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Abstract

The aim of this paper is to provide an efficient multi-parametric recursive continuation method of specific solution
points of a nonlinear dynamical system such as bifurcation points. The proposed method explores the topology of
specific points found on the frequency response curves by tracking extremum points in the successive codimensions
of the problem with respect to multiple system parameters. To do so, the characterization of extremum points by a
constraint equation and its associated extended system are presented. As a result, a recursive algorithm is generated by
successively appending new constraint equations to the extended system at each new level of continuation. Then, the
methodology is applied to a nonlinear tuned vibration absorber (NLTVA). The limit of existence of isolated solutions
and extremum points optimizing the region without isolated solution are found and used to improve the NLTVA.

Keywords: Harmonic balance method, Optimization, Continuation, Bifurcation tracking, Nonlinear vibration
absorber, Isolated solutions.

1. Introduction

Continuation methods are efficient tools for parametric analysis and more specifically for tracking specific points
such as bifurcations which govern the dynamical behavior of nonlinear systems. However, a mono-parametric anal-
ysis is sometimes not enough and multi-parametric continuation methods, i.e., when several or all parameters vary at
the same time, are essential to properly analyze and design nonlinear systems. Nevertheless, a conventional multi-
parametric continuation of solution points is almost unfeasible in practice because of the disproportionate computa-
tional time required to obtain the whole multi-dimensional solution surface. A more efficient approach consists in
restricting this surface to a set of points or curves by means of additional constraint equations.

The method presented here consists in tracking branches of bifurcations with respect to several parameters by
means of recursive continuation and augmented systems based on constraint equations characterizing extremum
points. The key objective of the method is to explore the topology of specific points found on the frequency re-
sponse curves by tracking extremum points in the successive codimensions of the problem. This provides useful
information not only on the global dynamics of the system, but also on the way to tune the system parameters in order
to improve it. The proposed algorithm combines multi-parametric continuation and bifurcation tracking. It is applied
to a nonlinear tuned vibration absorber (NLTVA) with the aim of optimizing its safe operating region and making
it more robust with respect to adverse dynamical phenomena such as isolated solutions (ISs). Some key references
concerning each feature are given in the following literature review.

Various numerical methods can be found in the literature for the direct computation of periodic solutions. Amongst
them, time domain approaches include the shooting method [1, 2, 3] and the orthogonal collocation technique [4]
which consists in solving a nonlinear boundary value problem and are employed in softwares such as AUTO [5, 6],
MATCONT [7], COLSYS [8], DDE-BIF [9] and COCO [10]. Concerning frequency domain approaches, the classical
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method is the harmonic balance method (HBM) which expands the unknown state variables and nonlinear forces
in truncated Fourier series. This method is very popular because of its efficiency and its versatility in handling
nonlinearities. In the case of the HBM, the nonlinear terms are conveniently computed with the alternating frequency-
time (AFT) method [11] which consists in going back and forth between time and frequency domains by means of
Fourier transforms. Over time, many improvements have been introduced and the HBM can now handle systems with
many types of nonlinearity such as the non-differential [12] and the non-smooth ones [13, 14]. The efficiency of the
method has been enhanced by adaptive schemes such as the automatic selection of harmonics of interest [15, 16]. The
method also also has been extended to quasi-periodic solutions [17, 18, 19, 20].

Coupled with a continuation technique, these methods provide the equilibrium curve of periodic solutions with
respect to a varying system parameter. Two main continuation techniques are used, the pseudo arc-length continuation
based on tangent prediction steps and on orthogonal corrections [21, 22, 3] and the asymptotic numerical method [23].

At some specific points, the stability of the periodic solution is ill-posed and the implicit function theorem is
invalidated. Such points, called bifurcations, are indicative of multiple solutions, amplitude jumps, loss of stability,
change of dynamical regime, quasi-periodicity, chaos, etc. [3]. Their precise computation is therefore of high interest.
Bifurcation points are computed with two main classes of algorithms. The first one comprises the so-called minimally
extended systems which add to the equilibrium equation a single scalar equation defined with a bordering technique.
The other class relies on standard extended systems which add a set of equations characterizing the bifurcation by
means of the eigenvectors. Codimension 1 bifurcations found on limit cycles are composed of Limit Points (LPs),
Branch Points (BPs) and Neimark-Sacker points (NSs). LP bifurcations are associated with dynamical phenomena
such as loss of stability, amplitude jumps or generation of ISs that can lead to unexpected behavior. The first calcu-
lation of LPs with standard extended systems was proposed by Seydel [24, 25], then by Moore and Spence [26] and
Wriggers and Simo [27] amongst others. The calculation of LPs with minimaly extended systems was first proposed
by Griewank and Reddien [28], then used in multiple works [29, 30]. The coupling of standard extended systems with
HBM was developed by Petrov [31] in the case of branch points and by Xie et al. [32] in the case of LPs.

