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Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor

. This control scheme has the advantage of combining the classical linear control techniques with the sophisticated robust control techniques. This control scheme is specially ad hoc for unmanned aircraft vehicles, where it is important not only to reject the actual nonlinearities and the unexpected changes of the structure, but also to look for the simplicity and effectiveness of the control scheme.

I. INTRODUCTION

Recently, there has been a great interest in finding simple and effective control schemes for unmanned aircraft vehicles, able to reject the actual nonlinearities and the unexpected changes of structure. In [START_REF] Lee | Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[END_REF], the authors present two types of nonlinear controllers for an autonomous quadrotor helicopter. However, to program this control scheme in the embedded autopilot of the quadrotor is rather difficult due to the needed derivative estimations. In [START_REF] Zhou | Design of Feedback Linearization Control and Reconfigurable Control Allocation with Application to a Quadrotor UAV[END_REF], the authors present attitude and trajectory tracking control designs based on an inner/outer-loop control structure for normal flight conditions. Once again, to program this control scheme in the embedded autopilot of the quadrotor is rather difficult due to the needed derivative estimations. In [START_REF] Liu | Robust Tracking Control of a Quadrotor Helicopter[END_REF], the authors propose a robust controller based on the time-scale separation approach to achieve the automatic take-off, hovering, trajectory tracking, and landing missions for a quadrotor helicopter. The authors only show experimental results in indoor environments.

In this paper, we present a synthesis procedure of the recently robust linear control scheme proposed in [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF], which is based on failure detection techniques. Such a linear control approach is intended to reject linearly structured uncertainties, which are treated as failure signals affecting the systems dynamics. The implementability and efficiency of the proposed robust control methodology is illustrated with a quadrotor laboratory prototype in hover flying. We present simulation results and experimental results in open field (outdoor environments).

In Section II, we describe the quadrotor laboratory prototype. In Section III, we give the necessary preliminaries to synthesize the control scheme recently proposed in [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF]. In Section IV, we synthesize the exact structural feedback linearization and the robust asymptotic feedback linearization for the dynamics of the longitudinal trajectory x together with the rotational pitch trajectory θ of the quadrotor. In Section V, we do some simulation for tuning our control scheme. In Section VI, we test our proposition in open field. In Section VII, we conclude.

II. QUADROTOR DESCRIPTION

Let us consider a quadrotor where the total mass is M q , the moments of inertia about axis ox, oy and oz are: 1 I xx , I yy and I zz , and the distance of each rotor with respect to the centre of gravity of the quadrotor is L m (see Fig. 4). The motion is referred to a fixed orthogonal axis set (earth axes) (oxyz), where oz points vertically down along the gravity vector 0 0 g 

= φ θ ψ T .
The quadrotor is represented by the following state space representations (see [START_REF] Blas | IFAC-World Congress[END_REF] for details): a) State representation of the xθ dynamics:

d dt x x = A x x x + B x u x + S x q ox , x = C x x x , (2.1) 
where x x = x dx/dt θ dθ/dt T , q ox = q x q θ T , and

the matrices A x , B x , S x and C T x are, respectively,    0 1 0 0 0 0 -g 0 0 0 0 1 0 0 0 0    ,    0 0 0 1/Iyy    ,    0 0 1 0 0 0 0 1    and    1 0 0 0    (2.2)
b) State representation of the yφ dynamics:

d dt x y = A y x y + B y u y + S y q oy , y = C y x y , (2.3) 
where x y = y dy/dt φ dφ/dt T , q oy = q y q φ T , and the matrices A y , B y , S y and C T y are, respectively,   

0 1 0 0 0 0 g 0 0 0 0 1 0 0 0 0    ,    0 0 0 1/Ixx    ,    0 0 1 0 0 0 0 1    and    1 0 0 0    (2.4)
1 Since the quadrotor is mechanically symmetric its cross inertia are zero.

