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Abstract

We built a Biomimetic Statistical Learning Tool based on a PDE system, embark-
ing the mathematical expression of biological determinants, in order to perform Data
Fitting and Data Assimilation (See Flourent et al. (Submitted)).

Before starting the �tting of the parameters of a model, we have to specify for each
parameter a lower and an upper values between which the optimization algorithm will
search the value minimizing the error associated to the model.

The goal of this working paper is to detail the study of the ranges of values of the
parameters of the built Biomimetic Statistical Learning Tool.

Keywords: Range of Values, Statistical Learning Tool, PDE, Forecasting, Data
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1. Introduction

In Flourent et al. (Submitted) a Biomimetic Statistical Learning Tool based on a
PDE system, embarking the mathematical expression of biological determinants, was
built. The objectives of this tool is to perform Data Fitting and Data Assimilation.

During Data Fitting, an optimization algorithm search the model parameter values
minimizing the error of the model on a Training Database, between an upper and a
lower bound. Therefore we have to delimit a priori the ranges of values of the parameters
to �t. The objective of this working paper is to establish a methodology permitting to
determine the range of values of each parameter.

2. The studied Mathematical Model

2.1. Description of the Mathematical Model

For self-containedness of this working paper, we recall in the following paragraph
almost word-for-word the explanation of the Mathematical Model given in Flourent
et al. (Submitted).
The Mathematical Model developed in Flourent et al. (Submitted), mathematically
traduces the evolution and the action of a global information circulating in an Avatar
of a Real Animal. The authors made the assumption that, when an active or a nutrient
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enters the body of a living organism, it circulates in the body through a network of
vessels containing a �uid. This element integrates this �uid and evolves via convection
and di�usion phenomena. In this network of vessels the element may be in competition
with others which may delay its forward progression. Then the circulating element may
be caught, accumulated and then used to induce change in some biological variables.
We can mathematically traduce all those processes through a PDE system which is
illustrated by Figure 1.

Figure 1: Schematization of the Mathematical Model (Flourent et al. (Submitted))

The developed system of Partial Di�erential Equations contains several parameters
that have to be learnt. There are ωd and cd, the convection and the di�usion speeds, fd
and ud, the �xation and the usage coe�cient and rd, the delay parameter. See Flourent
et al. (Submitted) for further detail.

Therefore, the ranges of values of those �ve parameters have to be determined. We
already know that all the parameters are positive, hence the lower bound of the di�er-
ent ranges of values is zero.

2.2. Discretization of the Mathematical Model

To discretize the Mathematical Model the classical Finite Di�erence method was
used to obtain semi-discrete in space equations. Then R-function Ode.1D developped
by Soetaert et al. (2010) was used to manage the discretization in time of the semi-
discrete equations. This R-function calls upon the fourth order Runge Kutta method
with a given time step (See Enright (1989)).

3. Determination of the range of values of the convection and the di�usion

speeds

The convection speed ωd, and the di�usion speed cd have to respect the following
CFL conditions (See Courant et al. (1928) and Weisstein (2014)):

ωd ≤
∆x

∆t
and c ≤ ∆x2

∆t
, (1)
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where ∆x corresponds to the discretization space step and ∆t corresponds to the dis-
cretization time step.

Therefore we can conclude that, whatever the value of the other parameters :

ωd

[
0; ∆x

∆t

]
c ∈

[
0; ∆x2

∆t

]
In the �rst exploration, we decided to parametrize the mesh with a time step of 0.001
and a space step of 0.025. Therefore:

ωd ≤
∆x

∆t
=

0.025

0.001
= 25 and c ≤ ∆x2

∆t
= 0.0252

0.001
= 0.625 (2)

Hence, we have :

ωd ∈ [0; 25]
c ∈ [0; 0.625]

4. Saturation of the impact of the other parameters on the model

A saturation e�ect of the impact of the parameters rd, fd and ud on the model has
already been introduced in Flourent et al. (Submitted). Indeed the range of values of
each of these parameters corresponds to an interval from 0 to the saturation level of
the impact of this parameter on the model.

To know for each parameter the value of this saturation level, we calculated an in-
dicator Iijk(pn, pn+1), corresponding to the evolution speed of the Output Curve pro�le
according to the value of the studied parameter, p (where p can be rd, fd or ud).