Bifurcation tracking provides an efficient parametric analysis and permits a better understanding of the complex-
ity of the dynamical behavior of nonlinear systems. LP tracking was first carried out by Jepson and Spence [33]
with standard extended systems. It was also used to analyze the sensitivity of critical buckling loads to imperfec-
tions [34, 35, 36]. The codimension-1 bifurcation tracking for dynamical systems has been incorporated in several
softwares. Algorithms based on minimally extended systems can be found in the books of Kuznetsov [37] and Go-
vaerts [38] and have been implemented in the MATCONT software [7]. On the other hand, the bifurcation tracking
based on standard extended systems is used in softwares such as AUTO [6], LOCA [39], COCO [10]. The tracking
of codimension-1 bifurcations points using minimaly extended system combined with the HBM with application to
large-scale mechanical systems was proposed by Detroux et al. [40]. Xie et al. [41] implemented the continuation of
LPs and Neimark-Sacker bifurcations using standard extended systems and HBM to analyze a nonlinear energy sink
(NES) and a nonlinear Jeffcott rotor.

When dealing with nonlinear systems, one-parameter continuation methods may be too limited because system
parameters are often inter-correlated. Therefore, multi-parametric continuation methods are interesting tools for an-
alyzing the behavior of a system when several or all the parameters vary. To develop such a method, additional
constraint equations need to be appended to the extended system in order to free additional system parameters. Con-
straint equations characterizing extremum points are good candidates for this purpose. In this case, multi-parametric
continuation methods are close to the methods of the literature dealing with optimization. Several references deal with
optimization algorithms coupled with continuation techniques to provide new multi-parametric methods. For instance,
it was used in homotopy techniques where a small parameter is introduced to link two problems. This technique was
notably used in optimization for smoothing techniques [42, 43, 44] and for the fitting of optimal system kinematics
[45, 46]. Continuation methods were also used to explore the topology of extremums for large parametric deforma-
tions [47]. The methods resulting from the coupling of optimization algorithm and continuation techniques have since
been extended in several directions such as multi-parametric algorithms, recursive methods and critical set point anal-
ysis [48, 49]. Concerning multi-parametric algorithms, Wolf and Sanders [50] proposed a multi-parametric homotopy
technique for computing operating points of nonlinear circuits. Then, Vanderbeck [51] used a multi-parametric opti-
mization by recursion to optimize a manufactering cutting process. Recursivity-based optimization was addressed by
Schiitze et al. [52] who proposed a recursive subdivision technique to perform multi-objective and multi-parametric
optimization. Since then, multi-parametric optimization was coupled with continuation, Kernevez et al. [53] used a
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descent optimization algorithm coupled with a continuation method to perform the optimization of nonlinear systems.
Later, Balaram et al. [54] combined the method of Kernevez et al. with a genetic algorithm in order to provide a
global algorithm of optimization by continuation. They used this method to minimize the acceleration of a Duffing
oscillator and to tune nonlinear vibration absorbers.

In the litterature, the NLTVA was used for many applications. Wang [55] tuned a NLTVA to minimize the critical
limiting depth induced by chatter during machining process. An optimized hysteretic NLTVA was used by Carpineto
et al. [56] for minimizing the vibrations of structures. Detroux et al. [57] optimized a NLTVA by generalizing Den
Hartog’s equal-peak method to nonlinear systems. The NLTVA was also used for the passive control of an airfoil
flutter instability by Mabhler e al. [5S8] who optimized a NLTVA to push the appearance of the post-critical regime at
higher flux velocities.

