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Abstract

Natural materials such as bone and the nacre of some seashells are made of relati-
vely weak building blocks and yet often exhibit remarkable combinations of stiffness,
strength, and toughness. Such performances are due in large part to their brick and mor-
tar architectures. Many efforts are devoted to translate these design principles into syn-
thetic materials. However, much of the progress is based on trial-and-error approaches,
which are time consuming and do not guarantee that an optimum is achieved. Modeling
is an appealing alternative to guide the design and processing routes of such materials.
However, the current analytical approaches cannot describe the extrinsic toughening
mechanisms that takes place during crack propagation and are responsible for the re-
markable properties of such materials. Here we show that the Discrete Element Method
(DEM) can be used to predict the elastic and fracture behavior of brick and mortar ma-
terials and capture non-continuous phenomena such as multi-cracking. In contrast with
most analytical shear-lag models, which only predict crack initiation, the model propo-
sed here can also tackle crack propagation. DEM simulations are compared to analyti-
cal results with special attention to the shear transfer at the interface. The case of nacre-
like alumina–a ceramic/ceramic brick and mortar composite with a brittle interface–is
investigated to illustrate the potential of the method. We demonstrate in particular the
importance of controlling the interface strength for further optimization of the mecha-
nical properties. This method could be extended to predict and investigate the behavior
of brick and mortar composites with a ductile interface, such as polymer/ceramic or
metal/ceramic composites.
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1. Introduction

Structural biological materials often exhibit impressive mechanical properties, such
as unique combinations of strength and toughness (Chen et al. [2008]). Nacre, that co-
vers the inside of many seashells species, is a composite which toughness is several
orders of magnitude larger than its constituents. Nacre is primarily a hierarchical com-
posite with a brick and mortar (BM) architecture : aligned mineral tablets (bricks) are
linked together by a thin organic interface (mortar) providing cohesion and energy dis-
sipation capacity to the material (Jackson et al. [1988], Espinosa et al. [2009]). The
architecture of nacre also includes many other structural features defined at different
length scales, from the fibril network of the interface to the arrangement of mesolayers
(Barthelat et al. [2016]). The high performances of nacre can be attributed to this hie-
rarchical architecture.

Various processing routes have been developed (mainly in the last decade) to pro-
duce synthetic BM materials inspired by the structure of nacre (Corni et al. [2012],
Zhao and Guo [2017]). A common belief is that some ductility is required at the inter-
face for an efficient toughening of the composite, directing thus research almost exclu-
sively towards ceramic/polymer and ceramic/metal composites. A resulting drawback
is the inability of these BM composites to sustain harsh environment conditions (high-
temperature or oxidative), as well as a moderate strength. Thus, there is still a lack of
damage-resistant refractory materials, which current composites cannot fulfill satisfac-
torily.

Recently, a new bioinspired BM material, nacre-like alumina, has been developed
(Bouville et al. [2014]). In contrast with metal-ceramic or polymer-ceramic compo-
sites, this ceramic-ceramic composite can maintain high strength and high toughness at
600◦C and keep good oxidation properties. The material is composed of brittle consti-
tuents only : 98.5 vol.% of alumina platelets, 1.3 vol.% of silica, and 0.2 vol.% of calcia.
In the absence of a ductile interface, the reinforcement mechanisms responsible for the
high toughness include microcracking, crack deviation, and crack bridging (Bouville
et al. [2014]). The incorporation of alumina nanoparticles at the interface plays an es-
sential role by forming nano-bridges between the platelets and nano-asperities at their
surface, providing thus energy dissipation mechanisms during crack propagation by
platelet pull-out, bridge breakages, and sliding friction (Grossman et al. [2017]). The
extrinsic nature of the reinforcement mechanisms is confirmed by a R-curve behavior
(Bouville et al. [2014], Launey and Ritchie [2009]). Further work has extended the
compositions (Pelissari et al. [2018]) and processing routes (Le Ferrand et al. [2015,
2018]) of such materials.

The work by Bouville et al. [2014] demonstrates the possibility, using only cera-
mics constituents, of engineering BM materials with a sufficiently high toughness to
avoid catastrophic failure. A good understanding of the reinforcing mechanisms and
appropriate modeling is nonetheless necessary to optimize the material microstructure
in terms of platelets aspect ratio, interface thickness and interface strength. Such an op-
timization can for example be achieved by a change in composition, or the fine tuning
of the amount of nano-bridges.

Modeling the mechanical properties of BM material has been mainly approached
by analytical shear-lag models, where the load transfer between tablets is studied at
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the scale of a Representative Volume Element (RVE). These models come with neces-
sary simplifications which limit their applicability. A common assumption, used for
example by (Barthelat [2014], Zhang et al. [2010], is that shear stress is uniform within
the interface, which implies a much stiffer tablet than the interface. This is a reasonable
assumption for the natural or synthetic nacres with a polymeric interface but an all-
ceramic BM material has a stiffness ratio (interface/tablet) close to unity. Only a few
sophisticated models have been developed to account for non-uniform shear and can
be applied to composites with a stiffness ratio close to unity (Begley et al. [2012a], Ni
et al. [2015]).

In addition, the majority of analytical models are elasto-plastic and focus only on
stiffness, strength, and energy adsorption at the onset of crack propagation. Extrinsic
toughening mechanisms that are predominant for nacre-like composite ceramics during
crack propagation, are difficult to capture by this class of analytical models. Sun et al.
[2015] have proposed a model for bioinspired carbon nanotube bundles to account for
the gradual loss in modulus and strength as the crack propagates. Song et al. [2016]
have used a non-linear shear-lag model to study the progressive failure of interfaces
on a laminate with a dozen tablets. As an attempt to model a specific extrinsic mecha-
nism, crack bridging, an interfacial cohesive law has been proposed using analytical
approaches (Shao et al. [2012], Barthelat and Rabiei [2011]).