In the �rst studies we already �xed cd at 0.001. Hence, to study the saturation of a
given parameter p, we took the the three other ones among ωd, rd, fd and ud, except p.
Then, we generated m curves from m increasing values pn, n ∈ J1, nK, taken in a wide
range of values and we calculated:

Iijk(pn, pn+1) =

∥∥On+1
ijk −On

ijk

∥∥∥∥On+1
ijk

∥∥ , (3)

for every i, j, k in their range. In 3,
‖f‖ =

∫ 1

0
|f(t)| dt

n corresponds to the rank of the studied parameter p,
i corresponds to the rank of the �rst parameter,
j corresponds to the rank of the second parameter,
k corresponds to the rank of the third parameter,
On

ijk corresponds to the Output Curve generated from the values i, j, k, n of the
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parameters.
And we imposed,

i 6= p, i 6= j, i 6= k, j 6= p, j 6= k and k 6= p (4)

For example, to study the evolution of the impact of the parameter ud we calculated
Iijk(ud,n, ud,n+1) for several values. Hence, Iijk(ud,n, ud,n+1) corresponds to a relative
di�erence between two curves generated from two consecutive values of ud: ud,n and
ud,n+1. In this case, i corresponds to the value of ωd, j corresponds to the value of rd
and k corresponds to the value of fd.

For a given values of rd, ωd and fd, we calculated Iijk(ud,n, ud,n+1) for 15 values of
ud. We obtained the following curve:

Figure 2: The value of the indicator I according to the value of ud.

In this case, the upper bound of ud (ud
ijk
Upp), corresponds to the value from which

the distance between two consecutive curves is lower than 0.005. So, ud
ijk
Upp corresponds

to the lowest value of ud,n+1 such as Iijk(ud,n, ud,n+1) ≤ 0.005.

Therefore, we calculated pijkUpp corresponding to the upper bound of the parameter
under study, p, for p corresponding to rd, fd or ud. Then we constructed a table in the
following form :

i j k pijkUpp

equivalent to Table 1 corresponding to a Design of Experiments.

5. Determination of the ranges of values of ud, fd and rd

5.1. The range of values of ud

In order to �nd the upper bound of ud whatever the value of fd, ωd and rd, we
calculated ud

ijk
Upp for several values of fd, ωd and rd. Hence, the upper bound of ud

corresponds to the higher obtained value of ud
ijk
Upp.
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Table 1: Design of Experiments to determine the upper bound of each parameter whatever the values
of the others.

i j k pijkUpp
i1 j1 k1 .
i1 j1 k2 .
. . . .
. j1 kn .
. . . .
. . . .
. jn k1 .
. jn k2 .
. . . .
i1 jn kn .
. . . .
in j1 k1 .
in j1 k2 .
. . . .
. j1 kn .
. . . .
. . . .
. jn k1 .
. jn k2 .
. . . .
in jn kn .

We tested 10 values of each parameter, taken between 0 and 25 for ωd and between
0 and 400 for fd and rd. For each tested triplet (fd, ωd, rd) we calculated the value of
ud

ijk
Upp (Figure 3).

We noticed that ud
ijk
Upp does not exceed 200, whatever the value of fd, ωd and rd.

Therefore, we can conclude that the upper bound of ud is worth 200. Hence, ud always
belongs to the interval [0; 200].

5.2. The range of values of fd

As, previously, to �nd the upper bound of fd whatever the value of ud, ωd and rd,
we calculated the value of fd

ijk
Upp for several values of ud, ωd and rd. We tested 10 values

of each parameter, taken between 0 and 25 for ωd and between 0 and 400 for ud and rd
and for each tested triplet (ud, ωd, rd) we calculated the value of fd

ijk
Upp.

In the left picture of Figure 4 the range of values reached by fd
ijk
Upp is given for every

value of i = ud. The middle and the right pictures show the same for every value of
j = rd and k = ωd.

The left picture of Figure 4 illustrates that fd
ijk
Upp does not depend on the value of

ud. Yet, looking at the two other pictures, it seems there exists a relation between
the values reached by fd

ijk
Upp and ωd and between the values reached by fd

ijk
Upp and rd.
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Figure 3: The value of ud
ijk
Upp according to the values of ωd, rd and fd.

Figure 4: The value of the indicator fd
ijk
Upp according to the values of ud, rd and ωd.

Figure 5 shows that the relation between the range of values of fd
ijk
Upp and rd is stronger.

Therefore we studied more precisely this relation.
The highest value of fd

ijk
Upp is obtained for ωd = 15 (Figure 4). Hence, we �xed ωd

at this values and we �x ud at an average value of 100. Then, we calculated fd
ijk
Upp for

several values of rd (Figure 6).
The curve in Figure 6 can be modeled via an equation in the form:

fdUpp =
A

1 + B · exp(−C · rDd )
+ E (5)

To �t the parameters A, B, C, D and E of Equation 5 on the curve of Figure 6,
we used the function directL developed by Johnson (2008), which is embedded in R (R
Core Team (2014)) and applying the DIRECT algorithm developed by Finkel (2003).
After the �tting we obtained the results contained in Table 2.

The objective of this approach is to �nd the upper bound of fd whatever the value
of rd. Therefore we majored the value of E in order to be sure that the range of values
of fd includes the maximum value of fd. Hence, we �xed E = 345 (Figure 7).
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Figure 5: The value of the indicator fUpp according to the value of rd colored according to ωd.