Besides its advantageous properties, the NLTVA also presents some unwanted adverse dynamical phenomena
such as the generation of ISs. These isolated resonance curves are periodic solutions detached from the main re-
sponse curves. They are therefore difficult to compute by simply continuating the main response curves. In order to
properly design nonlinear systems, it is important to be able to detect these ISs which were first studied in 1951 by
Abramson [59]. Since then, several scenarios for the creation of ISs have been revealed. DiBerardino and Dankowicz
[60] showed that ISs can be created by introducing asymmetry into a nonlinear system. In [61], the presence of IS is
explained analytically by analyzing the 1:3 internal resonance configuration between two Duffing oscillators for dif-
ferent couplings. In [62], an experiment was carried out to illustrate the IS phenomenon between a Duffing oscillator
and a clamped-clamped beam at a 1:3 internal resonance configuration. In both papers, the frequency gap between the
response curve and the IS was calculated and explained by means of phase-locking. Gatti investigated a mechanical
system composed of a primary mass linked with a nonlinear coupling to a smaller second mass. He used analytical
methods to compute frequency response curves of coupled oscillators and uncovered IS [63] and then used LP curves
to predict the appearance of IS [64]. These researches have since been applied to a nonlinear vibration absorber to
predict its dynamics while reducing the vibration of the primiraly mass [65, 66]. Detroux et al. [67] presented a
method to localize the ISs in a NLTVA using LP continuation. The presence of ISs was also explained with NNM
continuation and internal resonances. In [68], Hill ef al. calculated the NNMs of a NLTVA system composed of a
Duffing oscillator coupled to a linear oscillator with a cubic restoring force. They used an energy balance method to
link the energy of the modes to the amplitude of the force to be injected into the damped system in order to obtain
a frequency response curve with the same level of energy. By superimposing the obtained NNM with the response
curve, IS phenomenon was explained by means of internal resonances. By using singularity theory and HBM, Habib
et al. [69] analyzed the mechanism of IS creation in a Duffing oscillator with nonlinear damping and demonstrated
the link between the damping force and ISs. The same singularity theory was used by Cirillo et al. [70] to study IS
topology based on hysteresis, bifurcation and isola center points.

Some references dealing with IS optimization also exist. For a NES system, Starosvetsky and Gendelman [71]
showed that it is possible to remove ISs by adding a well tuned piece-wise quadratic damping into the mechanical
system. Gourc et al. [72] showed that ISs can be removed while conserving the energy pumping property by working
on the values of the system parameters. Concerning the NLTVA, Cirillo et al. [70] showed that a fifth order nonlinear
spring can be tuned to remove the ISs generated by the cubic nonlinearity. However, it turned out that ISs can be
generated when increasing the order of the nonlinear additional spring. Kernevez et al. [5S3] proposed a continuation-
based algorithm to control the position of ISs in a reaction-diffusion chemical system. Their strategy consisted in
following curves of isola centers with respect to one system parameter.

The method presented here is intended as an extension of [41] to the multi-parametric case. The method of
Kernevez et al. [53] can be viewed as a particular case of this method and corresponds to the second level of recursivity
of limit points. Unlike the method in [53], the proposed algorithm is not restricted to limit points and can deal with
any of the bifurcations presented in [41]. Also, a practical tool being able to track in a recursive way the branches of
bifurcations with respect to several parameters inside a unique execution of a code (one computation) is completely
new.

This paper is organized as follows. In Section 2, the notion of extremum point is used to propose an original multi-
parametric recursive continuation method. First, the characterization of extremum points by a constraint equation and
its associated extended system are presented. Then, a recursive algorithm is generated by successively appending new
constraints equations to the extended system at each new level of continuation, i.e., when a new parameter is freed. In
Section 3, the multi-parametric recursive continuation method is used to calculate the limit of existence of ISs in the
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case of a NLTVA and to improve its efficiency by optimizing the safe operating range. Finally, conclusions are drawn
in Section 4.

2. Multi-parametric recursive continuation

2.1. Extremum point

Let the following problem be considered:
GY,a)=0 1)

defining a curve depending on the state variables ¥ € R” and parametrized by a set of system parameters @ € R”. Let
assume that locally the curve has a local extremum with respect to one system parameter «; € @ characterized by:

Aa; =0 (2)
with A, the variation of ;. The first variation of the problem (1) gives:

9G oG
YONY+ L Ag =0 3
ay T g, N )

with AY the variation of Y. Combined with Eq. (2), the following relationship is obtained:

G
—AY = 4
Y 0 @)

From Eq. (3), the following scalar equation is obtained:

4G 4G
AYTa—YAY + AYT%AaI =0 ®)

According to the implicit function theorem, the variation A is defined if and only if AYT% is not null. Therefore,
the problem composed of Egs. (1) and (2) is equivalent to the following extended system:

GY,0) =0
G
5? =9 (6)
0G
T
— #0
¢ 80,’1 *

with ¢ € R".

The condition ¢T% # 0 that insures Aa; = 0 can be seen as a non-degeneracy condition avoiding degenerated
points which result in an ill-conditioned jacobian during continuation. However, some of these degenerated points
are calculated during the recursive continuation in increasing codimension. Therefore, the augmented system (6)
characterizing the extremum points when ¢Tg(—YG] — 0 must be extended in order to also support such degenerated
points.