Useful design guidelines and property maps have been derived from these mo-
dels, and show that optimal combinations of platelet aspect ratio, interface thickness,
and yield stress that maximize composite strength and toughness exist (Begley et al.
[2012b], Barthelat [2014], Ni et al. [2015]). For example, for a given geometry, in-
creasing the interface yield stress will be beneficial up to the point where the failure
mechanism will shift from interface yield to brick failure, thus leading to an optimal
interface yield stress (Begley et al. [2012b]).

Numerical modeling approaches could potentially capture crack propagation and
R-curves, i.e. extrinsic toughening mechanisms. FEM has been scarcely used probably
due to difficulties to handle topological modifications and a large number of tablets
(Bekah et al. [2012], Katti et al. [2005]). Preferred options include discrete methods
based on shear-lag description of tablet interactions (William Pro et al. [2015], Abid
et al. [2018]) or spring lattice models (Sen and Buehler [2011]). The Discrete Element
Method (DEM) based on spherical discrete elements originally designed for granular
materials (Cundall and Strack [1979], Dubois and Radjai [2011], Chareyre [2019]) has
probably never been used for BM materials but was successfully used on a layered
structure–albeit only in 2D–by Zhang et al. [2014]. DEM can naturally account for
multiple cracking and frictional contacts between the newly created surfaces and thus
provide the required ingredients for the explicit modeling of extrinsic reinforcements
(Jauffrès et al. [2012], Roussel et al. [2016]). In addition, there is no need to predefine
(for mesh refinement purpose for example) the location of the crack path.

The application of DEM to dense materials implies a careful calibration of contact
laws to reproduce the macroscopic elastic and fracture behavior André et al. [2012,
2013], Kumar et al. [2016], Leclerc et al. [2017]). It is particularly well-suited to model
composite materials made of elastic-brittle phases (Maheo et al. [2015]).

The present work focuses on the development and validation of DEM simulations
for nacre-like ceramics made of elastic brittle constituents but is generic enough to be
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applicable to all BM materials. The DEM contact laws and the calibration procedure
are first described. The mechanical response of a BM RVE is then carefully studied
and compared to existing analytical shear-lag models. The capacity of this modeling
approach to capture damage and crack propagation is highlighted. Finally, as an appli-
cation example of the model, the optimization of the interface strength of nacre-like
alumina is presented.

2. Modeling of a continuous material with DEM

2.1. Microscopic beam model

The mechanical behavior of a continuous material is modeled by a network of
beams connecting spherical particles of radius R (Fig. 1). For two particles (labeled
1 and 2), with radii R1 and R2, the effective radius R∗ is defined as :

R∗ =

(
1

R1
+

1
R2

)−1

(1)

Similarly, a bond between two particles with normal and tangential stiffnesses KN

and KT carries effective stiffnesses :

K∗N =

(
1

KN,1
+

1
KN,2

)−1

, K∗T =

(
1

KT,1
+

1
KT,2

)−1

(2)

The normal and tangential stiffnesses K∗N and K∗T introduce a size dependence in
the model. Thus, we prefer using material parameters σ∗N =

K∗N
2R∗ and σ∗T =

K∗T
2R∗ , which

have the unit of stress and allow macroscopic elastic properties to be independent of
the sphere size for a given set of microscopic properties σ∗N and σ∗T . The normal and
tangential forces at the bond scale are thus given by :

N = −4σ∗NR∗δNn (3)

T = −4σ∗T R∗δT t (4)

where δN and δT are the normal and the tangential relative displacements between
the two particles, and n and t are the unit normal and tangential vectors, respectively.

The normal force N may be attractive or repulsive. Bonds transmit resisting mo-
ments MN and MT in the normal and tangential directions that oppose the accumulated
relative rotations θN and θT (Potyondy and Cundall [2004]) :

MN = −8σ∗T R∗3θN (5)

MT = −4σ∗NR∗3θT (6)

Note that the formulation in Eqs. (5) and (6) assumes that the radius of the cylindri-
cal beam bonding the two particles is equal to twice the equivalent radius R∗ (Potyondy
and Cundall [2004], Kumar et al. [2016]).
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The beam model described above associated with the Discrete Element Method
(DEM) Cundall and Strack [1979] allows the elastic behavior of a continuous mate-
rial to be represented satisfactorily ([Kumar et al., 2016]). In particular, the Poisson
effect can be reproduced, although within a limited range of value of the Poisson’s
ratio (−0.4 ≤ ν ≤ 0.35). Also, we have shown that the simple bond model proposed
here is capable of simulating elastic instabilities such as buckling, without any built-in
buckling mechanism artificially introduced in the model (Kumar et al. [2016]).

Figure 1: From macroscopic to microscopic scale. (a) Random packing of bonded particles representing a
continuous material. (b) Two bonded particles of radius R1 and R2 transmitting normal/tangential forces and

resisting moments.

2.2. Fracture criterion
The inherent discrete nature of the DEM description of a material provides a na-

tural framework to deal with fracture. Two major approaches exist to model fracture.
The first one is based on the simple deletion of a particle when a fracture criterion is
satisfied by the stress tensor computed at the particle scale (André et al. [2013], Maheo
et al. [2015], Leclerc et al. [2016]). The drawback is that volume conservation is not
ensured and that complex strain paths that may lead to crack closure cannot be correctly
modeled. The second method, adopted here, consists of the evaluation of the stress (or
the strain) within the bond, and the application of a critical stress/strain criterion at the
bond level (Potyondy and Cundall [2004], Carmona et al. [2008]). Once the bond has
reached the criterion, the particles and the bond are kept but the bond behavior is mo-
dified as detailed below. The criterion typically involves normal and/or tangent stresses
or a combination of both.

In this work we use the Rankine maximum principal stress criterion at the scale of
a beam, which is suitable for predicting failure in brittle materials. Rankine criterion
states that failure occurs when the maximum principal stress reaches either the uniaxial
tension strength, or the uniaxial compression strength. For the beam model, Rankine’s
equivalent stress is :

σb,R =
1
2

(
σb,N +

√
σ2

b,N + 4σ2
b,T

)
(7)

where σb,N = N
4πR∗2 and σb,T = T

4πR∗2 are the normal and the tangential stresses at
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the bond scale. The bond breaks when the Rankine’s equivalent stress σb,R reaches a
critical stress σRc. As demonstrated by André et al. [2013] this approach may not be
relevant for complex triaxial loading such as indentation. However, it should be suitable
for the case of BM materials under tensile loading where mainly stress states close to
pure tension or pure shear are encountered.