c) State representation of the ψ dynamics:

d dt x ψ = A ψ x ψ + B ψ u ψ + S ψ q ψ , ψ = C ψ x ψ ,
where x ψ = ψ dψ/dt 

d dt x z = A z x z + B z ∆u z + S z q z , z = C z x z , (2.5) 
where x z = z dz/dt T , and the matrices A z , B z , S z and C T z are, respectively,

0 1 0 0 , 0 1/M q , 0 1 and 1 0
In the fifth Section of [START_REF] Blas | IFAC-World Congress[END_REF], we show how the incremental control actions, u x , u y , u z = ∆u z -M q g and u ψ , are related with the thrusters of the four rotors, f 1 , f 2 , f 3 and f 4 . The nonlinear signals, q x , q y , q z , q φ , q θ and q ψ , are:

  q x q y q z   =   θ -q xx -φ -q yy -q zz   g + 1 M q   q xx q yy q zz   ∆u z , (2.6) 
  q φ q θ q ψ   = J -1 (η) -J -1 (0) τ -J -1 (η)C(η, dη/dt) dη dt , (2.7 
) where J and C(η, dη/dt) are the inertial and the Coriolis matrices, defined in the Appendix of [START_REF] Blas | IFAC-World Congress[END_REF], and: 2

q xx = c φ s θ c φ + s φ s ψ , q yy = c φ s θ s ψ -φ c ψ , q zz = c φ c θ -1 .
(2.8)

III. PRELIMINAIRES

Let us consider a nonlinear system described by the following nonlinear state space representation:

d dt x(t) = Ax(t) + Bu(t) + Sq(x(t), u(t)), y(t) = Cx(t), (3.1 
) where u ∈ R m and y ∈ R p are the input and the output, respectively, x ∈ R n is the state and q ∈ R µ is a nonlinear perturbation signal, here called an uncertainty vector. We do the following assumption:

H1: Structural hypothesis: 1) ker B = 0.

2) The pair (A, B) is controllable, namely (see for example [START_REF] Wonham | Linear Multivariable Control: A Geometric Approach[END_REF]):

R n = A | Im B = Im B + A Im B + • • • + A n-1 Im B.
3) The pair (C, A) is observable.

We need two results stated in [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF].

Lemma 1 ([3]

): Under assumptions H1.1 and H1.2, there exist two linear transformations, M : R n → R n and X : R n → R m , solving the matrix equality:

AM + BX = I , (3.2) 
2 We use the abbreviated notations: (c φ , c θ , c ψ ) for (cos φ, cos θ, cos ψ) and (s φ , s θ , s ψ ) for (sin φ, sin θ, sin ψ).

satisfying: X = B (I -AM ) and M n = 0, where B : R n → R m is a left inverse of B : R m → R n , B B = I, and M : R n → R n has a nilpotent index not greater than n.

Equality (3.2) directly follows from H1.2: R n = A | Im B ⊂ Im B + Im A ⊂ R n ;
for the other ones see the proof in [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF].

Defining:

C (M, S) = S M S • • • M (n-1) S , (3.3) 
Ψ n (d/dt) = I I d/dt • • • I d n-1 /dt n-1 T , (3.4) 
and assuming:

H2: The subspace M Im S is contained in the unobserv- able subspace ker C | M = ker C ∩ M -1 ker C ∩ • • • ∩ M -(n-1) ker C, namely: CM C (M, S) = 0, (3.5 
) the following Theorem is obtained: Theorem 1 ( [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF]): Given the linear transformations M and X from Lemma 1, consider the following change of variable:

ζ(t) = x(t) + M C (M, S) Ψ n (d/dt) q(x(t), u(t)) . (3.6)
Under Assumptions H1.1, H1.2 and H2, the state representation (3.1) is externally equivalent to the following3 :

d dt ζ(t) = Aζ(t)+B (u(t) + q * (x(t), u(t))) , y(t) = Cζ(t), (3.7 
) where the nonlinear uncertainty signal, q * , is given by:

q * (x(t), u(t)) = XC (M, S) Ψ n (d/dt) q(x(t), u(t)). (3.8)
Theorem 1 is important because it provides us the change of basis (3.6), which aim is to map the uncertainty vector (nonlinear perturbation signal), q, to the nonlinear uncertainty signal (3.8), q * , contained in Im B. Thus,

u(t) = -q * (x(t), u(t)), (3.9) 
exactly linearizes (3.7).