When ¢Tg—f] — 0, a normalization equation has to be added to the augmented system (6) in order to avoid the
trivial solution ¢ = 0 and thus an ill-posed problem, leading to the following extended augmented system:

GY,a) =0
oG
_¢ =0
613(; (7
r_— =
0(11
p'p-1 =0



In order to obtain an augmented system that provides both degenerated and non generated extremum points, the
equation associated with the degeneracy characterization has to be withdrawn.

GY,a) =0

9G - _ (8)
oY

p'p-1 =0

With an augmented system supporting the degeneracy, the robustness of the continuation of extremum points is im-
proved. Moreover, this system has the same structure as the standard extended system used to characterize LP bifur-
cations [32].

2.2. Recursive continuation of extremum points in increasing codimension.

The multi-parametric recursive continuation method is based on the recursivity of the extended system (8).

Initialization of the recursive continuation. The recursive continuation is started from a solution point ¥ character-
ized by an extended system Gy(Yy) = 0, e.g., a bifurcation point or an extremum point (see [41] for the definition of
such an extended system). For instance, if a LP of an equilibrium branch is chosen as starting point, the extended
system can be written as:

R(X, w)

OR
G(Yy) =| — =0 9
0(¥o) X $o 2L+1 )]
L po— 1
where the subsystem R(X, w) = 0 is the equilibrium equation, and ¥y = (X, ¢y, w) with X the vector of L unknown

variables, ¢ the null right eigenvector of the jacobian % and w a system parameter.

Recursive continuation. A system parameter @ € « is then considered as a new unknown and the branch of solutions
of the system G(Yy, @) = 0.+ is followed with a continuation method. During the continuation, an extremum point
is detected when A = 0. The extremum point at the first level of continuation is called 1-extremum point. To locate
this point more precisely, an extended system similar to Eq. (8) is used:

G(Z{)(GYO’Q’I)
Gy =| Fpd | =0us with Yi=(Yo.¢ra1) (10)
Pl -1

Then, another parameter @, € {a@\a;} is considered as a new unknown and the branch of solutions of G|(Y,a;) =
04.+3 is followed in order to find its extremum points with respect to parameters Y, @; and a,. This procedure is
repeated in a recursive manner until all the parameters in the set @ have been used. In the following, the extremum
points found at the k" level of continuation are called k-extremum points. During the continuation of Gy_;(Yy_1, &),
the k-extremum points with respect to «j, j = 1...k are detected with Ae; = 0 and then precisely located by solving:

Gkbléyk—l , Q)
k-1 ) Y, = Y1, b, ai)
G, (Y,) = — Py = O+ _ th i 11
«(Yk) BYILI 2 (L+-1 WL Yé,l _ ((Yk—l,a'k) \aj,ak) (11)
ol —1

In summary, the extended system (8) characterizing extremum points is used to create a recursive extended system
characterizing extremum points in increasing dimension. By using such a recursive characterization of extremum
points, a multi-parametric recursive continuation method can be implemented and applied to any specific point char-
acterized by the initial augmented system Go(Yy).



2.3. Algorithm and results interpretation

In order to recursively obtain all the branches of extremum points by continuation with respect to a predefined set
of parameters, the algorithm presented in Tab. 1 is used.

The branches of extremum points obtained with the recursive continuation form a tree with ramifications indicat-
ing increasing codimensions. The tree of extremum points can be used to find local optimal sets of system parameters
a, while the surrounding branches form a topological skeleton defining the global dynamics of the system. In more
concrete terms, this skeleton can be used for instance to find the values of the parameters a for which specific bifur-
cation points appear or collapse, i.e. by extension, the range of values for which such points exist. This knowledge
can then be exploited to appropriately choose the value of the system parameters and insure a safe design.

Step O: Initialization

- Choose the set of system p parameters a = (a1, .., @,) to use for
the multi-parametric recursive continuation.

- Define the bounded domain Dy = Dy, X ... X Dy, in which the set
of parameters « is allowed to vary.

- Solve the extended system Gy(Y() = 05,4 to locate the selected initial
point Y to be continuated recursively.

Step 1: Level 1 of continuation and detection of 1-extremums
(a) Level 1 of continuation
* Consider a; as a new unknown.
* Continue the branch Gy(Yy, @;) = 0 with @ spanning D,,
* Detect all the 1-extremum points with the indicator A,, =0

(b) Solve the extended system G(Y) = 0 to precisely locate all
the 1-extremums Y.

(c) End the algorithm if no 1-extremum is detected. Otherwise, go
to step 2.