After bond fracture, DEM provides a simple mean to model crack closure if par-
ticles resume contact (or if the bond fractured in shear while under compressive stresses,
σb,N < 0 in Eq. (7)). This is accomplished by stating that a broken bond keeps the same
normal stiffness as an unbroken bond in compression but cannot transmit any tensile
force. The tangential forces transmitted by broken bonds follow the Hertz–Mindlin
model in the sticking mode and are limited by Coulomb friction for sliding (friction
coefficient µ). Accordingly, broken bonds transmit only resisting moment MT in the
tangential direction but none in the normal direction (Fig. 2).

Figure 2: Two bonded particles transmitting normal/tangential forces and resisting moments. (a) Unbroken
bond. (b) Broken bond. (c) Resumed contact after bond fracture transmitting only compressive forces,

friction forces and tangential resisting moment.

2.3. DEM simulations

A classical dynamic DEM, as introduced by Cundall and Strack [1979], is used in a
quasi-static approach within the in-house code dp3D (Martin et al. [2003]), to compute
the equilibrium positions of particles at each time-step. The code is available for use on
request. Strains are first imposed to the sample via periodic conditions or by the use of
objects with infinite mass. Particles are displaced in the first half time-step according
to the imposed increment in strain following the affine solution (homogeneous defor-
mation of the sample). Contact forces (Eqs. (3) and (4)) are used to compute the total
force acting on each particle. Newton’s second law of motion enables the computation
of the acceleration and an explicit time-integration scheme is used (velocity-Verlet) to
obtain the new position of the particles before a new strain increment is imposed. New
contacts and lost contacts are updated at each time-step.

Small enough time-steps and slow enough strain rates are employed to ensure sta-
bility and quasi-static equilibrium. More details relative to these aspects can be found
in a previous publication (Martin et al. [2003]). Concerning quasi-static conditions,
the value of the imposed strain-rate is set at each time-step with consideration to the
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normalized kinetic energy per particle (Agnolin and Roux [2007]) :

Ẽkin =
Ekin

n max (NR∗)
(8)

where Ekin is the total kinetic energy of the particle system (accounting for rotation
and translation terms), n the number of particles and N the normal force (Eq. (3)). The
strain-rate and the renormalized mass of particles are adapted so that Ẽkin stays reaso-
nably below 10−7 all along the simulation to ensure quasi-static conditions (Agnolin
and Roux [2007]). Under such conditions, inertia effects are considered negligible. In
particular, we have ensured that bond fracture events, which inevitably release some
kinetic energy, do not induce detrimental inertia effects.

Under macroscopic strain, the network of beams, which microscopic interactions
have been described above, transmit forces F at each bond resolved locally into a nor-
mal and a tangential component (F = N + T). The macroscopic stress tensor resulting
from these forces may be computed using Love’s formulation (Christoffersen et al.
[1981]) :

Σi j =
1
V

∑
beams

Fil j (9)

where the summation is made on all (intact or broken) beams that transmit forces in the
sample volume V , Fi is the ith component of F, and l j is the jth component of the branch
vector l connecting the centers of two bonded particles (Fig. 1). A simple dimensional
analysis shows that the use of the microscopic properties σ∗N and σ∗T to define material
parameters leads, as it should, to a macroscopic response that is independent of the size
of the particles that mesh the material.

2.4. Sample generation
Samples were generated using periodic conditions on all packings. A gas of nearly

monomodal particles (5% dispersion around the average radius R) is first generated by
locating particles randomly in a periodic cell. At this stage, particles have no contact
and the relative density of the packing is approximately 0.3. By slowly moving inwards
the periodic walls, the initial gas of particles is isostatically densified under Hertzian
contact law (Martin and Bordia [2008]) (no bonds nor any friction or adhesion between
particles during this preparation stage) until a density D = 0.5 is obtained. Following
the work by Kumar et al. [2016], we further densify the packing by imposing an affine
densification until a final density D = 0.65 is reached. This procedure is identical to
the so called “weakly jammed” preparation route used by Kumar et al. [2016].

At this stage, all pairs of particles that are close enough are bonded together to form
a continuous material according to the following criteria :

κ (R1 + R2) ≥| l12 | (10)

where l12 is the branch vector between the center of the pair of particles (Eq. (9) and
Fig. 2) and κ is the interaction range. In our case, the interaction range κ = 1.075
provides enough interlocking between particles as proposed by Jerier and Molinari
[2012], Scholtès and Donzé [2013]. We tested previously (Kumar et al. [2016]) that
this value allows Poisson’s ratios in the [0–0.35] range to be simulated.
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In short, a numerical sample is thus meshed with a network of bonds and particles
as described above. It is characterized by a particles number n, a relative density D
and an average bond number Zb per particle. Fig. 3 summarizes the sample preparation
in which a particles gas is densified to form a random packing of particles bonded
together.

Figure 3: Typical evolution of a numerical 3D sample with 20 000 particles during the preparation stage. (a)
The initial gas of particles has no contact between particles (Z = 0) and a relative density D = 0.3. (b) The
weakly jammed packing is characterized by an average coordination number Z = 3.58 ± 0.02 and a relative
density D = 0.5. (c) A final affine densification is imposed (D = 0.65 ± 0.01 relative density) and bonds are

installed (Zb = 6.65 ± 0.02) with an interaction range κ = 1.075 (Eq. (10).

2.5. Elasticity and strength calibration

When using a random packing in DEM to model a continuous material, the rela-
tionship between the microscopic interaction laws (bond level) and the macroscopic
response (the discrete sample level), cannot be reached analytically. Thus, a calibration
process is required to determine the appropriate microscopic parameters that reproduce
the material macroscopic behavior (Potyondy and Cundall [2004], André et al. [2012]).