In the case when it is not possible to reconstruct analytically the nonlinear uncertainty signal q * , or it is a heavy and tedious task to do it, one can still estimate it. For this, we need to add the following assumption:

H3: The state space description Σ(A, B, C) (3.1) has no finite invariant zeros at the origin, namely:

Im B ∩ A ker C = 0 .
(3.10) Assumptions H1.3 and H3 make it possible to apply results of [START_REF] Bonilla | A Robust Linear Control Methodology based on Fictitious Failure Rejection[END_REF] and to design a robust disturbance rejection (based on the Beard-Jones filter, see [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF] and the reference there included):

d dt w(t) = A K w(t) -Ky(t) + Bu(t), q * (t) = -G (Cw(t) -y(t)), u(t) = -q * (t).
(3.11)

where A K . = (A + KC) with K : R p → R m an output injection such that: σ{(A + KC)} ⊂ C -, and G is a left inverse of the static gain -C(A + KC) -1 B. The remainder generator is expressed as:

d dt e(t) = A K e(t)-Bq * (x, u), q * (t) = -G Ce(t), (3.12)
where e(t) = w(t)ζ(t). In the case when the classic Laplace transform of q * (x, u) is well-defined, we have the following transfer function:

F e (s) = G C (sI -A K ) -1 B . (3.13)
Under the natural boundedness assumption for q * (x, u) with a bandwidth ω q , we have to synthesize a Hurwitz low-pass filter F e (s) with a corner frequency ω c , which aim is to reconstruct q * (x, u). Indeed, the nonlinear uncertainty signal q * is affecting the closed loop behavior throw the high-pass filter 1 -F e (s), so the corner frequency ω c of the low-pass filter F e (s) should be sufficiently greater than the bandwidth ω q , in order to reject q * . This is with the aim to achieve a robust disturbance in a neighborhood around the equilibrium point (x, u) = (0, 0), namely:

q * (ω)-q * (ω) ≤ (I -F e (ω)) XC (M, S) Ψ n (ω) q(ω) .

IV. LINEAR ROBUST CONTROL SYNTHESIS

In this Section, we synthesize the exact structural feedback linearization (3.8) and (3.9), and the robust asymptotic feedback linearization (3.11), for the xθ dynamics (2.1) and (2.2); the other ones are done in a very similar way.

A. Locally Stabilizing Feedback

Applying the feedback [START_REF] Brunovsky | A classification of linear controllable systems[END_REF] I yy /g a x,3 I yy /g -a x,2 I yy -a x,1 I yy , (4.1) to (2.1), one gets:

u x = F x x x + ūx , F x = a x,
d dt x x = A Fx x x + B x ūx + S x q ox , x = C x x x , (4.2) 
where:

A Fx = A x + B x F x =     0 1 0 0 0 0 -g 0 0 0 0 1 a x,4 /g a x,3 /g -a x,2 -a x,1     , (4.3)
with the following Hurwitz characteristic polynomial:

π xx (s) = det (sI -A Fx ) = s 4 +a x,1 s 3 +a x,2 s 2 +a x,3 s+a x,4 . (4.4) 

B. Exact Structural Feedback Linearization

The matrices M x and X x solving the algebraic equation (cf. (3.2)): A Fx M x +B x X x = I 4 , and the operators (3.3) and (3.4) are: 

