix k can be computed as

k =
1

α2 −$2iεβ2

(
a b

−bτ̂σ(τ̂) a+ b(τ̂ + σ(τ̂))

) α− c$iεβ d$iεβ
β$i

d
(1− c2ε) α +$icεβ

 .

From this equation we obtain, after a direct lengthy computation

(α2 −$2iεβ2)($lz −$lyN(τ) + Tr(τ)(1 +$lt)) =

= 2bαN(τ) +
aβ$i

d
(1− c2ε)− ad$iεβN(τ) + a(α +$icεβ)Tr(τ).

This expression can be simplified by different changes of variables. Defining c̃ = c −
d

2
Tr(τ), we obtain

d(α2 −$2iεβ2)($lz −$lyN(τ) + Tr(τ)$lt) =

= 2bdαN(τ) + adαTr(τ) + aβ$i(1− c̃2ε) + ad2$iβεε̃− d(α2 −$2iεβ2)Tr(τ)

= ad2$iu2β − 2u$iβad+ αβ$i − c̃2εaβ$i.

Setting d = u−1 + f$l−i, c̃ = e$l−i with e, f ∈ Oi in the last expression, we obtain:

$lz −$lyN(τ) + Tr(τ)$lt =
1

α2 −$2iεβ2

uaβεπ2l−i

1 + fu$l−i (f
2ε̃− e2).

As a result we obtain for d = u−1 + f$l−i, c̃ = e$l−i :

(ν � ν ′)(hc,dCi,α,βh
−1
c,d) = ν(a+ bτ̂)ν ′(a+ bσ(τ̂))ψ($lz −$lyN(τ) + Tr(τ)$lt)

We can simplify:

ν(a+ bτ̂)ν ′(a+ bσ(τ̂)) =

= ν(α− u−1

2
$iεβTr(τ̂) + u−1$iεβτ̂)ν ′(α− u−1

2
$iεβTr(τ̂) + u−1$iεβσ(τ̂))

= ν(α +
$iε(τ − σ(τ))β

2u
)ν ′(α− $iε(τ − σ(τ))β

2u
)

= ν(α +$iΦβ)ν ′(α−$iΦβ).
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As a result

Sh(Ci,α,β, ν, ν
′) = ν(α +$iΦβ)ν ′(α−$iΦβ)S+ + ν(α−$iΦβ)ν ′(α +$iΦβ)S−

where

S± =
∑
e,f∈Oi

ψ(± 1

α2 −$2iεβ2

uaβεπ2l−i

1± fu$l−i (f
2ε̃− e2)).

Let us define the characters λ± : Oi → C×, λ±(z) = ψ(
±uaβεπ2l−iz

α2 −$2iεβ2
).

We have

S± =
∑
e,f∈Oi

λ±(
f 2ε̃− e2)

1± fu$l−i )

=
∑

e′,f ′∈Oi

λ±(f ′2ε̃− e′2) with e′ =
e√

1± fu$l−i
, f ′ =

f√
1± fu$l−i

= (−q)i.

We have used to conclude the proposition 17 of the appendix using properties of Gauss
sums. �

As a result

Sh(Ci,α,β, ν, ν
′) = (−q)i(ν(α +$iΦβ)ν ′(α−$iΦβ) + ν(α−$iΦβ)ν ′(α +$iΦβ)),

which is the desired result. �

The following table give the complete list of evaluation of characters of cuspidal repre-
sentations:

Iα Di,α,δ Ci,α,β Bi,α,β

tr(.|Cν,ν′ ) qr−1(q − 1)ν(α)ν ′(α) 0
(−q)i(ν(α +$iΦβ)ν ′(α−$iΦβ)

+ν(α−$iΦβ)ν ′(α +$iΦβ))
−δi,r−1ν(α)ν ′(α)qr−1

4.3. Non principal split representations. Let ∆ ∈ Ol ∩M, let ∆̂ a lift in Or of ∆.

We have T (ψβ(C′4(∆,0))) = SKl with S = S(∆̂, 0) = {
(

a b

−∆̂b a

)
, a ∈ O×r , b ∈ Or}.

Proposition 15. A section of the right cosets of SKl is given by the following set

of matrices Y ∪ Z where Y = {hc,d, c ∈ Ol, d ∈ O×l } with hc,d =

(
d 0
c 1

)
and Z =

{h$c,dw, c ∈ Ol−1, d ∈ O×l } and w =

(
0 1
1 0

)
.