Moreover, the macroscopic behavior depends on the geometrical arrangement of
the discrete network of bonds. To calibrate the microscopic parameters in the contact
laws, we rely on the work of Kumar et al. [2016] who performed extensive quasi-
static tensile tests in order to establish relationships between the macroscopic elastic
behavior of the packing and the contact stiffnesses for various packing preparations
routes. Based on a generalization of the mean field solution, they proposed simple
calibration equations to relate the macroscopic elastic response of the packing (the
Young’s modulus E and the Poisson’s ratio ν) to the packing characteristics (Zb and D),
and to the microscopic parameters at the bond scale (σN and σT ). For the simple case
of a packing of particles with identical microscopic parametersσN andσT (KN,1 = KN,2
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and KT,1 = KT,2 in Eq. (2)), these equations write :

σN =
E

ZbD
2π
κm

4 + a3α

a1 + a2α
(11)

σT = ασN (12)

with :
α =

1 − b2ν

b1 + b3ν
(13)

where κ is the interaction range (Eq. (10)) and m, ai and bi are fitted parameters (m = 2,
a1 = 0.42, a2 = 7.45, a3 = 8.68, b1 = 0.55 ; b2 = 3.02 ; b3 = 5.75) for the weakly
jammed preparation route (Kumar et al. [2016]). In the next sections we consider that
the bricks/tablets and the mortar/interface have different Young moduli but identical
Poisson’s ratios, ν = 0.2, typical of ceramics.

Rewriting Eq. (11), we define a normalized macroscopic Young’s modulus Ẽ :

Ẽ =
E
σN

= ZbD
κm

2π
a1 + a2α

4 + a3α
(14)

which shows, together with Eq. (13) that the macroscopic elastic parameters not
only depend on the normal and tangential stiffnesses of the bond network but also on
the relative density D and on the average bond number Zb of the particle packing that
has been used to construct this network.

Similarly, one may expect that the macroscopic strength Σ of the material defined by
the bond network should also depend on D and Zb. Considering the dependence of the
macroscopic elastic behavior on particles arrangement parameters, we thus computed
the macroscopic strength for the weakly jammed preparation route.

Five sets of samples with various (Zb,D) values having a 165Rx16.5Rx16.5R size
in the x, y and z directions, respectively, were generated. For each set, five samples
were generated with different initial random seeds. The particles number n = 7 000
was chosen large enough to ensure that the convergence of the measured macroscopic
property (elastic modulus or strength) is reached (Kumar et al. [2016]). Tensile tests
were carried out with periodic conditions and shear tests were carried out with non
periodic conditions. Tensile loading was applied in the x direction while xy pure shear
was obtained by enforcing σyy = 0 during the computation.
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Figure 4: Calibration of macroscopic properties of the RVE : (a) Normalized Young’s modulus Ẽ = E
σN

and Eq. (14). (b) Normalized strength Σ̃ = Σ
σR

calibrated in tensile and shear tests.

The stress strain curves obtained from the tensile and pure shear tests exhibit a
linear behavior followed by brittle fracture. Both elastic constants (E,ν) and strength
can be extracted from these simulations. Fig. 4a shows the DEM simulation results for
the normalized Young’s modulus Ẽ (Eq. (14)) versus the product ZbD. The agreement
with Eq. (14) is reasonable for ZbD > 3.

Fig. 4b shows the evolution of the macroscopic strength for different values of
the ZbD product. Similarly to elasticity (Fig. 4a), Fig. 4b confirms the influence of
the packing parameters on the macroscopic strength. After fitting the strength results
from tensile and shear tests, a simple common transition law between microscopic and
macroscopic strength can be obtained :

Σ̃ = c1ZbD − c2 (15)

where Σ̃ = Σ
σRc

is the normalized macroscopic strength and c1 = 0.124 ; c2 = 0.067
are fitted parameters. Eq. (15) together with Eqs. (13) and (14) cannot be considered
as calibration equations per se and should only be considered as an approximate tool
to compute macroscopic properties from microscopic bond parameters. For small va-
lues of the ZbD product, it is clear that DEM simulations lead to a smaller normalized
Young’s modulus than predicted by Eqs. (13) and (14) as the percolation threshold is
approached. Thus, the simple relation proposed by Kumar et al. [2016] should only be
considered as a rough guideline for choosing elastic microscopic parameters in the do-
main ZbD > 3. In the following, packings characterized by a product ZbD = 4.34 have
been used to mesh BM materials. In that case, the following calibration corresponding
to our simulations (Fig. 4) has been taken for the microscopic parameters :

σN = 3.33E (16)

σRc = 2.12Σ (17)
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3. Modeling a brick and mortar material

3.1. Representative Volume Element (RVE)

To capture the mechanical behavior of the BM material, we set a 2D periodic Re-
presentative Volume Element composed of two tablets and two interfaces. This RVE is
classically used in the literature for the development of analytical solutions (Barthelat
[2014], Begley et al. [2012b] and finite element simulations (Bekah et al. [2012]). Fig. 5
shows a typical periodic configuration of the RVE, discretized with DEM particles. Ta-
blets are connected horizontally by thin (red) interfaces and are separated vertically
from each other by free surfaces. Such a model has the advantage of being sufficiently
simple to allow for elegant analytical solutions (Barthelat [2014]) while capturing the
load transfer from tension in the tablets to shear at the interface.

Figure 5: Representative Volume Element generated with discrete particles. Red particles mesh interfaces
and blue particles mesh tablets. L, L0, t and ti are geometrical parameters characterizing the RVE.

