Hélène Flourent 
  
Study of the ranges of values of a Biomimetic Statistical Learning Tool parameters

Keywords: Range of Values, Statistical Learning Tool, PDE, Forecasting, Data Assimilation, Model-Data Coupling, Mathematical Modeling, Biological phenomena

We built a Biomimetic Statistical Learning T ool based on a P DE system, embarking the mathematical expression of biological determinants, in order to perform Data Fitting and Data Assimilation (See Flourent et al. (Submitted)). Before starting the tting of the parameters of a model, we have to specify for each parameter a lower and an upper values between which the optimization algorithm will search the value minimizing the error associated to the model. The goal of this working paper is to detail the study of the ranges of values of the parameters of the built Biomimetic Statistical Learning T ool.

Introduction

In Flourent et al. (Submitted) a Biomimetic Statistical Learning T ool based on a P DE system, embarking the mathematical expression of biological determinants, was built. The objectives of this tool is to perform Data Fitting and Data Assimilation.

During Data Fitting, an optimization algorithm search the model parameter values minimizing the error of the model on a T raining Database, between an upper and a lower bound. Therefore we have to delimit a priori the ranges of values of the parameters to t. The objective of this working paper is to establish a methodology permitting to determine the range of values of each parameter.

The studied M athematical M odel

Description of the M athematical M odel

For self-containedness of this working paper, we recall in the following paragraph almost word-for-word the explanation of the M athematical M odel given in Flourent et al. (Submitted). The M athematical M odel developed in Flourent et al. (Submitted), mathematically traduces the evolution and the action of a global information circulating in an Avatar of a Real Animal. The authors made the assumption that, when an active or a nutrient enters the body of a living organism, it circulates in the body through a network of vessels containing a uid. This element integrates this uid and evolves via convection and diusion phenomena. In this network of vessels the element may be in competition with others which may delay its forward progression. Then the circulating element may be caught, accumulated and then used to induce change in some biological variables.

We can mathematically traduce all those processes through a PDE system which is illustrated by Figure 1. Therefore, the ranges of values of those ve parameters have to be determined. We already know that all the parameters are positive, hence the lower bound of the dierent ranges of values is zero.

Discretization of the M athematical M odel

To discretize the M athematical M odel the classical Finite Dierence method was used to obtain semi-discrete in space equations. Then R-function Ode.1D developped by [START_REF] Soetaert | Solving Dierential Equations in R: Package deSolve[END_REF] was used to manage the discretization in time of the semidiscrete equations. This R-function calls upon the fourth order Runge Kutta method with a given time step (See [START_REF] Enright | The Numerical Analysis of Ordinary Dierential Equations: Runge Kutta and General Linear Methods[END_REF]).

Determination of the range of values of the convection and the diusion speeds

The convection speed ω d , and the diusion speed c d have to respect the following CFL conditions (See [START_REF] Courant | Über die partiellen Dierenzengleichungen der mathematischen Physik[END_REF] and [START_REF] Weisstein | Courant-friedrichs-lewy condition[END_REF]):

ω d ≤ ∆x ∆t and c ≤ ∆x 2 ∆t , (1) 
where ∆x corresponds to the discretization space step and ∆t corresponds to the discretization time step.

Therefore we can conclude that, whatever the value of the other parameters :

ω d 0; ∆x ∆t c ∈ 0; ∆x 2 ∆t
In the rst exploration, we decided to parametrize the mesh with a time step of 0.001 and a space step of 0.025. Therefore:

ω d ≤ ∆x ∆t = 0.025 0.001 = 25 and c ≤ ∆x 2 ∆t = 0.025 2 0.001 = 0.625 (2) 
Hence, we have :

ω d ∈ [0; 25] c ∈ [0; 0.625]

Saturation of the impact of the other parameters on the model

A saturation eect of the impact of the parameters r d , f d and u d on the model has already been introduced in Flourent et al. (Submitted). Indeed the range of values of each of these parameters corresponds to an interval from 0 to the saturation level of the impact of this parameter on the model.