M x =     0 0 0 0 1 0 0 0 0 -1/g 0 0 0 0 1 0     , X x = -a x,3 I yy /g -a x,2 I yy /g a x,1 I yy I yy , C (Mx, Sx) =     0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1/g 0 0 0 0 0 0 1 0 0 -1/g 0 0 0     , Ψ 4 (d/dt) = I 2 I 2 d/dt I 2 d 2 /dt 2 I 2 d 3 /dt 3 T . ( 4 
ζ x = x x - 1 g     0 0 0 0 1 0 d/dt 0     q x q θ . (4.6) 
The nonlinear uncertainty signal (3.8) is (cf. (4.5)):

q x, * = - I yy g a x,2 + a x,1 d/dt + d 2 /dt 2 q x + I yy q θ . (4.7)
The state space representation in the new variable ζ x is (cf. (4.6) and (4.2)):

d dt ζ x = A Fx ζ x + B x (ū x + q x, * ) , x = C x ζ x . (4.8) 
and its transfer function is:

F ζx (s) = C x sI -A Fx -1 B x = - g I yy π xx (s)
. (4.9)

Thus, the exact structural feedback linearization is: ūx = -q x, * (x(t), u(t)).

C. Robust Asymptotic Feedback Linearization

The observer for rejecting the nonlinear uncertainty signal q x, * is (cf. (3.11)):

d dt w x = A Kx + B x G x C x w x -K x + B x G x x, ūx = G x C x w x -G x x, (4.10) 
where:

A Kx = A Fx + K x C x , G x = -C x A -1 Kx B x = - I yy a xo,4 g , K x =     a x,3 a x,2 -a x,1 g -g a x,2 a x,1 -g 0 a x,1 1 0 0 1 0 0 0     -1     a x,4 -a xo,4 a x,3 -a xo,3 a x,2 -a xo,2 a x,1 -a xo,1     .
(4.11) The characteristic polynomial of the remainder generator (3.12) is:

π ex (s) = det (sI -A Kx ) = s 4 + a xo,1 s 3 + a xo,2 s 2 + a xo,3 s + a xo,4 . (4.12) 
The transfer function of (4.10) is: So, following a root locus procedure, both polynomials, π ex (s) and πwx (s), can be made Hurwitz.

F wx (s) = I yy a xo,

D. Closed Loop System

Defining the error signal, e x = w xζ x , we get the closed loop state space representation (cf. (4.8) and (4.10)):

d dt

e x ζ x = A CL e x ζ x + B CL q x, * , x = C CL e x ζ x , (4.16 
)

A CL = A Kx 0 B x G x C x A Fx , B CL = -B x B x , C CL = 0 C x .
(4.17)

The transfer functions are (recall (4.12), (4.9) and (4.15)): 

F ex (s) = G x C x (sI -A Kx ) -1 B x = a xo,4 π ex (s) (4.18) F CL (s) = C CL (sI -A CL ) -1 B CL = 0 | C x • (sI -A Kx ) -1 0 (sI -A Fx ) -1 B x G x C x (sI -A Kx ) -1 (sI -A Fx ) -1 • -B x B x F CL (s) = F ζx (s) 1 -F ex (s) = - g I yy π xx (s) 1 - a xo,4 π ex (s) = - g I yy π xx (s) s πwx (s) π ex (s) , ( 4 
G HPFx (s) = 1 -F ex (s) = 1 -a xo,4 π ex (s) = s πwx (s) π ex (s).
(4.20) Hence, if the nonlinear uncertainty signal q x, * has a finite bandwidth, it is then sufficient to synthesize the high-pass filter with a cutoff frequency sufficiently higher than the bandwidth of q x, * .

V. NUMERICAL SIMULATIONS

The numerical values of our laboratory prototype are: 

M q = 1.

A. Locally Stabilizing Feedbacks

The state feedbacks were computed by LQR techniques, namely by solving the algebraic Riccati equation,

A T P + P A -P B(ρ I) -1 B T P + Q = 0,
with the following matrices choices:

Q x = Q y = 900     1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2.25     , Q z = 1 0 0 0.23 , Q ψ = 1 0 0 0.6 , (ρ x , ρ y , ρ z , ρ ψ ) = 1, 1, 1 19600 , 1 12100 .
The optimal state feedbacks are: (5.