Using the RVE microstructural parameters and the geometrical parameters speci-
fied in Fig. 5, we define in accordance with the notations in Barthelat [2014], the tablet
volume fraction φ :

φ =
tt

tt + ti
(18)

the tablet aspect ratio ρ :

ρ =
L
tt

(19)

the overlap aspect ratio ρ0 :

ρ0 =
L0

tt
(20)

and the overlap ratio k :

k =
L0

L
=
ρ0

ρ
with 0 < k ≤ 0.5 (21)

where subscripts i and t stand for interface and tablet, respectively. For the sake of
comparison with existing analytical models (Barthelat [2014]), the vertical interfaces
are not filled by DEM particles which means that no stress is carried in the x direction
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between two tablets. 3D DEM simulations are run in a pseudo 2D configuration with
4± 1 particles in the thickness and periodic boundary conditions in all three directions,
with εzz = 0 to ensure plane strain conditions.

In the DEM unit cell shown in Fig. 5, each phase is represented by a given particle
type assigned with microscopic parameters to model its mechanical behavior. These
parameters are calibrated independently for the tablet and the interface as described in
section 2.5.

The stiffness of bonds between interface and tablets particles are treated in series
(Eq. (2)). As for fracture, the critical Rankine strength of interface-tablet bonds is dic-
tated by the smallest strength of the interface-interface and tablet-tablet bonds.

3.2. Homogenization procedure

To investigate the anisotropic behavior of brick and mortar materials, we performed
tensile loadings in both axial and transverse direction. For the axial loading the nume-
rical sample is subjected a macroscopic strain εxx and periodic boundary conditions
(εyy = 0) and conversely for the transverse loading. Due to the material’s microstruc-
ture, the effective elastic tensor is orthotropic (Bertoldi et al. [2008]). In a plane strain
configuration the axial and transverse modulus are computed as follows :

Ẽx =
Ex

Et
=

1
Et

1
εxx

(
Σaxial

xx −

(
Σtransv

xx

Σtransv
yy

)
Σaxial

yy

)
(22)

Ẽy =
Ey

Et
=

1
Et

1
εyy

Σtransv
yy −

Σaxial
yy

Σaxial
xx

 Σtransv
xx

 (23)

where axial and transv stand for axial and transverse loadings, respectively.

3.3. Convergence study

We generated thirteen different three-dimensional RVEs with different particles
number n to define the minimum number of particles that allows stable macroscopic
properties to be obtained with a periodic RVE. More generally, we study in this section
the influence of mesh refinement on elastic and fracture properties. For each discrete
set with a given number of particle n, five initial samples were generated using different
random seeds to compute standard deviations. Each set of particles was generated as
described in section 2.4. The tablet aspect ratio is ρ = 16, the overlap ratio k = 0.5 and
a tablet volume fraction φ = 0.87. All samples exhibit a size ratio of 80 × 10 × 1 in the
three directions. The packing characteristics and the input parameters are reported in
table1.
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Packing characteristics Input parameters

κ ZDb α σN
E

σRC
Σ

1.075 4.34 0.21 3.33 2.12

Table 1: Packing characteristics and input parameters used in the simulations. σN and σRC are normalized
by the macroscopic Young’s modulus E and the macroscopic strength σ, respectively.
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Figure 6: Evolution of macroscopic normalized moduli Ẽx and Ẽy for the RVE shown in Fig. 5 against the
particle number n for a constant set of microscopic parameters. Sample characteristics : tablet aspect ratio

ρ = 16, overlap ratio k = 0.5, and φ = 0.87.
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Figure 7: Evolution of macroscopic normalized strength Σ̃ against particle number n for a constant set of
microscopic parameters.

Figures 6 and 7 show the convergence of the elastic moduli and strength as the par-
ticle number increases. For a particle number larger than 10 000, the Young’s modulus
clearly converges with a low standard deviation, which seems inherent to the random
discrete nature of the packing used to mesh the RVE. Concerning strength, conver-
gence can be considered satisfactory for n ≥ 10 000. Hereafter samples are generated
with 20 000 particles to ensure that the thinner part of the material (i.e. the interface)
contains enough particles (we observed that four particles are sufficient with periodic
boundary conditions) to obtain convergence even with a slightly larger tablet volume
fractions φ.

Interestingly, Fig. 6 demonstrates that the RVE exhibits a clear anisotropic elastic
response. The axial Young’s modulus (Ex) is nearly twice as large as the transverse
modulus (Ey). This is generally ignored by analytical models that only consider the
axial behavior of the RVE.

4. Comparison with analytical models

4.1. Elastic modulus
Assuming that there is no vertical interface, i.e. no load transfer in tension between

tablets, the classical shear-lag model (Barthelat [2014], Ni et al. [2015], Ji and Gao
[2004], Begley et al. [2012b]) leads to the RVE Young’s modulus as a function of the
Young’s modulus of the tablet and the interface. Barthelat [2014] proposed :

Ẽx =
Ex

Et
=

φ

1 + 1
β

(coth(kβ) + coth(β(1 − k))
with β = ρ

√
1

2(1 + ν)
Ei

Et

φ

1 − φ
(24)
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Ni et al. [2015] and Begley et al. [2012b] proposed :

Ẽx =
Ex

Et
=

2β sinh
[
(1 − k)β

]
sinh(kβ)

2 sinh(β) + β
[
cosh(β) − cosh ((2k − 1)β)

] (25)

and Ji and Gao [2004] proposed :

Ẽx =
Ex

Et
=

1(
1 +

1−φ
φ

) (
1 + 8

ρ2
1−φ
φ

(1 + ν)
) (26)

where φ, ρ, and k are geometrical parameters defined in Eqs. (18), (19), and (21),
respectively. The form of Eqs. (24) and (25) proposed by their authors are reproduced
here but one may notice that an analytical simplification of Eq. (25) demonstrates that
the two models only differ by a factor of φ. Note that the model of Ni et al. [2015]
(Eq. (25)) is only valid for sufficiently large values of the tablet volume fraction (ty-
pically φ > 0.8). Also, the model of Ji and Gao [2004] has been developed only for a
symmetric overlap (k = 0.5).