Step k: Level k of continuation and detection of k-extremums
k =1[2,...,p] | Foreach (k — 1)-extremum Y}_; located during step k — 1:
(a) Level k of continuation
* Consider ay as a new unknown.
* Continue the branch Gy_1(Y-1, @) = 0 with o, spanning D,

* Detect all the k-extremums with respect to each parameter
@; € [ay, .., ;] with the indicators Aa; = 0
(b) Solve the extended system G;(Y;) = 0 to precisely locate
all the k-extremum points Y} detected in (a)

(c) End the algorithm if no k-extremum is detected or if k = p.
Otherwise, go to step (k + 1).

Table 1: Algorithm of the multi-parametric recursive continuation method



3. Multi-parametric analysis of ISs in a NLTVA

In this section, a two degrees-of-freedom NLTVA is considered. Despite its small number of degrees of freedom, it
exhibits a complex behaviour including limit points, Neimark-Sacker bifurcations and isolated solutions. This system
was already investigated in several papers (see [57] for instance) and a mono-parametric bifurcation analysis was
proposed in [67]. Here, a multi-parametric bifurcation analysis is performed, from which the limits of existence of ISs
are obtained. The HBM is applied to the mechanical model and standard extended systems are used to characterize
LP bifurcations. Then, the recursive continuation method presented in Section 2 is applied to these LPs. The recursive
continuation is composed of three levels of continuation with respect to a subset of three system parameters: the
amplitude f; of the applied force, the nonlinear stiffness coefficient knl, and the damping coefficient ¢, of the NLTVA.
On the first level, the LPs are continuated with respect to the amplitude of the force f;. This level is used to explain
the birth and merging of ISs. On the second level, the birth and merging points of the ISs are tracked with respect to
the previous subset of parameters plus the nonlinear stiffness coefficient knl, of the vibration absorber as additional
parameter. Finally, on the third level, the extremum points, where birth and merging of the ISs occur simultaneously,
are followed with respect to the previous subset of parameters plus the damping coefficient ¢, of the absorber. Finally,
it is shown how the results of the multi-parametric tracking can be used to optimize the dynamical behavior of the
NLTVA and for robust design by identifying sets of parameters insuring safe operating conditions.

3.1. NLTVA Model

X7 ,f(t X
o, |%f0 X
1 my 4vvvk\/2— my
A
Kni1 Kni2

Figure 1: NLTVA mechanical model

A Duffing oscillator coupled with an attached NLTVA, as depicted in Fig. 1, is studied. The NLTVA system is
a Duffing oscillator tuned in such a way as to absorb the energy vibration from the forced primary mass m;. The
nonlinear dynamical behavior of the system is governed the following set of equations:

.. . 3 . . 3
miX| + c1X1 + kixy + ki xy + (X1 — X2) + ka(x1 — x2) + kpp(x1 — x2)” = focos wt
.. . . 3
mi€xy + (A — x1) + ka(x2 — x1) + kpp(x2 = x1)” =0 (12)

with k; and k; the stiffness coefficients of the linear springs, k,;, and k,,» the coefficients of the nonlinear elastic forces,
c1 and ¢; the damping coeflicients, € = my/m; the mass ratio. The primary mass is periodically forced at frequency
w and amplitude fy. The parameters of the primary system are set as follows: € = 0.05, m; = 1kg, c; = 0.002Ns/m,
ki = 1N/m, knl; = 1N/m? in accordance with the literature [57]. The NLTVA parameters k», c», knl, are set according
to the nonlinear generalization of the Equal-Peak method presented in [57]:

8eki[16+23€+9€+2(2+€) VA+3e|

opt  _ -
k™ = 3(1+e)(64+80e+27€7) = 0.0454  [N/(m.kg)]

o 2

ki = Tt ~0.0042 [N/’ kg)] (13)
0 komy(8+9e—4 V4+3e

= % ~0.0128 [Ns/(m.kg)]

The nonlinear equations of the NLTVA are then written in the following matrix form:
r(x,w,t) = Mx(t) + Cx(t) + Kx(t) + fu(x) — f(w,t) =0 14)

The vector x(¢) gathers the displacements of the n = 2 DOFs, « is the vector of the system parameters. The matrices
M, C, K correspond to the mass, damping and stiffness matrix, f,; represents the non linear forces and p the periodic
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Figure 2: Frequency response curves of x; for fo = [0.11,0.15,0.19]N. Stable (Purple), Unstable (light blue), LP (dark blue ®)

excitation at frequency w. By applying the HBM to the differential Eq. (14) as detailled in [32], the following
nonlinear algebraic system of size L = n(2H + 1) in the frequency domain is obtained:

RX,w)=Z(wX+F (X)-F=0 (15)
with
Z(w) = w’V*OM+wVC + Ly, ®K = diag(K,Z,, “ZLj, . Ty) (16)
K- ju*M wC

! —wC K - f*M

where ® stands for the Kronecker tensor product. The nonlinear frequency response curves of the system for a fixed
initial set of parameters (w, @) and various amplitudes of forcing are then obtained by coupling Eq. (15) with a
continuation procedure such as a pseudo arc-length technique [21, 41]. During the continuation, the evaluation in the
frequency domain of the nonlinear forces F,; and their Jacobian matrices required for the Newton-Raphson iterations
is performed with the so-called alternating frequency time (AFT) method [11].