Proof. We use SKl = {
(

X Y

−∆̂Y +$lZ X +$lT

)
, X ∈ O×r , Y, Z, T ∈ Or}. It is a

direct verification. �
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An important remark: note that w is put on the right of h$c,d and this is essential for
the proposition to be true. In [7] an analog of this proposition is stated in Lemma 6.1
and in section 6.2 page 1315 but w is incorrectly put on the left and the corresponding
set of elements Ecd and Fcd (in their notations) do not provide a set of representative
of right cosets. Indeed with the notations of Lemma 6.1, if we define the group L =

{
(
x $jyβ
y x

)
}, we have FcdF

−1
c′d′ =

(
dd′−1 0

(c− c′)$
d′

1

)
, this matrix belongs to L as soon as

d = d′, v(c− c′) ≥ i− j− 1 (j ≤ i) with their notations. Therefore there exist c, c′ such
that Fcd 6= Fc′d and LFcd = LFc′d contradicting the Lemma 6.1. Our remark applies
as well for the section 6.2. As a consequence the results obtained in [7] concerning the
value of the characters of the split non principal representations cannot be trusted.

• Conjugacy class of type I.
Iα being central we have

tr(Iα|Ξa,∆,θ) =
|G|
|SKl|

χ̃a(α
2)θ(Iα) = (q2 − 1)qr−2χ̃a(α

2)σ(α), where σ is the multiplica-

tive character associated to θ.
• Conjugacy class of type D.

We have hc,dDi,α,δh
−1
c,d =

(
α 0

c(α− δ)/d δ

)
and h$c,dwDi,α,δwh

−1
$c,d =

(
δ 0

$c(δ − α)/d α

)
,

as a result the conjugacy class of Di,α,δ intersects SKl only when i ≥ l because the
valuation of the difference of the matrix elements on the diagonal has to be greater or
equal to l.
Therefore we obtain that tr(Di,α,δ|Ξa,∆,θ) = 0 when i < l.

When i ≥ l we have both hc,dDi,α,δh
−1
c,d ∈ SKl, h$c,dwDi,α,δwh

−1
$c,d ∈ SKl. Noting that

hc,dDi,α,δh
−1
c,d = Iα

(
1 0

c(α− δ))/(dα) 1− (α− δ)/α

)
and similarly for h$c,dwDi,α,δwh

−1
$c,d

we obtain

tr(Di,α,δ|Ξ∆,θ
) =

∑
c∈Ol,d∈O×l

θ(Iα)ψ(
c

d

α− δ
α

) +
∑

c∈Ol−1,d∈O×l

θ(Iδ)ψ(
$c

d

δ − α
δ

).

The first sum is always 0, because α − δ ∈ $iOr with i < r, and therefore for fixed d
the sum over c gives 0. The second sum is zero for the same reason unless i = r − 1.
In the case i = r − 1 we have $(α − δ) = 0, therefore the second sum is equal to
θ(Iδ)|O×l ||Ol−1| = θ(Iδ)(q − 1)qr−2.
We finally obtain
tr(Di,α,δ|Ξa,∆,θ) = δi,r−1χ̃a(α)χ̃a(δ)σ(δ)(q − 1)qr−2.

Note that because the restriction of σ to 1 +$lOr is trivial we have σ(α) = σ(δ) when
i = r − 1, the result is symmetric in the exchange of α and δ, as it should be.

• Conjugacy class of type C.
We have

hc,dCi,α,βh
−1
c,d =

(
α− c$iεβ d$iεβ

β$i(1− c2ε)/d α + c$iεβ

)
this matrix does not belong to SKl when i < l.
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Indeed if hc,dCi,α,βh
−1
c,d =

(
X Y

−∆̂Y +$lZ X +$lT

)
then Y = d$iεβ is of valuation i,

but −∆̂Y + $lZ is of valuation strictly bigger to i because ∆̂ is of positive valuation
and i < l, therefore one cannot have −∆̂Y +$lZ = β$i(1−c2ε)/d which is of valuation
i.
We have

h$c,dwCi,α,βwh
−1
$c,d =

(
α−$c$iβ d$iβ

β$i(ε− ($c)2)/d α +$c$iβ

)
,

for the same reason if i < l then h$c,dwCi,α,βwh
−1
$c,d /∈ SKl.

As a result we get tr(Ci,α,β|Ξa,∆,θ) = 0 when i < l.

If i ≥ l, we have

hc,dCi,α,βh
−1
c,d = Iα

 1− c

α
$iεβ

d

α
$iεβ

β

αd
$i(1− c2ε) 1 +

c

α
$iεβ

 ∈ SKl.

Therefore we obtain

tr(Ci,α,β|Ξ∆,θ
) =

=
∑

c∈Ol,d∈O×l

θ(Iα)ψ(
β$i

αd
(1− c2ε)−∆

d

α
$iεβ) +

∑
c∈Ol−1,d∈O×l

θ(Iα)ψ(
β$i

αd
(ε− ($c)2)−∆

d

α
$iβ)

= q2(i−l)
∑

c∈Or−i,d∈O×r−i

θ(Iα)ψ(
β$i

αd
(1− c2ε)−∆

d

α
$iεβ) +

+q2(i−l)
∑

c∈Or−i−1,d∈O×r−i

θ(Iα)ψ(
β$i

αd
(ε− ($c)2)−∆

d

α
$iβ).