Figure 8: Normalized macroscopic Young’s modulus Ex
Et

from DEM simulations (bullet symbols) as a
function of the overlap aspect ratio for three different tablet volume fractions φ with an aspect ratio ρ = 20,
and a 0.1 Young’s modulus ratio (Ei/Et = 0.1). DEM simulation results are compared to three analytical

models Eqs. (24), (25), (26) (ρ0 = kρ)(Eq. (21)). Eq. (26) is valid only for a symmetric overlap (i.e.
ρ0 = 10). Standard deviations are calculated based on five simulations.

By varying k for ρ = 20, Fig. 8 shows the evolution of the normalized Young’s
modulus Ex

Et
against the overlap aspect ratio ρ0, which is the parameter controlling the

elastic modulus and encompassing both the effects of ρ and k (Barthelat [2014]). Re-
sults for three different tablet volume fractions φ are compared to three analytical mo-
dels (Begley et al. [2012b], Barthelat [2014], Ji and Gao [2004]). The numerical results
were obtained for five realizations and Ex was calculated using the homogenization
procedure described in section 3.2. The standard deviation on the normalized Young’s
modulus was around 4% for high volume tablet fraction showing limited influence of
the initial packing arrangement.

A high tablet concentration leads to a high modulus and to less sensitivity to the
overlap aspect ratio. Figure 8 shows that our simulation results are in good accordance
with Barthelat’s model. In particular, the region of stiff increase of the Ex/Et ratio for
small overlap aspect ratio is well rendered by this model. The model of Begley exhibits
the same kind of transition, in agreement with our simulations, but overestimates the
Ex/Et ratio as compared to our DEM simulation results and Berthelat’s model.

As indicated above (Fig. 6), the tested RVE exhibits an anisotropic elastic behavior.
To validate the elastic modulus in the y direction, we compared it to the analytical
model of Bertoldi et al. [2008], where Ey is given by :

Ẽy =
Ey

Et
=

[1 − φ(1 − Et
Ei

)](1 − ν2)

Γ
(27)
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where

Γ = φ(1 − φ)(1 + ν)2
(1 − 2ν)(1 +

E2
t

E2
i

) + 2
Et

Ei
ν2

 +
Et

Ei
((1 − φ)2 + φ2)(1 − ν2)2 (28)

Fig. 9 shows that in accordance with Fig. 8, Eq. (26) overestimates Ẽx for φ ≥ 0.5.
Note that analytical models are ill-suited for low tablet volume fractions (φ < 0.5).
More interestingly, the DEM simulated Ẽy is compared to the above analytical model
for increasing values of tablet volume fractions φ with a symmetric overlap ratio k =

0.5 and an overlap aspect ratio ρ = 20. Ẽy values are in quite good agreement with the
analytical model on the whole tablet volume fraction domain.

Figure 9: Normalized analytical Young’s modulus Ẽx and Ẽy (Eqs. (26) and (27)) against the tablet volume
fraction φ with an aspect ratio ρ = 20 compared to the DEM results (bullet symbols). The error bars are

computed based on five simulations.

4.2. RVE failure
The analytical prediction of the strength of a brick and mortar arrangement has been

tackled by numerous authors under various assumptions (Barthelat [2014], Ni et al.
[2015], Begley et al. [2012b]). In particular, some authors considered the simplified
case of uniform shear in the interface, which is a valid assumption for a large elastic
modulus contrast (Ei/Et � 0.1) between interface and tablet (or for an overlap aspect
ratio close to unity, which is not of much engineering interest) (Barthelat [2014]). In
that case, the normalized fracture initiation stress writes :

Σ̃init =
Σinit

Σt
= min

[
ρ0φ

Σi

Σt
,

1
2

]
(29)

where Σt and Σi are tablet and interface strength, respectively. A critical overlap
ratio, (ρ0)c = Σt

2φΣi
can be defined to point out when fracture initiation shifts from the
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interface to the tablet. Note that the fracture initiation stress in Eq.(29) does not de-
pend on Ei

Et
. The above model, valid for Ei

Et
� 1, is justified for biological materials

or synthetic materials with a polymeric interface. A ceramic/glass or ceramic/ceramic
brick and mortar structure will exhibit a markedly larger Young’s modulus ratio (ty-
pically Ei

Et
≥ 0.1). In that case, the model developed by Begley et al. [2012b] and Ni

et al. [2015] that accounts for non-uniform shear in the interface is more appropriate.
It writes :

Σ̃init =
Σinit

Σt
= min

[
ρ

β

Σi

Σt
tanh(kβ),

1
2

]
(30)

where β (see Eq. (24)) is a parameter that describes the magnitude of the shear
transfer in the interface. The models accounting for uniform (Barthelat [2014]) and
non-uniform shear transfer (Begley et al. [2012b], Ni et al. [2015] are very similar for
Ei
Et
� 1.
To capture the brick and mortar behavior, we apply uniaxial tensile tests along the

tablets under periodic conditions on nine RVE’s with different overlap aspect ratios ρ0
for ρ = 10, φ = 0.87 and Σt

Σi
= 6. For each RVE, five initial samples were generated

using different random seeds to compute standard deviations. Fig. 10 shows a typical
stress-strain curve. Two points are noteworthy on this curve. The stress Σinit at which we
consider that fracture initiates is chosen when 50 bonds are broken (or approximately
0.1% of the total number of bonds). This choice is rather arbitrary but consistent for all
tests. Figure 10 indicates that this threshold corresponds to the end of a mild damage
process that does not affect the linearity of the stress-strain curve, before large damage
due to crack propagation that causes a change in slope on the stress-strain curve. The
stress Σmax simply defines the maximum stress attained by the sample. The difference
between these two stresses gives us informations on the extrinsic mechanisms at play
after crack initiation.

Figure 11a compares analytical models to DEM simulations for fracture initiation
(Σinit in Fig. 10). The accordance between models and DEM simulations is rather good.
In particular, the stress plateau for ρ0 > (ρ0)c is well rendered. For Ei/Et = 10−3, this
plateau corresponds to a fracture initiating in the tablets. For lower stiffness contrast,
fracture always initiates in the interface due to larger stress concentration as shear trans-
fer becomes less uniform in the interface Begley et al. [2012b], Ni et al. [2015].