3.2. Level-1 of LP continuation: ISs of the NLTVA

The parametric analysis is performed on the system (12), which possesses ISs for some ranges of parameters. The
objective here is to characterize and track ISs in order to identify three regions: without IS, with unmerged IS and
with merged IS. In order to show the ISs and their various behaviors, the frequency response curves of the NLTVA
are plotted in Fig. 2 for fy = [0.11,0.15,0.19]N. For the lowest value of fy, there is no IS. Then, an IS appears for
a slighty higher fy and finally merges for higher values of fy. Detroux et al. [67] have shown that it is possible to
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Figure 4: Continuation of LPs in the amplitude-f; plane. Figure 5: Continuation of the maximum of amplitude.
LP (dark blue solid line), 1-extremum (Black m) Linear knl, = 0 (black), Equal peak knl = 0.0042N, I

characterize the birth and merging of ISs by tracking LP bifurcations with respect to f; using the extended system
Gy(Yy, fo) = 0 described in Subsection 2.2.

To perform the parametric analysis of the ISs, the multi-parametric recursive continuation method is applied to
the NLTVA model with a LP detected on a frequency response curve as initial point for the method. The continuation
is performed with respect to the following set of system parameters: the forcing amplitude fy, the coefficients of
nonlinear stiffness k,;; and damping c¢,. This results in three levels of recursive continuation depending on the number
of parameters varying during the continuation. At level 1, LPs are continued with respect to fy. At level 2, the birth
and merging points of ISs are continued with respect to (fy, k,2). At level 3, the points where ISs appear and merge
simultaneously are continued with respect to (fy, knp2, ¢2).

The branch of LPs obtained at level 1 is plotted in Fig. 3, while Fig. 4 shows its projection onto the amplitude- f;
plane. One can see that the two extremum points obtained when Afy = 0 characterize the birth (fy = 0.12N) and
the merging (fo = 0.18N) of ISs. Following the classification introduced by Detroux et al. [67], three regions with
different dynamical behaviors are characterized as follows: ~’Safe” when the response curve has no IS, ”Unsafe” when
the response curve exhibits an IS and “Unacceptable” when the IS has merged with the response curve. Concerning
the ’Safe” region, there is no IS for any value of the applied force fy, i.e., there is no possibility of jumping onto a
higher amplitude stable solution. Conversely, inside the "Unsafe” region, ISs with higher amplitude exist. Therefore,
this region presents a risk of jumping onto a stable solution at high amplitude. Finally the last region is called
”Unacceptable” because the IS has already merged with the response curve and exhibits high amplitude solutions.
There is no IS in the ’Safe” and ”Unacceptable” region since ISs regions either do not exist or have already merged.
Fig. 5 shows that the amplitude of the primarily mass is much more attenuated with the equal peak design compared

9



to a design of the vibration absorber without any nonlinearity (knl, = 0). Moreover, the vibration absorber under
equal peak design remains more efficient even after the merging of the ISs.

3.3. Level-2 of LP continuation: continuation of the coincident birth and merging of ISs

Once the 1-extremum points characterizing the birth and merging of ISs have been precisely located with the
extended system (10), they can be followed by considering the nonlinear stiffness coefficient knl, as a new variable
and computing the branch of solutions of G(Yy,knl;) = 0. The subset of varying parameters at level 2 is then
(fo, knly). The resulting branch of 1-extremum points is plotted in Figs. 6 and 7.

Figs 6a and 6b show the branch for the same range of parameters as before whereas Figs 7a and 7b show an
extended view of the whole branch of 1-extremum points. Two 2-extremum points can be observed on these extended
views. The point at high amplitude of forcing represents the upper limit of existence of ISs, whereas the point at low
amplitude of forcing represent the lower limit of existence of ISs. At these points, the birth and merging of ISs are
coincident, i.e., the unsafe region has disappeared. For values of f; between these two points, ISs exist and for values
of fy below and above, there is no IS. The level-2 extended system (11) G,(Y>) = 0 is used to locate precisely these two
points leading to sets of parameters (fy, knl,) approximately equal to (0.0076N, 0.0017N/m?) and (16N, 0.0076N/m?).
To better visualize the absence of the unsafe region at these two 2-extremums, the branches of LP for these sets of
parameters are plotted in Figs. 8a and 8b.