In order to compute the first term of this sum we remark that 1− c2ε is invertible and

that the map d 7→ 1

d
−d∆u from O×r−i to O×r−i, where u ∈ Or−i, is bijective. As a result

we have ∑
c∈Or−i,d∈O×r−i

ψ(
β$i

αd
(1− c2ε)−∆

d

α
$iεβ) =

=
∑

c∈Or−i,d∈O×r−i

ψ(
β$i

αd
(1− c2ε))

=
∑

c∈Or−i,d∈O×r−i

ψ(
β$i

α
(1− c2ε)d)

=
∑

c∈Or−i,d∈Or−i

ψ(
β$i

α
(1− c2ε)d)−

∑
c∈Or−i,d∈Or−i−1

ψ(
β$i

α
(1− c2ε)$d)
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Fixing c the sum over d gives 0 when r − i > 1. When i = r − 1, we have to evaluate∑
c∈O1,d∈O×1

ψ(
β$i

α
(1− c2ε)d). For fixed c the sum over d gives −1, therefore the value of

this sum is equal to −|O1| = −q. We obtain that∑
c∈Ol,d∈O×l

θ(Iα)ψ(
β$i

αd
(1− c2ε)− ∆̂

d

α
$iεβ) = −θ(Iα)qr−1δi,r−1.

The second sum is evaluated with the same technique and we obtain∑
c∈Ol−1,d∈O×l

θ(Iα)ψ(
β$i

αd
(ε− ($c)2)− ∆̂

d

α
$iβ) = −qr−2θ(Iα)δi,r−1.

As a result we get:

tr(Ci,α,β|Ξ∆,θ
) = −qr−2(q + 1)θ(Iα)δi,r−1 = −qr−2(q + 1)σ(α)δi,r−1.

Finally:

tr(Ci,α,β|Ξa,∆,θ) = −χ̃a(det(Ci,α,β))σ(α)qr−2(q + 1)δi,r−1.

Because α2 − π2iεβ2 = α2 when i = r − 1, we finally obtain:

tr(Ci,α,β|Ξa,∆,θ) = −χ̃a(α2)σ(α)qr−2(q + 1)δi,r−1.

• Conjugacy class of type B.
The case of conjugacy class of type B is much more involved than the other conjugacy
classes. This comes from two difficulties: there is no neat description of the non
principal split representations and moreover the character depends on three positive
integers i, j, k. We have done a careful analysis of this case but there are cases where
we cannot give explicit closed formulas.
Note also that there are numerous mistakes in the analysis of [7] concerning this case:
the given set of representatives of right cosets is not a set of representatives as already
mentionned, the evaluation of the sum denoted P of [7] is mistaken as noted and cor-
rected in [4] (but only for the case Zp) and moreover they have used the same parameter
β for the parametrisation of the conjugacy classes and also for the parametrisation of
the representation Ξa,∆,θ (i.e they have called our ∆ also β). Therefore their evaluation
of the characters, which was nevertheless not given in a closed form for some cases in
i, j, k cannot be trusted for these conjugacy classes.

We have

hc,dBi,α,βh
−1
c,d =

(
α−$i+1β d$i+1β

($i − c2$i+1β)/d α + c$i+1β

)
,

h$c,dwBi,α,βwh
−1
$c,d =

(
α− c$i+1 d$i

($i+1β −$i+2c2)/d α + c$i+1

)
.

At this point let us define j = v(β), we have 0 ≤ j ≤ r − 1 and let k = v(∆̂) we have

1 ≤ k ≤ r. Note that 1 + i + j ≤ r. It will be convenient to chose β′ and ∆̂′ inversible
such that β = $jβ′, ∆̂ = $k∆̂′.

Lemma 3. hc,dBi,α,βh
−1
c,d belongs to SKl only if i ≥ l.



28 PH.ROCHE

Proof. Assume that hc,dBi,α,βh
−1
c,d ∈ SKl, then there exists Y, Z ∈ Or such that Y =

d$i+1β, ($i− c2$i+1β)/d = −∆̂Y +$lZ. Therefore v(Y ) = i+ j+ 1 and i = v(($i−
c2$i+1β)/d) = v(−∆̂Y +$lZ). We have v(∆̂Y ) = i+ j+k+1 and v($lZ) = l+v(Z).
As a result i ≥ min(i+ j + k + 1, l + v(y)) which is possible only if i ≥ l.