As the crack propagation is not modeled in the analytical models (Begley et al.
[2012b], Barthelat [2014], Ni et al. [2015]), the stress at crack initiation is considered
equal to the maximum stress. However, initiation alone is not enough to characterize
the fracture behavior of these brick and mortar materials. Fig. 11b shows that indeed
when plotting the maximum stress (Σmax in Fig. 10), the analytical models that pre-
dict only initiation differ markedly from our simulations. A clear difference between
Fig. 11a and Fig. 11b is the the role of the stiffness ratio Ei/Et. The stress at initiation
is strongly linked to this ratio, while the maximum stress is weakly related to Ei/Et (in
particular for Ei/Et > 0.1). For a large contrast of Young’s modulus (Ei/Et = 10−3),
the interface shear stress is uniform which results in very similar values for crack ini-
tiation and maximum stresses. However for a low modulus contrast (Ei/Et = 1), the
large stress concentration (non-uniform shear stress) leads to earlier crack initiation,
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which explains the large difference between stress initiation and maximum stress. Af-
ter crack initiation in the interface the crack propagates in a stable manner within the
interface. Friction and interlocking effects build up rising stresses that ultimately can
cause the crack to pass through the tablet leading to a catastrophic failure at approxima-
tely half the tablet strength. This explains why most of the data points in Fig. 11b fall
on a plateau around 0.4Σt. Only for low overlap aspect ratio and low stiffness contrast
the crack is confined to the interface leading to a lower maximum stress value. We be-
lieve that interlocking effects inherent to DEM are realistic for brittle interfaces where
newly created rough surfaces may interlock each other and resist to shear loading. The
calibration of these mechanisms is possible through modifications of the packing cha-
racteristics and the friction law.

Figure 10: Typical stress-strain curve number of broken bonds from a DEM simulation for ρ0 = 2.5 and
Ei
Et

= 0.1. Two stresses are considered for comparison with analytical models. The fracture initiation stress
Σinit corresponds to the stress at which 50 bonds have broken. The strength Σmax corresponds simply to the

maximum axial stress.
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Figure 11: Normalized macroscopic stress Σ̃ = Σ
Σt

of the RVE as a function of ρ0 for three different stiffness

ratios Ei
Et

compared to analytical models (Ni et al. [2015], Barthelat [2014]. (a) Fracture initiation stress Σinit
and (b) Maximum stress Σmax after crack propagation. Eq. (29) is only valid for small elastic modulus ratios

for which it is very similar to Eq. (30).

5. Application to nacre-like alumina

To illustrate the potential of the numerical model developed in the previous sec-
tions, we apply it to nacre-like alumina. The model microstructural parameters mimic
the material described by Bouville et al. [2014]. The tablets are made of alumina with
a tablet volume fraction φ = 0.90. The aspect ratio is ρ = 14, the overlap aspect ratio
ρ0 = 3.5 and the overlap ratio k = 0.25.

The mechanical properties are those of alumina (the tensile strength of tablets is
Σt = 5.3 GPa, Feilden et al. [2017]). In our case, we consider a tablet/interface stiffness
ratio of 0.1. The interface strength Σi is left as a parameter as it is the main material
parameter that can be tuned experimentally (through composition, residual porosity,
. . . ). To investigate its influence and more generally the influence of the strength ratio
between interface and tablet, we generated several samples with interface strengths
smaller than the strength of the alumina tablets (Σi = [50, 4000] MPa).

By applying uniaxial tensile loading as in section 3, we obtain stress-strain curves
as illustrated in Fig. 12. Using the stress/strain curves of each sample, and the number
of broken bonds per particle (Fig. 13) of three different samples (Σi = 200; 1 300, 4 000
MPa), three failure behaviors can be distinguished (Fig. 14) :

• Crack initiation and propagation in the interface (regime 1) for low values of Σi.

• Crack initiation at the interface and propagation in the tablet (regime 2) for in-
termediate values of Σi.

• Crack initiation and propagation in the tablets (regime 3) for high values of Σi.

The last two regimes lead to an overall brittle behavior of the RVE and are not
desirable while the first regime is characterized by interface crack propagation that
promotes extrinsic reinforcement through mechanisms such as crack deviation or crack
bridging. In addition, for regime 1 the stress does not fall to zero even after complete
crack propagation (capping of the number of broken bonds in Fig. 13) due to friction
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and interlocking that keep a non-zero stress level. The failure regime also depends on
the overlap aspect ratio ρ0 : small values of ρ0 promote regime 1 while large values are
associated to regime 3 (Fig. 11).

Figure 12: Typical stress-strain curves for Σi = 200 MPa ,1 200 MPa and 4 000 MPa. Three fracture
regimes can be identified with increasing interface strengths Σi : (1) Interface fracture, (2) Interface/tablet

fracture and (3) Tablet fracture.
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Figure 13: Number of broken bonds versus strain for both interface and tablet, where red and blue curves
represent the interface and the tablet bonds, respectively. (a) Interface fracture initiation and propagation (b)

Interface fracture initiation and tablet fracture propagation (c) Tablet fracture initiation and propagation.
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Figure 14: The corresponding illustrations of number of broken bonds per particle for the three cases of
crack initiation and propagation. (a) Interface fracture initiation and propagation (b) Interface fracture

initiation and tablet fracture propagation (c) Tablet fracture initiation and propagation.