4 40
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=~ and merging of ISs = Y g incident bi
= and merging o = Birth of ISs Coincident birth and
> 2 (2-extremum) e 20 «— merging of 1Ss
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< <

O 1 1 1 O !

0.05 0.1 0.15 0.2 0.25 0 5 10 15 20 25
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(a) Continuation of the birth and merging of ISs in the (b) Continuation of the birth and merging of ISs in the
amplitude- f plane amplitude- fy plane (Extended view)

Figure 6: 2D-Continuation of birth and merging points (1-extremum, black solid line). LP (dark blue solid line), 1-extremum (black m), 2-extremum
(red A)
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Figure 7: 3D-Continuation of birth and merging points (1-extremum, black solid line). LP (dark blue solid line), 1-extremum (black m), 2-extremum
(red A)
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It is clear from these figures that the “’safe” region is schrinked in the first case (Fig. 8a) whereas it is considerably
enlarged in the second case (Fig. 8b). In addition, after projecting the 1-extremum branch of Fig. 7b onto the knl,- f;
plane, see Fig. 9, there is no IS in the frequency response curves for k,» > 0.0076N/m? or k,, < 0.0017N/m?
whatever the value of the other level-2 varying parameter fy. Moreover, this projected 1-extremum branch can be
used to identify the value of knl, required to set the birth of ISs at specific amplitude of forcing f; between the upper
and lower limit of existence of ISs. For instance, the IS birth can be set at fy = 0.5N by choosing knl, ~ 0.0068N, /m3,
as shown in Fig. 8c. This confirms the possibility of tuning the birth or merging point of ISs at a specific amplitude
of forcing fp.

The efficiency of the vibration absorber of Fig. 8c can be verified by comparing the maximum of amplitude of the
different designs. It can be observed in Fig. 10 that the equal peak design is the more efficient design before reaching
its IS merging point. However, once the merging point of the equal peak design is crossed, the design with the set
of parameters obtained for a birth point at fy = 0.5N (Design #1) becomes more efficient. In the same way, once the
merging point of the the design with the set of parameters obtained for a birth point at fy = 0.5N is crossed, the design
obtained at the 2-extremum at high amplitude of forcing (Design #2) becomes more efficient. As a results, the design
of the NLTVA can be optimized by appropriately choosing the value of knl, according to the operating range of the
forcing fj.

3.4. Level-3 of continuation: continuation of the coincident birth and merging points of ISs

At level-3 of the recursive continuation, the two 2-extremum points are tracked by considering the NLTVA damp-
ing coefficient ¢, as a new unknown in the extended system G,(Y,,a) = 0. The subset of varying parameters at
level-3 is then (fy, knly, c;). The resulting branch of 2-extremum points is plotted in Fig. 11. All the points of this
branch provide a set of parameters (fy, knl», c2) for which the birth and merging of ISs are coincident (no “unsafe”
region). The projections of this branch on the c,-fy and c;-knl, planes are displayed in Figs. 12a and 12b. Us-
ing the extended system (11) at level-3 G3(Y3) = 0, several 3-extremum points are detected on this branch. Two
3-extremum points with respect to ¢, and knl, are obtained for (c, = 0.029Ns/m, knl, = 0.072N/m?, fy = 1.03N)
and (¢; = 0.0056Ns/m, knl, = —0.0022N/m?, fo = 0.036N) respectively. The 3-extremum point with respect to c¢;
(Design #3) represents the upper limit of existence of ISs with respect to ¢,. Therefore, for ¢, > 0.029Ns/m, there
is no IS whatever the value of the other level-3 varying parameters (fy, knly). In the same way, the 3-extremum point
with respect to knl, (Design #4) represents the lower limit of existence of IS with respect to knl,. Consequently, for
kup < —0.0022N/m3, there is no IS whatever the value of the other level-3 varying parameters (fy, c2). However, the
safe region is very small on this case (fy = ON to 0.026/N) and the practical realization of such a negative stiffness is
not a trivial task. Therefore, this design is not very attractive. For high values of f,, the damping ¢, and nonlinear
stiffness knl, coefficients tend to ¢co = ONs/m and knl, ~ 0.0076N/m>. The corresponding set of parameters is not
usable since a system with zero damping is not efficient anymore and may not lead to a periodic solution over time.
Above this asymptotic value of knl,, there is no IS whatever the value of (fy, ;). It is noteworthy that the highest
2-extremum point of Fig. 12 is close to this asymptotic value of knl,. Therefore, the presence of ISs at this point is
almost not influenced by the variation of c;.