F x =
2) The spectrums of A Fx , A Fy , A Fz and A F ψ are:

Λ x (s) = {-3214, -1.911, -0.9536 ± 1.585}, Λ y (s) = {-3358, -1.911, -0.9536 ± 1.585}, Λ z (s) = {-2.087, -49.32}, Λ ψ (s) = {-1.291, -3328}.
(5.

3) The spectrum sets Λ x and Λ y are lower bounded by: = √ 0.9536 2 + 1. 

B. Nonlinear Uncertainty Signals Observation

Since the quadrotor is planned to move on a (x, y)-plan over a fixed altitude, z = z, we only synthesize nonlinear uncertainty signals observers for q x, * and q y, * .

1) Observation's dynamics:

The dynamics of the remainder generator (3.12) and the nonlinear uncertainty signal observer (4.10) are given by the polynomials (4.12) and (4.14), respectively; these two polynomials are related by (4.15). Following a root locus procedure, we get:4 (5.7) 2) Beard-Jones filter: For simplicity, the Beard-Jones filter (4.10) is synthesized in its observer canonical form [START_REF] Kailath | Linear systems[END_REF]:

d dt w x = A Kx + B x G x C x w x -K x + B x G x x , ūx = G x C x w x -G x x , (5.8) 
where: A Kx = A x + K x C x , and (recall (5.1), (4.4), (5.4), (4.12) and (5.6)): 6

A x =     0 0 0 -a x,4 1 0 0 -a x,3 0 1 0 -a x,2 0 0 1 -a x,1     , B x , C x , K x =         -g/Iyy 0 0 0     ,     0 0 0 1     T ,     a x,4 -a xo,4 a x,3 -a xo,3 a x,2 -a xo,2 a x,1 -a xo,1         , G x = -C x A -1 Kx B x = -(a xo,4 I yy )/g, K x = -843351429 -26924674 -259467 2311.6 T . (5.9)

C. Simulation Results

In Fig. 2, we show some simulation results obtained in a e MATLAB R platform. We have considered that the earth axes 5 

Doing: |GHPF x ( ω)| = 1, one gets: 2ax o , 4 ω 4 -2ax o , 2 ax o,4 ω 2 + a 2
xo, 4 = 0. (oxyz) is located at height z = 2 [m], above the ground level, and with the initial conditions:

6 wx = T -1 ox wx, Tox =    ax, 3 ax, 2 -ax, 1 g -g ax, 2 ax, 1 -g 0 ax, 1 1 0 0 1 0 0 0    -1 , (Ax, Bx, Cx, Kx) = (T -1 ox A Fx Tox, T -1 ox Bx, CxTox, T -1 ox Kx), G x = -Cx A Fx + KxCx -1 Bx = -Cx A -1 Kx Bx .
x(0) = y(0) = z(0) = 0 [m], dx(0)/dt = dy(0)/dt = dz(0)/dt = 0 [m s -1 ], φ(0) = θ(0) = ψ(0) = α 0 , α 0 = π/6 [rad], dφ(0)/dt = dθ(0)/dt = dψ(0)/dt = 0 [rad s -1 ].
The initial conditions of the Beard-Jones filter (5.8) and (5.9) were set up as (cf. [START_REF] Blas | IFAC-World Congress[END_REF]):

w x (0) = -a x,1 g g 0 0
T tan α 0 (cos α 0 + tan α 0 ) , w y (0) = a y,1 g g 0 0 T tan α 0 (1sin α 0 ) , w ψ (0) = α 0 a ψ,1 α 0 T .

(5.10) From Fig. 2, we can verify that the nonlinear uncertainty signal estimation ū, x , obtained via the Beard-Jones filter (5.8) and (5.9), closely follows the nonlinear uncertainty signal q x, * , computed via (4.7), (2.6)-(2.8).