Figure 6: The value of the indicator fd
ijk
Upp according to the value of rd.

Table 2: Coe�cient of the equation linking fd
ijk
Upp and rd.

Parameter Value
A 1394.7
B 1853.1
C 1.83
D 0.25
E 272.3

5.3. The range of values of rd

While doing the early exploration, we observed that the coe�cient rd can take a
large range of values before reaching a saturation level. Yet, as we saw in Flourent
et al. (Submitted), the delay rd, may be o�set by the convection speed ωd. Indeed, a
low convection speed associated to a low delay may induce the same kinetics as a high
convection speed associated to an important delay. Hence, a couple (ωd,H ; rd,H) of high
values of ωd and rd can be equivalent to a couple (ωd,L; rd,L) of lower values. Thus, this
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Figure 7: The relation linking rd and fd
ijk
Upp

compensation e�ect permits to limit the range of values of rd to a reduced interval but
ensuring the capability of the model to simulate all the kinetics which can be observed.

We made the assumption that the highest value reachable by rd is 900. Hence, we
�xed r = 900. Then for several couples (ωd,i; rd,i), where rd,i = 900 and ωd,i ∈ [2; 25],
we sought the couple (ωd,t; rd,t) permitting to generate the same Output Curve but
from lower values of ωd and rd.

To do that we �xed ud = 200 and fd = 900, high values of these parameters. We se-
lected 20 values of ωd,t ∈ [0.2; 5]. Then, for each couple (ωd,i; rd,i) and each value of ωd,t,
we sought the value of rd minimizing the Relative Residual Sum of Squares (RRSS),
measuring the di�erence between the curve generated from the couple (ωd,i; rd,i) and
the curve generated from the couple (ωd,t; rdt):

RRSS((ωd,i; rd,i); (ωd,t; rdt)) =

(
n∑

k=1

(
O(ωd,i; rd,i)−O(ωd,t; rd,t)

O(ωd,i; rd,i)

)2
)
, (6)

whereO(ωd,k; rd,k) corresponds to theOutput Curve generated from the couple (ωd,k; rd,k)
and n is the number of points of the Output Curves.

To determined the value rd,t we used the optimization algorithm DIRECT. This
algorithm determines the value of rd,t by minimizing Indicator (6).

At the end of this step, we obtained 20 couples (ωd,t; rd,t) for each couple (ωd,i; rd,i).
For each couple (ωd,i; rd,i) we selected among the 20 obtained couples (ωd,t; rd,t), the
couple associated to the lowest RRSS. We �nally obtained Table 3, in which R2

corresponds to the squared correlation between the Output Curves O(ωd,i; rd,i) and
O(ωd,t; rd,t).

Therefore, for each couple (ωd,i; rd,i) we found an equivalent couple (ωd,t; rd,t) pre-
senting a lower value of rd.
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Table 3: Coe�cient of the equation linking fdUpp and rd.

ωd,i rd,i ωd,t rd,t RRSS R2

2 900 0.7 284 35.2 0.98
4.5 900 1 194.4 53.9 1
7 900 1.5 185.1 61.2 1

9.5 900 2 177.5 76.8 1
12 900 2.5 171.4 76.6 1

14.5 900 3 166.6 66.2 1
17 900 3.5 162.9 55.9 1

19.5 900 4 160.1 48.7 1
22 900 4.5 157.9 44.2 1

24.5 900 5 156.1 42.1 1

The couple (ωd,t; rd,t) equivalent to the couple (ωd,i = 2; rd,i = 900) presents the
highest value of rd, which is 284. Therefore, whatever the value of fd, ud and ωd the
upper bound of rd is worth 284.

5.4. Deduction about the range of values of fd
We saw previously that the upper bound of fd depends on the upper bound of rd.

We demonstrated in the previous Section that the highest value of rd is worth 284.
Hence, from Equation 5, we deduced that the upper bound of fd is worth 1035.

6. Conclusion about the ranges of values of the di�erent parameters

To conclude, we can say that the ranges of values of ωd and cd, are imposed by the
CFL conditions.

The upper bound of the parameter ud was determined by studying the saturation
of the e�ect of this parameter on the model.

A saturation of the impact of fd on the model is also observed. Nevertheless, the
saturation level of this parameter depends on the value of rd. Therefore we established
a relation linking those two parameters.

The parameter rd can take high values. But the existence of a compensation e�ect
between rd and ωd permits to limit the range of values of rd to a reduced interval but
ensuring the capability of the model to simulate all the kinetics which can be observed.

The determination of the value of the upper bound of rd permitted then to deduce
the upper bound of fd by using the relation previously established.

Finally we obtained Table 4.

Table 4: The ranges of values of the di�erent parameters.

Parameter Range of values
ω [0; 25]
c [0; 0.625]
u [0; 200]
r [0; 284]
f [0; 1035]
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