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RATIONALITY QUESTIONS AND MOTIVES OF CUBIC

FOURFOLDS

MICHELE BOLOGNESI AND CLAUDIO PEDRINI

Abstract. In this note we propose an approach to some questions about the

birational geometry of smooth cubic fourfolds through the theory of Chow
motives. We introduce the transcendental part t(X) of the motive of X and

prove that it is isomorphic to the (twisted) transcendental part htr
2 (F (X)) in

a suitable Chow-Künneth decomposition for the motive of the Fano variety
of lines F (X). Then we explain the relation between t(X) and the motives

of some special surfaces of lines contained in F (X). If X is a special cubic

fourfold in the sense of Hodge theory, and F (X) ' S[2], with S a K3 surface
associated to X, then we show that t(X) ' t2(S)(1). Moreover we relate

the existence of an isomorphism between the transcendental motive t(X) and

the (twisted) transcendental motive of a K3 surface to conjectures by Hassett
and Kuznetsov on the rationality of a special cubic fourfold. Finally we give

examples of cubic fourfolds such that the motive t(X) is finite dimensional and

of abelian type.

1. Introduction

We will work over the complex field. Cubic fourfolds are among the most myste-
rious objects in algebraic geometry. Despite the simplicity of the definition of such
classically flavoured objects, the birational geometry of cubic fourfolds is extremely
hard to understand and many modern techniques (Hodge theory, derived categories,
etc. - see e.g. [Kuz, Has 2, AT] for details) have been successfully deployed in order
to have a deeper understanding. In any case, the rationality of the generic cubic
fourfold is still an open problem. Also the finite dimensionality of the motive h(X)
of a cubic fourfold, as conjectured by several authors (see [Ki] , [An]), is known to
hold only in some scattered cases.

In this paper we relate the finite dimensionality of h(X) with the existence of an
associated K3 surface and compare this condition with conjectures on the rationality
of X.

We will denote by Mrat(C) the (covariant) category of Chow motives (with Q-
coefficients), whose objects are of the form (X, p, n), where X is a smooth projective
variety over C of dimension d, p is an idempotent in the ring Ad(X×X) = CHd(X×
X) ⊗ Q and n ∈ Z. If X and Y are smooth projective varieties over C, then
the morphisms HomMrat(h(X), h(Y )) of their motives h(X) and h(Y ) are given
by correspondences in the Chow groups A∗(X × Y ) = CH∗(X × Y ) ⊗ Q. More
precisely, in our covariant setting, we have

HomMrat
(X, p,m), (Y, q, n)) = q ◦Ad+m−n(X × Y ) ◦ p ⊂ Ad+m−n(X × Y )

where X is irreducible of dimension d and ◦ means composition of correspondences
(see [KMP, 7.1.1]). The category Mrat(C) is additive,pseudo-abelian, rigid and
has a tensor structure (see [KMP]). The unit motive is 1 = (Spec(C, 1, 0): it is a
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2 M. BOLOGNESI AND C. PEDRINI

unit for the tensor structure. The Lefschetz motive L is defined via the motive of
the projective line: h(P1) = 1⊕L and there is an isomorphism L ' (Spec(k), 1, 1)
For every motive M = (X, p,m) the Tate twist M(r) is the motive (X, p,m + r).
Note that, with our covariant convention, M(r) 'M ⊗ L⊗r for r ≥ 0.
The Chow groups of a motive (X, p,m) ∈Mrat(C) are defined as follows

Ai(X, p,m) = HomMrat
((X, p,m),Li) = p∗Ai−m(X)

Ai(X, p,m) = HomMrat
((Li, (X, p,m)) = p∗Ai−m(X).

A similar definition holds for the category Mhom(C) of homological motives, with
respect to singular cohomology H∗(X), where

Hi(X, p,m) = p∗Hi−2m(X) ; Hi(X, p,m) = p∗Hi−2m(X).