�

We consider as usual two cases.
3 The first case is when i ≥ l, in this case both hc,dBi,α,βh

−1
c,d and h$c,dwBi,α,βwh

−1
$c,d

belong to SKl. From hc,dBi,α,βh
−1
c,d = Iα

(
1−$i+1β/α d$i+1β/α

($i − c2$i+1β)/(αd) 1 + c$i+1β/α

)
, the

contribution of the elements hc,dBi,α,βh
−1
c,d to the character of the representation Ξ∆,θ is

given by the following sum:

χ1 =
∑

c∈Ol,d∈O×l

θ(Iα)ψ(
$i

α
(
1− c2$β

d
− ∆̂d$β))

= q2(i−l)θ(Iα)
∑

c∈Or−i,d∈O×r−i

ψ(
$i

α
(
1− c2$β

d
− ∆̂d$β)).

Using the fact that d 7→ 1

d
−d∆̂u from O×r−i to O×r−i, where u ∈ Or−i is a bijection, the

evaluation of this sum follows the same procedure as in the case of conjugacy classes
of type C and we obtain:

χ1 = −θ(Iα)qr−1δi,r−1.

From h$c,dwBi,α,βwh
−1
$c,d = Iα

(
1− c$i+1/α d$i/α

($i+1β −$i+2c2)/(αd) 1 + c$i+1/α

)
the contribu-

tion of the elements h$c,dwBi,α,βwh
−1
$c,d to the character of the representation Ξ∆,θ is

given by the following sum:

χ2(i, j, k) = θ(Iα)
∑

c∈Ol−1,d∈O×l

ψ(
$i+1β −$i+2c2

αd
− ∆̂

d

α
$iβ)

= θ(Iα)
∑

c∈Ol−1,d∈O×l

ψ(
$i

α
(
$j+1β′ −$2c2

d
− d$j+k∆̂′β′) =

= q2(i−l)θ(Iα)
∑

c∈Or−i−1,d∈O×r−i

ψ(
$i

α
(
$j+1β′ −$2c2

d
− d$j+k∆̂′β′).

Note that when i = r−1, ψ is evaluated on the 0 element, therefore χ2 = θ(Iα)|Ol−1||O×l | =
θ(Iα)qr−2(q − 1). Therefore when i = r − 1, we obtain that the character of Ξ∆,θ is
χ1 + χ2 = −θ(Iα)qr−2.
When i < r − 1, the value of the character reduces to χ2(i, j, k). This sum can be
simplified as explained by [4] in the case of Zp, the generalisation to the case of O is
provided in the appendix of our work.
3 The second case is when i < l.
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We have h$c,dwBi,α,βwh
−1
$c,d ∈ SKl if and only if there exists X, Y, Z, T ∈ Or such that

h$c,dwBi,α,βwh
−1
$c,d =

(
X Y

−∆̂Y +$lZ X +$lT

)
.

In this hypothesis we have 2c$i+1 = $lT, i.e c = $l−i−1e, e ∈ Or. We now look for a
necessary condition on d. We also have

(6) −∆̂Y $i +$lZ = ($i+j+1β′ −$r−ie2)/d.

From this last equation we have to distinguish two cases: i+ j + 1 < l or i+ j + 1 ≥ l.
33In the first case i+j+1 < l. Because Y = d$i, −∆̂Y is necessarily of valuation i+k,
but from the equation (6) and the inequality i+ j+ 1 < l, we must have k = j+ 1. We
therefore have that if k 6= j + 1 then h$c,dwBi,α,βwh

−1
$c,d is not in SKl. The character

of the representation is zero.
If k = j + 1 then we have to solve the equation

(7) −∆̂′d$i+k +$lZ = ($i+j+1β′ −$r−ie2)/d.

There are two cases to consider. This equation modulo $l gives:

−∆̂′d$i+k = $i+j+1β′/d mod $l.

The first case is when −∆̂′

β′
is not a square, then there is no solution in d to this equation

implying h$c,dwBi,α,βwh
−1
$c,d is not in SKl. The value of the character is therefore equal

to zero.

The second case is when −∆̂′

β′
= Γ−2, the equation (7) implies that d = ±Γ +$l−i−kf

with f ∈ Or. As a result we obtain

h$c,dwBi,α,βwh
−1
$c,d =

(
α−$le d$i

($i+kβ′ −$2l−ie2)/d α +$le

)
= sk ∈ SKl

with

s =

(
α d$i

−d$i∆̂ α

)
k =

1

α2 + d2$2i∆̂

(
α2 − α$le−$2i+kβ′ −d$l+ie

αd$i+k∆̂′ − d$i+k+l∆̂′e+ αd−1($i+kβ′ −$2l−ie2) α2 + α$le+$2i+kd2∆̂′

)
.