3.5. Suitability of the designs of interest

From the previous results, it appears that designs #1, #2 and #3 are potential good candidates for the optimization
of the safe operating region of the NLTVA. The corresponding sets of parameters (fy, knl»,cp) are indicated with
labels D1, D2 and D3 in Fig. 12 and gathered in Tab. 2 in order to make their comparison easier. Here, the value of f;
corresponds to the end of the safe region, i.e., either the birth of ISs (Design #1) or the coincident birth and merging
of ISs (Designs #2 and #3). It can also be read as a measure of the width of the safe region. It can be observed that the
values of (knl, c;) obtained with equal peak and other designs have the same order of magnitude, but these designs
lead to significantly different values of f; at IS birth, i.e., to safe regions of very different width.

The maximum of amplitude of the primary mass for these three designs is plotted in Fig. 13 together with the
results of the linear vibration absorber (knl, = 0) and the NLTVA with equal peak design. It is used to assess the
efficiency of the absorber with the tested designs.

Form this figure, it can be concluded that the equal peak design is the most efficient one in the range fy =
[ON —-0.12N], i.e., in its safe region as defined in Fig. 4. Above f; = 0.12N, the other designs are much more efficient.
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Equal Peak (EP) | Design #1 (D1) | Design #2 (D2) | Design #3 (D3)

c[Ns/m] 0.0128 0.0128 (idem) 0.0128 (idem) | 0.029 (+127%)

kun[N/m?] 0.042 0.0068 (+62%) | 0.0076 (+81%) | 0.0072 (+71%)
folN] at IS birth 0.12 0.5 (x4) 16 (x130) 1.03 (x9)

Table 2: Comparison of the designs of interest. The equal peak (EP) design is used as reference. Relative differences with the EP design are
indicated in parentheses
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= <
< Equal Peak
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fo [N]

fo [N]
(a) Efficiency comparison of the retained designs (b) Efficiency comparison of the retained designs

(Extended view)

Figure 13: Continuation of the maximum of amplitude. Linear for knly = ON, /m? (black), Equal Peak for knl, = 0.0042N/m? (blue), Birth of
fo = 0.5N for knl, ~ 0.0068N/m? (green), 2-extremum for knl, ~ 0.0076N/m? (orange), 3-extremum for (knl, ¢p) = (0.0072N/m3,0.029N s /m)
(Purple)

Design #2 seems superior to design #1 because its gives almost the same amplitude but has a much wider safe region
(up to fo = 16N instead of 0.5N) while decorrelating the birth of IS from the damping coefficient c,. Finally, design #3
might be considered as the best compromise since it provides the lowest amplitude in its safe region up to fy = 1.03N
while decorrelating the birth of IS from the nonlinear stiffness coefficient knl,. In comparison with the equal peak
design, its safe region is 9 times wider. However, this design has the worse performance in the range fy = [ON—-0.1N].
A way of improvement may consist in using hybrid active/passive control to switch from one design to another one
depending on the value of the forcing amplitude fj.

To sum up, the multi-parametric recursive continuation method provides useful information by exploring the
topology of the NLTVA ISs such as extremum points and regions of existence. The tested designs have a larger
safe region leading to a larger operating range. Moreover, their vibration absorption efficiency is better than the
equal peak design for high values of forcing. Designs #2 and #3 provide robustness by limiting the influence of ¢,
and knl, respectively. Design #3 is particularly interesting because the appearance of ISs is decorrelated from the
nonlinear stiffness coefficient knl, while keeping a better efficiency than other designs for high amplitudes of forcing.
A perspective for improving the NLTVA would be to track LPs with respect to the mass ratio € under equal peak
constraint.

4. Conclusion

In this paper, an original and efficient multi-parametric recursive continuation algorithm is proposed. The method
is based on a sequentially extending system characterizing extremum points in increasing codimensions. By applying
this recursive continuation to a specific point of a system, its topology and all its extremums with respect to the chosen
parameters are obtained. The information obtained with this topological exploration can then be used to optimize the
system. Applied to a nonlinear vibration absorber, it is shown that this algorithm provides the limits of existence of
isolated solutions with respect to a predefined set of system parameters. Using this information, the robustness of
the absorber can be improved by enlarging the safe operating region without isolated solutions, while preserving the
efficiency of the absorber and by decorrelating the appearance of isolated solutions from some system parameters.
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