Let X be a smooth projective variety over C. We say that its motive h(X) ∈
Mrat(C) has a Chow-Künneth decomposition (C-K for short) if there exist orthog-
onal projectors πi = πi(X) ∈ Corr0(X,X) = Ad(X ×X), for 0 ≤ i ≤ 2d, such that
cld(πi) is the (i, 2d− i)-component of ∆X in H2d(X ×X) and

[∆X ] =
∑

0≤i≤2d

πi.

This implies that in Mrat the motive h(X) decomposes as follows:

h(X) =
⊕

0≤i≤2d

hi(X),

where hi(X) = (X,πi, 0). Moreover

H∗(hi(X)) = Hi(X), H∗(hi(X)) = Hi(X)

If we have πi = πt2d−i for all i, we say that the C-K decomposition is self-dual.
By the results in [KMP, 7.2.3] every smooth projective surface S has a reduced

C-K decomposition h(S) =
∑

0≤4 hi(S) with

h2(S) = halg2 (S)⊕ t2(S) = (S, πalg2 )⊕ (S, πtr2 ).

Here

πalg2 =
∑
i

[Di]× [Di]

< [Di], [Di] >

where [Di] as an orthogonal basis of NS(S) and πtr2 = π2 − πalg2 . Then halg2 (S) '
Lρ(S), where ρ(S) is the rank of the Neron-Severi group. We also have

H2(S) = H2
alg(S)⊕H2

tr(S) = πalg2 H2(S)⊕ πtr2 H2(S)

The motive t2(S) is called the transcendental motive of S. It is a birational invariant
and

H∗(t2(S)) = H2(t2(S)) = T (S)Q ; A2(t2(S)) ' K(S),

where T (S) is the transcendental lattice and K(S) is the Albanese kernel, i.e the
kernel of the map A0(S)hom → Alb(S).

We recall the definition of finite dimensionality introduced by S.Kimura in [Ki].
Let M = h(X) ∈ Mrat(C) and let Σn be the symmetric group of order n. Then
we denote by ∧nM the image of M⊗n under the projector

(1/n!)
∑
σ∈Σn

sgn(σ)Γσ
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while SnM is its image under the projector

(1/n!)
∑
σ∈Σn

Γσ.

A motive M is said to be evenly (oddly) finite-dimensional if ∧nM = 0 (SnX = 0)
for some n. A motive M is finite-dimensional if it can be decomposed into a direct
sum M+ ⊕ M− where M+ is evenly finite-dimensional and M− is oddly finite-
dimensional. According to Kimura’s conjecture in [Ki] all motives should be finite
dimensional. The conjecture is known to hold for curves, rational surfaces, surfaces
with pg(X) = 0, which are not of general type, abelian varieties and some 3-folds.
If d = dimX ≤ 3, then the finite dimensionality of h(X) is a birational invariant
(see [GG, Lemma 7.1]), the reason being that in order to make regular a birational
map X → Y between smooth projective 3-folds one needs to blow up only points
and curves, whose motives are finite dimensional.

If X is a complex Fano threefold, then h(X) is finite dimensional and of abelian
type, i.e. it lies in the subcategory ofMrat(C) generated by the motives of abelian
varieties, see [GG, Thm. 5.1]. The proof is based on the fact that all the Chow
groups Ai(X)alg of algebraically trivial cycles are representable. More generally, if
M ∈ Mrat(C) is a motive such that Ai(M)alg is representable, for all i ≥ 0, then
M is finite dimensional of abelian type, see [Vial 2].
In particular, if X is a cubic threefold in P4

C, then h(X) has the following Chow-
Künneth decomposition

h(X) = 1⊕ L⊕N ⊕ L2 ⊕ L3.

Here N = h1(J)⊗ L = h1(J)(1), with J an abelian variety, isogenous to the in-
termediate Jacobian J2(X). As proved by Clemens and Griffiths, X is not rational,
because the principally polarized abelian variety J2(X) is not split by Jacobians of
curves. Therefore in the case of a cubic threefold there is an ”invariant” (up to the
product with the Jacobian of a curve), the intermediate Jacobian, which controls
the rationality of X and also determines the non-trivial part of its Chow motive.