(one can very that indeed k belongs to Kl.) Therefore the character of Ξ∆,θ evaluated
on the conjugacy class is equal to

χ3 =
∑
e∈Oi

d=±Γ+$l−i−kf,f∈Oi+k

θ(

(
α d$i

−d$i∆̂ α

)
)ψ((d$i+k∆̂′ + d−1($i+kβ′ −$2l−ie2))

α

α2 + d2$2i∆̂
).

We have not been able to simplify this formula further.
33In the second case i+ j + 1 ≥ l. In order for h$c,dwBi,α,βwh

−1
$c,d to belong to SKl,

we necessarily have c = $l−i−1e, and there must exists Z ∈ Or such that −∆̂′d$i+k +
$lz = ($i+j+1β′ −$r−ie2)/d. We have to distinguish 2 cases:



30 PH.ROCHE

333 i+ k < l. There is no solution Z to the previous equation because v(∆̂′d$i+k +
$i+j+1β′ − $r−ie2)/d) = i + k. Therefore the value of the character is zero on the
conjugacy class.
333 i + k ≥ l Then h$c,dwBi,α,βwh

−1
$c,d belong to SKl if c = $l−i−1e. We proceed

analogously as in the previous case

h$c,dwBi,α,βwh
−1
$c,d =

(
α−$le d$i

($i+j+1β′ −$2l−ie2)/d α +$le

)
= sk ∈ SKl

with

s =

(
α d$i

−d$i∆̂ α

)
k =

1

α2 + d2$2i∆̂

(
α2 − α$le−$2i+j+1β′ −d$l+ie

α(d$i+k∆̂′ + d−1($i+j+1β′ −$2l−ie2)) α2 + α$le+$2i+kd2∆̂′

)
.

Therefore the character of Ξ∆,θ evaluated on the conjugacy class is equal to∑
e∈Oi
d∈O×

l

θ(

(
α d$i

−d$i∆̂ α

)
)ψ((d$i+k∆̂′ + d−1($i+j+1β′ −$2l−ie2))

α

α2 + d2$2i∆̂
).

Noting that
α

α2 + d2$2i∆̂
=

1

α
(1− ∆̂′

α2
$2i+kd2), the value of the character is:

χ4 =
∑
e∈Oi
d∈O×

l

θ(

(
α d$i

−d$i∆̂ α

)
)ψ(

1

α
(d$i+k∆̂′ + d−1($i+j+1β′ −$2l−ie2))).

We have not been able to simplify this formula further.
To summarize:

Iα Di,α,δ Ci,α,β Bi,α,β

tr(Ξa,∆,θ)(.)
(q2 − 1)qr−2χ̃a(α

2)
σ(α)

δi,r−1χ̃a(α)χ̃a(δ)
σ(δ)(q − 1)qr−2

−δi,r−1χ̃a(α
2)

σ(α)qr−2(q + 1)

Many cases

No ”simple” formula

Appendix A. Gauss sums, Kloosterman sums, Salié sums

We use the notations of section 3.
Let λ : (Ok,+) → C× a primitive character, let a ∈ Ok, we will denote the quadratic
Gauss sum G(a, λ) to be:

G(a, λ) =
∑
x∈Ok

λ(ax2).

Let a, b ∈ Ok, the Kloosterman sum K(a, b, λ) is defined as:

K(a, b, λ) =
∑
x∈O×k

λ(ax+ bx−1).
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Let ρ be a multiplicative characterO×k → C×, the twisted Kloosterman sumK(a, b, λ, ρ)
is defined as:

K(a, b, λ, ρ) =
∑
x∈O×k

ρ(x)λ(ax+ bx−1).

Important example of twisted Kloosterman sum which appear in our work is the Salié
sum S(a, b, λ) defined as:

S(a, b, λ) =
∑
x∈O×k

(
x

Ok
)λ(ax+ bx−1),

where (
x

Ok
) denotes the Legendre symbol in Ok, which is defined for every x ∈ Ok and

is equal to

(
x

Ok
) =

 0 if x is not invertible
1 if x is a square
−1 otherwise.

Note that the Legendre symbol restricted to O×k is a group morphism with value in
{+1,−1} which factor through the group k×.
Remark: In order to keep track of the dependence of k, we will sometimes use the
notation Gk, Kk, Sk for the Gauss, Kloosterman, Salié sum associated to Ok.
In [14] quadratic Gauss sum are studied and computed for any finite commutative
ring of odd characteristic. We apply his results to the case of the ring Ok. With his
notations, we have dOk = k, and the theorem 6.2 of [14] can be stated as:

Proposition 16.

G(1, λ)2 = (
−1

Ok
)kqk

G(ab, λ) = (
a

Ok
)kG(b, λ), a, b ∈ O×k .

From this theorem we obtain the following result which is needed for the evaluation of
the characters of cuspidal representations for conjugacy class of type C.

Proposition 17. Let λ : (Ok,+) → C× be a primitive character, let η ∈ Ok an
invertible element which is not a square, we have:∑

e,f∈Ok

λ(e2 − ηf 2) = (−q)k.