To know for each parameter the value of this saturation level, we calculated an indicator I ijk (p n , p n+1 ), corresponding to the evolution speed of the Output Curve prole according to the value of the studied parameter, p (where p can be r d , f d or u d ).

In the rst studies we already xed c d at 0.001. Hence, to study the saturation of a given parameter p, we took the the three other ones among ω d , r d , f d and u d , except p. Then, we generated m curves from m increasing values p n , n ∈ 1, n , taken in a wide range of values and we calculated:

I ijk (p n , p n+1 ) = O n+1 ijk -O n ijk O n+1 ijk , (3) 
for every i, j, k in their range. In 3, f = 1 0 |f (t)| dt n corresponds to the rank of the studied parameter p, i corresponds to the rank of the rst parameter, j corresponds to the rank of the second parameter, k corresponds to the rank of the third parameter, O n ijk corresponds to the Output Curve generated from the values i, j, k, n of the parameters.

And we imposed, i = p, i = j, i = k, j = p, j = k and k = p Table 1: Design of Experiments to determine the upper bound of each parameter whatever the values of the others.
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We tested 10 values of each parameter, taken between 0 and 25 for ω d and between 0 and 400 for f d and r d . For each tested triplet (f d , ω d , r d ) we calculated the value of u d ijk Upp (Figure 3). We noticed that u d ijk Upp does not exceed 200, whatever the value of f d , ω d and r d . Therefore, we can conclude that the upper bound of u d is worth 200. Hence, u d always belongs to the interval [0; 200]. Therefore we studied more precisely this relation.

The range of values of f d

The highest value of f d ijk Upp is obtained for ω d = 15 (Figure 4). Hence, we xed ω d at this values and we x u d at an average value of 100. Then, we calculated f d ijk Upp for several values of r d (Figure 6).

The curve in Figure 6 can be modeled via an equation in the form:

f dUpp = A 1 + B • exp(-C • r D d ) + E (5) 
To t the parameters A, B, C, D and E of Equation 5 on the curve of Figure 6, we used the function directL developed by [START_REF] Johnson | The NLopt nonlinear-optimization package[END_REF], which is embedded in R (R Core Team (2014)) and applying the DIRECT algorithm developed by [START_REF] Finkel | DIRECT Optimization Algorithm[END_REF].

After the tting we obtained the results contained in Table 2.

The objective of this approach is to nd the upper bound of f d whatever the value of r d . Therefore we majored the value of E in order to be sure that the range of values of f d includes the maximum value of f d . Hence, we xed E = 345 (Figure 7). 

Deduction about the range of values of f d

We saw previously that the upper bound of f d depends on the upper bound of r d . We demonstrated in the previous Section that the highest value of r d is worth 284. Hence, from Equation 5, we deduced that the upper bound of f d is worth 1035. 

Conclusion about the ranges of values of the dierent parameters

Figure 1 :

 1 Figure 1: Schematization of the M athematical M odel (Flourent et al. (Submitted))

  example, to study the evolution of the impact of the parameter u d we calculated I ijk (u d,n , u d,n+1 ) for several values. Hence, I ijk (u d,n , u d,n+1 ) corresponds to a relative dierence between two curves generated from two consecutive values of u d : u d,n and u d,n+1 . In this case, i corresponds to the value of ω d , j corresponds to the value of r d and k corresponds to the value of f d . For a given values of r d , ω d and f d , we calculated I ijk (u d,n , u d,n+1 ) for 15 values of u d . We obtained the following curve:

Figure 2 :

 2 Figure 2: The value of the indicator I according to the value of u d .

5.

  Determination of the ranges of values of u d , f d and r d 5.1. The range of values of u d In order to nd the upper bound of u d whatever the value of f d , ω d and r d , we calculated u d ijk Upp for several values of f d , ω d and r d . Hence, the upper bound of u d corresponds to the higher obtained value of u d ijk Upp .