VI. EXPERIMENTAL RESULTS

In Fig. 3, we show some experimental results obtained in open field; we compare the horizontal position trajectories x: (i) when both control laws are applied, the locally stabilizing feedback F x x x (4.1) and (5.2) plus the estimation of the nonlinear uncertainty signal ūx (5.8) and (5.9) (solid line), and (ii) when only the locally stabilizing feedback F x x x (4.1) and (5.2) is applied. From this figure, we can point out the correct rejection of the nonlinear uncertainty signal q x, * , via the Beard-Jones filter (5.8) and (5.9).

VII. CONCLUSION

In [START_REF] Bonilla | A Robust Linear Control Methodology based on Fictitious Failure Rejection[END_REF], we have shown that for a system modeled by the state space representation (3.1), where q is an uncertainty signal, and the map S is contained in the image of B, namely there exists a Q such that: S = BQ, then the uncertainty signal q can be rejected by means of the Beard-Jones filter (3.11). Such proposition was tested via the altitude control of a planar vertical takeoff and landing (PVTOL) aircraft a laboratory setting.

In [START_REF] Blas | IFAC-World Congress[END_REF], we have shown that the linear control scheme, based on failure detection techniques, introduced in [START_REF] Bonilla | A Robust Linear Control Methodology based on Fictitious Failure Rejection[END_REF] is in fact a structural feedback linearization technique, where the nonlinearities, affecting the systems dynamics, are treated as failure signals. Based on the Brunovsky canonical form [START_REF] Brunovsky | A classification of linear controllable systems[END_REF], we have proposed the change of variable (3.6), for changing from the state space representation in its Brunovsky canonical form to a nice state space representation, where the uncertainty signal q * is inside of the image of the input map, and thus, with a Beard-Jones filter type, q * is rejected. This control scheme was illustrated with a e MATLAB R numerical simulation of a quadrotor in hover flying.

In [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF], the two previous results were formalized to the more general nonlinear state space representation (3.1), and we generalized the change of variable (3.6), based on the algebraic equation (3.2), issued from the assumption that the pair (A, B) is controllable. Under such a change of variable, we have obtained once again the state representation (3.7), where the nonlinear uncertainty signal (3.8) is contained in the image of B. We have also generalized the previous Beard-Jones filters to the control scheme (3.11).

In this paper, we have shown in detail the synthesis procedure of the control scheme recently proposed in [START_REF] Bonilla | Robust Structural Feedback Linearization Based on the Nonlinearities Rejection[END_REF]. This control scheme has the advantage of combining the classical linear control techniques with the sophisticated robust control techniques. This control scheme is specially ad hoc for unmanned aircraft vehicles, where it is important not only to have the capability of rejecting the actual nonlinearities and the unexpected changes of structure, but also to obtain simplicity and effectiveness of the control scheme.

We have tested the effectiveness and simplicity of our proposition with the quadrotor laboratory prototype, in hover flying, having the numerical values (5.1). In order to tune our control scheme, we have first done some simulation proofs, shown in Section V, and then we have tested our proposition in open field, as shown in Section VI. Because of lack of place, comparison with alternative approaches will be done in an extended version of the present contribution. 

. 5 )

 5 Note that: M 4 x = 0 and C x M x C (Mx, Sx) = 0. The change of variable (3.6) is (cf. (4.5)):

  36 [kg], g = 9.81 [m s -2 ], I xx = 0.0134 [kg m 2 ], I yy = 0.0140 [kg m 2 ], I zz = 0.0256 [kg m 2 ], (5.1) and: L m = 0.245 [m], k τ = 4.31 × 10 -9 [N m/rpm 2 ], k f = 1.98 × 10 -7 [N/rpm 2 ] and γ = k τ /k f = 0.0218 [m].

  30 32.4264 -171.9158 -45.0535 , F y = -30 -32.4260 -171.9116 -45.0512 , F z = -140 -69.92 , F ψ = -110 -85.2387 .

  585 2 = 1.85. The characteristic polynomial (4.4) is: π xx (s) = s 4 + 3218 s 3 + 12279 s 2 + 22722 s + 21022 . (5.4)

2 xo, 2 = 0 .