Proof. Let S =
∑
e,f∈Ok

λ(e2 − ηf 2) = G(1, λ)G(−η, λ). We have S = G(1, λ)G(−η, λ) =

G(1, λ)(
−η
Ok

)kG(1, λ) = (
−η
Ok

)k(
−1

Ok
)kqk = (

η

Ok
)kqk = (−q)k. �

In the evaluation of characters of cuspidal representations, one needs an explicit expres-

sion for T (b, η, λ) =
∑

c∈Ok,d∈O×k

λ(d−1(b− c2) +dη) where b ∈ Ok, η ∈ O×k , η not a square
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and λ : (Ok,+) → C× is a primitive character. This sum is a twisted Kloosterman
sum. Indeed we have:

T (b, η, λ) =
∑

c∈Ok,d∈O×k

λ(d−1(b− c2) + dη)

=
∑
d∈O×k

λ(db+ d−1η)G(−d, λ)

=
∑
d∈O×k

λ(dbη + d−1)G(−dη, λ)

= G(−1, λ)
∑
d∈O×k

(
dη

Ok
)kλ(dbη + d−1)

= G(−1, λ)(−1)k
∑
d∈O×k

(
d

Ok
)kλ(dbη + d−1).

As a result when k is even we get a Kloosterman sum and when k is odd we obtain a
Salié sum. The following result give a simple formula of the evaluation of this sum for
any k. When k is even, and Ok = Z/pkZ, this is the classical formula for evaluation
of Kloosterman sum obtained by H.Salié in 1931. In the case where O is the ring of
integer of a p-adic field F , we could obtain the evaluation of these sums by applying
the results of [9, 10] to a number field having F at some place. This is not completely
direct and do not cover the case where the local field is of positive characteristic, we
prefer to give a direct proof of it using a generalization of the method of [7].

Proposition 18. Let λ : (Ok,+) → C× be a primitive character, let η ∈ Ok an
invertible element which is not a square, we have:

∑
c∈Ok,d∈O×k

λ(d−1(b− c2) + dη) =

 (−q)k(λ(2u) + λ(−2u)), if u2 = ηb is invertible,
−q if k = 1 and b = 0,
0 otherwise.

Proof. The sum T (b, η, λ) can be expressed as:

T (b, η, λ) =
∑

c∈Ok,d∈O×k

λ(d−1(b− c2) + dη)

=
∑
x∈Ok

λ(x)|{(c, d) ∈ Ok ×O×k , x = ηd+ (b− c2)d−1}|

=
∑
x∈Ok

λ(x)|E(x) ∩ (Ok ×O×k )|

where E(x) = {(c, d) ∈ Ok ×Ok, xd = ηd2 + (b− c2)}.
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Noting that E(x) ∩ (Ok ×$Ok) = E(x+$k−1) ∩ (Ok ×$Ok), we obtain that∑
x∈Ok

λ(x)|E(x) ∩ (Ok ×$Ok)| =
∑
x∈Ok

λ(x)|E(x+$k−1) ∩ (Ok ×$Ok)|

=
∑
x∈Ok

λ(x−$k−1)|E(x) ∩ (Ok ×$Ok)|

= λ(−$k−1)
∑
x∈Ok

λ(x)|E(x) ∩ (Ok ×$Ok)|

= 0.

As a result we obtain: T (b, η, λ) =
∑
x∈Ok

λ(x)|E(x)|.

Let F (x) = {(c, d) ∈ O2
k, d

2 − ηc2 = x}, a simple computation shows that E(x) =

F ((
x

2
)2 − ηb). As a result, if we introduce ρ : Ok → N, ρ(y) = |F (y)|, and noting that

ρ(y) = ρ(u2y) if u is invertible,

T (b, η, λ) =
∑
x∈Ok

λ(x)ρ(x2 − 4ηb).

Using a straighforward generalization of the argument of [7], ρ can be evaluated exactly
and is a function of the valuation

ρ(y) =

 q2(k−b k+1
2
c) if y = 0

(q + 1)qk−1−v(y) if v(y) even (including 0)
0 if v(y) odd.

Let us recall the argument of [7] generalized in our setting. We consider the different
cases.

(1) b invertible and is a square
(2) b invertible and is a non-square
(3) b non invertible

In the case 1), ηb is not a square, this is also equivalent by Hensel lemma to the fact
that it is not a square in the residual field. Therefore x2 − 4ηb is invertible for all
x ∈ Ok, because otherwise it would vanish in the residual field contradicting that ηb is
not a square. Therefore

T (b, η, λ) =
∑
x∈Ok

λ(x)ρ(x2 − 4ηb)

=
∑
x∈Ok

λ(x)(q + 1)qk−1 = 0.