To optimize Σi on a quantitative basis, the strength (maximum stress) and the dis-
sipated energy (area under the stress-strain curve) are plotted in Fig. 15. As already
mentioned, for regime 1 the stress does not fall to zero. The dissipated energy is only
computed during crack propagation and does not encompass the energy dissipated by
the friction of the broken interfaces after crack propagation (see highlighted area under
curve 1 in Fig. 12). The value reported for regime 1 thus corresponds to a lower bound
of dissipated energy as friction at broken interfaces may play a non-negligible role in
alumina-nacre reinforcement. The examination of the evolution of strength and dissi-
pated energy with increasing Σi shows a similar and nearly monotonic behavior that
looks disappointing in terms of optimization. Although used by some authors for op-
timization purposes (e.g. Barthelat [2014]), dissipated energy is only a mere indicator
of the material fracture toughness. It should be clear that even though they exhibit the
largest dissipated energy, samples with large interface strength have a non-desirable
brittle behavior, while samples under regime 1 should give rise at a larger scale to ex-
trinsic reinforcement leading to a rising R-curve behavior with high fracture toughness
(for sufficiently long cracks). A closer look at Fig. 15 and considering the three frac-
ture regimes, show that an interesting optimal value for interface strength maybe found
around 0.1Σt : both strength and dissipated energy are quite close to the maximal values
obtained for large Σi and the crack path is still mainly confined within the interface.

21



Figure 15: (a) Macroscopic strength and (b) fracture energy versus interface strength Σi. Standard
deviations are calculated from five simulations. Three fracture regimes can be identified with increasing

interface strengths Σi : (1) Interface fracture, (2) Interface/tablet fracture and (3) Tablet fracture.

The comparison with reported experimental values is also of interest. Two different
interface compositions have been processed so far : Calcia/Alumina/Silica glass (Bou-
ville et al. [2014]) and a supposedly stronger Aluminum Borate crystalline phase (Pe-
lissari et al. [2018]). Both authors incorporated alumina nanoparticles in the interface
to form strong bridges between the tablets. The reported strength values (assuming a
tablet strength of 5.3 GPa, Feilden et al. [2017]) are Σ

Σt
= 0.09 and Σ

Σt
= 0.13, respecti-

vely. Even taking into account that strength could be overestimated by simulations at a
very small scale (Roussel et al. [2016], Jauffrès et al. [2013], the comparison with simu-
lations shows that the experimental values are still very far from the maximum strength
predictions (around Σ

Σt
= 0.4). It demonstrates that the optimal interface strength has

not been reached yet and that the material can still be improved. This is consistent
with the concomitant improvement in strength and toughness obtained through the use
of a crystalline stronger interface as compared to the original glass interface used by
Bouville et al. [2014]. The gain in strength may appear a bit low for an interface streng-
thening of a factor of approximately 4 (∼200 MPa for aluminium borate, ( Ray [1992]),
versus ∼50 MPa for alumina silicate glass, (Cambridge [2017]). However, one should
keep in mind the detrimental effect of increasing the stiffness of the interface to a value
close to the platelet’s one (Fig.11). This is typically what happens when using an alu-
minum borate interface. The interface strength is thus a key parameter to optimize the
mechanical behavior of brick and mortar materials.

6. Conclusions

In this work, a numerical model was developed to predict the mechanical response
of brick and mortar materials using DEM simulations. Elastic and fracture properties
of the components of brick and mortar were calibrated by taking into account the cha-
racteristics (average coordination number and packing density) of the particles packing
that meshes the material. We have shown that to ensure convergence, care must be
taken when choosing the number of discrete elements that mesh a material.
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The comparison of our DEM simulation results to available models in the litera-
ture for a standard Representative Volume Element of a brick and mortar materials
shows quite good agreement in elasticity, thus giving some confidence in the simula-
tion results. The initiation of fracture is also in good agreement with analytical models.
However, predicting fracture initiation alone fall short to model extrinsic reinforcement
mechanisms that are responsible for the ability of these materials to prevent catastro-
phic failure. Indeed, brick and mortar materials mainly develop toughening through
crack growth/propagation, after crack initiation. The added value of DEM simulations
is their capability to model post-fracture behavior. Most analytical shear-lag approaches
on brick and mortar materials (Barthelat [2014], Begley et al. [2012b], Ni et al. [2015])
have succeeded in predicting crack initiation but cannot investigate the crack propaga-
tion. The topological modifications (branching, bifurcation, new surface generation or
crack healing) that come with fracture are indeed difficult to apprehend analytically.
Even finite elements would struggle to investigate properly these discrete events. In
contrast, DEM, thanks to its inherent discrete nature, is well suited for discontinuous
problems.

As an application example of the proposed modeling approach, we choose nacre-
like alumina, a ceramic/ceramic composite, and showed that the interface strength can
be optimized to maximize strength and toughness. Three crack initiation/propagation
regimes were distinguished : interface initiation and propagation (1), interface initia-
tion followed by tablet propagation (2) and tablet initiation and propagation (3). These
three regimes are governed by the ratio between the interface strength and the tablet
strength. An optimal interface strength value lies at the threshold between regime (1)
and (2) where the composite strength is close to its maximum value and the crack
still propagates mainly within the interface, thus ensuring the development of extrinsic
reinforcement and high toughness.

The geometry of the RVE used here is simple enough to allow comparison with
analytical models from the literature and demonstrate the interest of the present ap-
proach to model BM materials. However, simulations at a larger scale are required to
correctly assess extrinsic toughening through the propagation of cracks amid several
tablet layers. This would also allow the study of the effect of material heterogenei-
ties, e.g. in terms of overlap, tablet orientation or tablet aspect ratio. Another point that
should be addressed in the future by DEM is the influence of alumina bridges between
the tablets that are believed to be an essential ingredient for the exceptional mechanical
performances of BM materials (Grossman et al. [2017]). Considering that DEM is ba-
sed on an explicit scheme, the discrete simulations at a larger scale are anticipated to be
CPU intensive. Although parallel computing is available with DEM, a careful strategy
will be necessary for computing large scale problems with millions of particles.

In this work, both materials (interface and tablet) are considered as elastic-brittle.
This is because our main interest is in alumina nacre which features porous alumina
interfaces that are brittle. Adding some plasticity in the interface behavior will enlarge
the domain in which a stable crack can grow without triggering brittle failure. A rela-
tively simple and useful generalization of the model would thus be to consider plastic
interactions in the interface to apply DEM to brick and mortar structures with ductile
interfaces (metal or polymer). This is possible as DEM is also well suited for tackling
plastic deformations (Martin et al. [2003], Martin [2004]).
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