 220 s (s + 4.75)(s + 4)(s + 3.5) + 28.125 = (s + 1) 2 (s 2 + 10.25 s + 28.125) . (5.5) Scaling the polynomials (5.5) by a factor c , 40 times the lower bounded , we get (s = c s, c = 40 = 74): s πwx (s) = s (s + 4.75 c )(s + 4 c )(s + 3.5 c ) π ex (s) = (s + c ) 2 (s 2 + 10.25 c s + 28.125 2 c ) . (5.6) In Fig 1, we show the Bode plot of the high-pass filter G HPFx ( ω), (4.20) and (5.6). The cutoff frequency ω c of the Bode plot, of the high-pass filter G HPFx ( ω), (4.20) and (5.6), is (recall (4.12), (4.20), (5.5) and (5.6)): 5 ω c = a xo,2 /2 1 -1 -2 a xo,4 /a 5339 c = 39.5 rad/s .
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 431 Figura 4.3: Gráfica de Bode de magnitud. |p 1 | = 74, |s 2 | = 351.5, |s 3 | = 296, |s 4 | = 259, ωn = 392.44 rad/s y ζ = 0.966.
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 2 Fig. 2. (a) Horizontal position, x [m]. (b) Pitch position, θ [ • ]. (c) Estimated nonlinear uncertainty signal (cf. (5.8) and (5.9)), ūx vs computed nonlinear uncertainty signal (cf. (4.7), (2.6)-(2.8)), qx, * . (d) Estimation error, qx, *ūx.
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 3 Fig. 3. (a) Horizontal position, x [m]. (b) Pitch position, θ [ • ]. (c) Locally stabilizing feedback Fzxz [N m]. (d) Estimated nonlinear uncertainty signal (cf. (5.8)), ūx. (e) Comparison of the horizontal positions, x [m], obtained with the application of both, the locally stabilizing feedback Fxxx (4.1) and (5.2) plus the estimation of the nonlinear uncertainty signal ūx (5.8) and (5.9) (solid line), against only the application of the locally stabilizing feedback Fxxx (4.1) and (5.2) (dashed line).
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 2114 Figura 1: Vista del arreglo experimental

  T , and the matrices A ψ , B ψ , S ψ

	and C T ψ are, respectively,	0 1 0 0	,	0 1/I zz	,	0 1	and	1 0	.
	d) State representation of the z dynamics:				

  πwx (s) = s 3 + a xo,1 s 2 + a xo,2 s + a xo,3 ,(4.14)Let us note that (cf. (4.14) and (4.12)):

	g	4	π xx (s) s πwx (s)	,	(4.13)
	π ex (s) = s πwx (s) + a xo,4 .		(4.15)

  + a xo,1 s 2 + a xo,2 s + a xo,3 ) s 4 + a xo,1 s 3 + a xo,2 s 2 + a xo,3 s + a xo,4 + 906.5 s 2 + 271746.5 s + 26947396) s 4 + 906.5 s 3 + 271746.5 s 2 + 26947396 s + 843372455 . En la figura 4.3 se muestra el diagrama de Bode de (4.41).

	4.2. Simulación numérica
	del sistema en lazo cerrado ūx , ver figura 4.1.
	Para los valores obtenidos en la subsección 4.2.2 (cf. (4.19) y (4.18)) se tiene
	G(s) = 1 -s(s 3 = a xo,4 π ex (s) = s(s + 351.5)(s + 296)(s + 259) (s + 74) 2 (s 2 + 758.5 s + 154012.5) = s (s 3 (4.41)

Recall that two representations are called externally equivalent if the corresponding sets of all possible trajectories for the external variables expressed in an input/output partition (u, y) are the same[START_REF] Willems | Input-output and state-space representations of finitedimensional linear time-invariant systems[END_REF],[START_REF] Willems | Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF].

The natural frequency and the damping ratio of the second order factor are respectively: ωn =

5.3 rad/s and = 0.966.