In the case 3) b belongs to $Ok. When k ≥ 2, we have

T (b, η, λ) =
∑
x∈O×k

λ(x)ρ(x2 − 4ηb) +
∑

x∈$Ok

λ(x)ρ(x2 − 4ηb)

=
∑
x∈O×k

λ(x)(q + 1)qk−1 +
∑

x∈$Ok

λ(x)ρ(x2 − 4ηb)
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The first sum is 0 after having used the following property, direct generalisation of the
lemma 5.1 of [7]

(8)
∑

x∈$jO×k

λ(x) =

 0 if j < k − 1
−1 if j = k − 1
1 if j = k.

To evaluate the second sum we notice that (x+$k−1)2 = x2 when x ∈ $Ok, hence:∑
x∈$Ok

λ(x)ρ(x2 − 4ηb) =
∑

x∈$Ok

λ(x)ρ((x+$k−1)2 − 4ηb)

=
∑

x∈$Ok

λ(x−$k−1)ρ(x2 − 4ηb) = λ(−$k−1)
∑

x∈$Ok

λ(x)ρ(x2 − 4ηb),

implying the vanishing of the second sum. Therefore T (b, η, λ) = 0.
Note that when k = 1, we necessarily have b = 0, and

T (b, η, λ) =
∑
x∈O1

λ(x)ρ(x2)

= λ(0)ρ(0) +
∑
x∈k×

λ(x)(q + 1)

= 1− (q + 1) = −q.

In the remaining case 2), we have εb = u2 with u invertible, therefore T (b, η, λ) =∑
x∈Ok

λ(x)ρ((x− 2u)(x+ 2u)).

(x− 2u)(x+ 2u) is non invertible if and only if x− 2u or x+ 2u has a strictly positive
valuation. We denote X±j = ±2u+$jOk, j ≥ 1. We have

T (b, η, λ) =
∑
x∈Ok

λ(x)ρ((x− 2u)(x+ 2u))

=
∑

x∈Ok\∪kj=1X
±
j

λ(x)ρ(1) +
∑
ε=±

k∑
j=1

∑
x∈Xε

j

λ(x)ρ($j)

=
∑
x∈Ok

λ(x)ρ(1) +
∑
ε=±

k∑
j=1

∑
x∈Xε

j

λ(x)(ρ($j)− ρ(1))

=
∑
x∈Ok

λ(x)ρ(1) +
∑
ε=±

k∑
j=1

∑
x∈$jOk

λ(εu)λ(x)(ρ($j)− ρ(1)).

Using
∑

x∈$jOk

λ(x) = 0 for j = 0, ..., k − 2 we obtain

T (b, η, λ) =
k∑

j=k−1

∑
x∈$jOk

(λ(2u) + λ(−2u))λ(x)(ρ($j)− ρ(1)).
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Applying (8) we end up with:

T (b, η, λ) = −(λ(2u) + λ(−2u))(ρ($k−1)− ρ(1)) + (λ(2u) + λ(−2u))(ρ(0)− ρ(1))

= (λ(2u) + λ(−2u))(ρ(0)− ρ($k−1))

= (−q)k((λ(2u) + λ(−2u))).

This ends the proof of the proposition.
�

The rest of this section is devoted to the evaluation of the sum

χ2(i, j, k) = q2(i−l)θ(Iα)
∑

c∈Or−i−1,d∈O×r−i

ψ(
$i

α
(
$j+1β′ −$2c2

d
− d$j+k∆̂′β′))

with the conditions l ≤ i < r − 1, 0 ≤ j ≤ r − 1, 1 ≤ k ≤ r, 1 + i+ j ≤ r. This sum is
the character of Ξ∆,θ evaluated on the conjugacy class Bi,α,β when l ≤ i < r − 1.
Precise evaluation of these kind of sums have been given by Maeda in [4] for the case
O = Zp. We will show that χ2(i, j, k) can always be expressed in term of Gauss Sums,
Kloosterman sums and Salié sums. In most cases one can further evaluate them but
in the case where k = 1 there are cases where the evaluation amount to evaluate
Kloosterman sums in the case where there is no closed formula for them.

χ2(i, j, k) = q2(i−l)−1θ(Iα)
∑

c∈Or−i,d∈O×r−i

ψ(
$i

α
(
$j+1β′ −$2c2

d
− d$j+k∆̂′β′))

= q2(i−l)−1θ(Iα)
∑

c∈Or−i,d∈O×r−i

λ(
$j+1β′ −$2c2

d
− d$j+k∆̂′β′)

= q2(i−l)−1θ(Iα)
∑

c∈Or−i,d∈O×r−i

λ(($j+1β′ −$2c2)d− $j+k∆̂′β′

d
)

where λ : Or−i → C× is the primitive character factor map of the character z 7→
ψ($i z

α
).