  As, previously, to nd the upper bound of f d whatever the value of u d , ω d and r d , we calculated the value of f d ijk Upp for several values of u d , ω d and r d . We tested 10 values of each parameter, taken between 0 and 25 for ω d and between 0 and 400 for u d and r d and for each tested triplet (u d , ω d , r d ) we calculated the value of f d ijk Upp . In the left picture of Figure 4 the range of values reached by f d ijk Upp is given for every value of i = u d . The middle and the right pictures show the same for every value of j = r d and k = ω d . The left picture of Figure 4 illustrates that f d ijk Upp does not depend on the value of u d . Yet, looking at the two other pictures, it seems there exists a relation between the values reached by f d ijk Upp and ω d and between the values reached by f d ijk Upp and r d .
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 3 Figure 3: The value of u d ijk Upp according to the values of ω d , r d and f d .

Figure 4 :

 4 Figure 4: The value of the indicator f d ijk Upp according to the values of u d , r d and ω d .

Figure 5

 5 Figure 5 shows that the relation between the range of values of f d ijk Upp and r d is stronger.

Figure 5 :

 5 Figure 5: The value of the indicator f Upp according to the value of r d colored according to ω d .

Figure 6 :

 6 Figure 6: The value of the indicator f d ijk Upp according to the value of r d . Table 2: Coecient of the equation linking f d ijk Upp and r d .

  To conclude, we can say that the ranges of values of ω d and c d , are imposed by the CFL conditions. The upper bound of the parameter u d was determined by studying the saturation of the eect of this parameter on the model. A saturation of the impact of f d on the model is also observed. Nevertheless, the saturation level of this parameter depends on the value of r d . Therefore we established a relation linking those two parameters. The parameter r d can take high values. But the existence of a compensation eect between r d and ω d permits to limit the range of values of r d to a reduced interval but ensuring the capability of the model to simulate all the kinetics which can be observed. The determination of the value of the upper bound of r d permitted then to deduce the upper bound of f d by using the relation previously established.Finally we obtained Table4.

  

  Therefore, we calculated p ijk Upp corresponding to the upper bound of the parameter under study, p, for p corresponding to r d , f d or u d . Then we constructed a tablein the

	following form :
	i j k p ijk Upp
	equivalent to Table 1 corresponding to a Design of Experiments.

Table 3 :

 3 Coecient of the equation linking f dUpp and r d .ω d,i r d,i ω d,t r d,t RRSS R 2The couple (ω d,t ; r d,t ) equivalent to the couple (ω d,i = 2; r d,i = 900) presents the highest value of r d , which is 284. Therefore, whatever the value of f d , u d and ω d the upper bound of r d is worth 284.

	2	900 0.7	284	35.2	0.98
	4.5 900	1	194.4	53.9	1
	7	900 1.5 185.1	61.2	1
	9.5 900	2	177.5	76.8	1
	12 900 2.5 171.4	76.6	1
	14.5 900	3	166.6	66.2	1
	17 900 3.5 162.9	55.9	1
	19.5 900	4	160.1	48.7	1
	22 900 4.5 157.9	44.2	1
	24.5 900	5	156.1	42.1	1

Table 4 :

 4 The ranges of values of the dierent parameters.

	Parameter	Range of values
	ω	[0; 25]
	c	[0; 0.625]
	u	[0; 200]
	r	[0; 284]
	f	[0; 1035]

where O(ω d,k ; r d,k ) corresponds to the Output Curve generated from the couple (ω d,k ; r d,k ) and n is the number of points of the Output Curves.

To determined the value r d,t we used the optimization algorithm DIRECT. This algorithm determines the value of r d,t by minimizing Indicator (6).

At the end of this step, we obtained 20 couples (ω d,t ; r d,t ) for each couple (ω d,i ; r d,i ). For each couple (ω d,i ; r d,i ) we selected among the 20 obtained couples (ω d,t ; r d,t ), the couple associated to the lowest RRSS. We nally obtained Table 3, in which R 2 corresponds to the squared correlation between the Output Curves O(ω d,i ; r d,i ) and O(ω d,t ; r d,t ).

Therefore, for each couple (ω d,i ; r d,i ) we found an equivalent couple (ω d,t ; r d,t ) presenting a lower value of r d .