When i = r − 2 then the elements on which λ is evaluated are all 0. Therefore we
obtain χ2(i, j, k) = q2(i−l)−1|O2||O×2 | = qr−2(q − 1). We now assume i < r − 2.
We have to distinguish two cases: j ≥ 1 and j = 0
3 If j ≥ 1
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Denoting µ : Or−i−2 → C× the primitive character factor map of the character z →
λ($2z), we obtain:

χ2(i, j, k) = q2(i−l)+3θ(Iα)
∑

c∈Or−i−2

d∈O×
r−i−2

µ(($j−1β′ − c2)d− $j−1+k−1∆̂′β′

d
)

= q2(i−l)+3θ(Iα)
∑

d∈O×r−i−2

µ($j−1β′d− $j+k−2∆̂′β′

d
)Gr−i−2(µ,−d)

= q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)
∑

d∈O×r−i−2

µ($j−1β′d− $j+k−2∆̂′β′

d
)(

d

Or−i−2

)r−i−2.

When i+ j + 1 = r, we have

χ2(i, j, k) = q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)
∑

d∈O×r−i−2

(
d

Or−i−2

)r−i−2

= q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)×
{
|O×r−i−2| if i is even
0 if i is odd.

When i + j + 1 < r we denote µ̃ : Or−i−j−1 → C× the primitive character factor map
of the character z → µ($j−1z),

χ2(i, j, k) = q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−j−1(β′,−$k−1∆̂′β′, µ̃) if i is even

Sr−i−j−1(β′,−$k−1∆̂′β′, µ̃) if i is odd.

When k > 1 we can further simplify these expressions. Indeed using the fact that the

map d 7→ d − $k−1∆̂′

d
is a bijection from O×r−i−j−1to O×r−i−j−1 when k > 1, we can

write

χ2(i, j, k) = q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−j−1(β′, 0, µ̃) if i is even
Sr−i−j−1(β′, 0, µ̃) if i is odd.

When k = 1; we have

χ2(i, j, k) = q2(i−l)+3θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−j−1(β′,−∆̂′β′, µ̃) if i is even

Sr−i−j−1(β′,−∆̂′β′, µ̃) if i is odd.

Note that only the case r − i− j − 1 = 1 and i even cannot be further simplified.
3 If j = 0 we have

χ2(i, 0, k) = q2(i−l)−1θ(Iα)
∑
c∈Or−i
d∈O×

r−i

λ(($β′ −$2c2)d− $k∆̂′β′

d
)

= q2(i−l)−1q2θ(Iα)
∑

c∈Or−i−1

d∈O×
r−i−1

λ̃((β′ −$c2)d− $k−1∆̂′β′

d
)
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with λ̃ : Or−i−1 → C primitive character factor map of z 7→ λ($z). If we still denote

µ : Or−i−2 → C× the primitive character factor map of the character z → λ̃($z), we
obtain

χ2(i, 0, k) = q2(i−l)−1q2qθ(Iα)
∑

c∈Or−i−2

d∈O×
r−i−1

λ̃(β′d− $k−1∆̂′β′

d
)µ(−p(d)c2)

= q2(i−l)+2θ(Iα)
∑

d∈O×r−i−1

λ̃(β′d− $k−1∆̂′β′

d
)Gr−i−2(µ,−p(d)).

where p(d) is the projection of d in Or−i−2. As a result we get:

χ2(i, 0, k) = q2(i−l)+2θ(Iα)Gr−i−2(µ,−1)
∑

d∈O×r−i−1

λ̃(β′d− $k−1∆̂′β′

d
)(

p(d)

Or−i−2

)r−i−2

= q2(i−l)+2θ(Iα)Gr−i−2(µ,−1)
∑

d∈O×r−i−1

λ̃(β′d− $k−1∆̂′β′

d
)(

d

Or−i−1

)r−i−2

= q2(i−l)+2θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−1(β′,−$k−1∆̂′β′, λ̃) if i is even

Sr−i−1(β′,−$k−1∆̂′β′, λ̃) if i is odd.

When k > 1 we can further simplify these expressions. Indeed using the fact that the

map d 7→ d− $k−1∆̂′

d
is a bijection from O×r−i−1to O×r−i−1 when k > 1, we can write

χ2(i, 0, k) = q2(i−l)+2θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−1(β′, 0, λ̃) if i is even

Sr−i−1(β′, 0, λ̃) if i is odd.

When k = 1; we have

χ2(i, 0, 1) = q2(i−l)+2θ(Iα)Gr−i−2(µ,−1)×
{
Kr−i−1(β′,−∆̂′β′, λ̃) if i is even

Sr−i−1(β′,−∆̂′β′, λ̃) if i is odd.

Note that only the case i = r − 2 cannot be further simplified.
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