Let X be a cubic fourfold in P5
C. In Section 2, we show that the motive h(X)

has Chow-Künneth decomposition as follows

h(X) = 1⊕ L⊕ (L2)⊕ρ2 ⊕ t(X)⊕ L3 ⊕ L4

where ρ2 is the rank of A2(X) and all the summands of h(X), but possibly t(X),
are finite dimensional, see (2.1). The motive t(X) is the transcendental motive of
X and the Chow group A1(X)hom = A1(X)alg = A1(t(X)) is not representable.
Let F (X) be the Fano variety of lines contained in X. In fact, we show ( see
Prop. 2.8) that there exists a smooth projective surface Sl, the surface of lines in
F (X) meeting a general line l ∈ X, such that t(X) ' t2(Sl)(1).The surface Sl has
q(Sl) = 0 and pg(Sl) > 0. Therefore

A0(Sl)0 = A0(t2(Sl)) = A1(X)hom

and the group A0(Sl)0 of 0-cycles of degree 0 is not representable, by a famous
result of Mumford. We also show (see Prop. 2.8 for details) that A1(X)hom '
A0(Σ2)0, where Σ2 is the surface of lines of the second kind in F (X). Therefore the
motive h(X) is finite dimensional if either Sl or Σ2 have a finite dimensional motive.
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We relate then the transcendental motive of X to the motive of its Fano variety
of lines F (X) (F for short). For a smooth projective variety Y we denote by Mot(Y )
the full pseudo-abelian tensor subcategory of Mrat(C) generated by h(Y ) and the
Lefschetz motive L.

Theorem 1.1. Let h(F ) be the motive of F (X), endowed with a Chow-Künneth

decomposition, and let h2(F ) ∼= halg2 ⊕ htr2 be the standard decomposition of h2(F ).
Then we have an isomorphism

htr2 (F )(1) ∼= htr4 (X) = t(X)

and therefore
Mot(X) = Mot(F (X)).

In some cases, we can say even more (see Sect. 3).

Theorem 1.2. Suppose F (X) ∼= S[2], with S a K3 surface. Then there is an
isomorphism of motives

t2(S)(1) ∼= t(X).

and hence
Mot(X) = Mot(F (X)) = Mot(S)

In particular X has a finite dimensional motive if and only if the motive of S is
finite dimensional, in which case the transcendental motives of X and S are both
indecomposable. Note that, according to Kimura’s conjecture and a conjecture by
Y. André (see [An]), the motives of a cubic fourfold and of a K3 surface should be
of abelian type.

The existence of a K3 surface whose transcendental motive is associated to t(X)
is also related to conjectures on the rationality of X, as follows. Let Cd be the
Noether-Lefschetz divisor of special cubic fourfolds of discriminant d, as defined by
B.Hassett [Has 1]. Recall that a cubic fourfold X is special if it contains a surface Z
such that its cohomological class ζ in H4(X,Z) is not homologous to any multiple
of γ2, where γ is the hyperplane section. The discriminant d is defined as the
discriminant of the intersection form on the sublattice of H4(X,Z) generated by ζ
and the codimension 2 linear section. If d satisfies the following condition:

(**) d is not divisible by 4,9 or a prime p ≡ 2(3)

then X has an associated K3 surface, i.e the transcendental lattice T (X) of X is
Hodge isometric to the (twisted) transcendental lattice T (S) of S. Also, according
to a conjecture of Kuznetsov [Kuz] and results of Addington-Thomas [AT], a general
member of Cd should be rational if (∗∗) holds.

In Section 4 we introduce the definition of associated motive for a cubic fourfold
X. We say that the motive h(X) is associated to the motive of a K3 surface S if
there is an isomorphism between t2(S)(1) and t(X), inducing an Hodge isometry
between T (S)Q(1) and T (X)Q. We relate this to conjectures about the rationality
of X. Our main result in this direction is the following.

Proposition 1.3. Let X be a general cubic fourfold in Cd. Assuming Kimura’s
conjecture, the motive h(X) is associated to the motive of a K3 surface, if d satisfies
(∗∗). If d does not satisfy (∗∗), then there is no K3 surface S such that the motive
h(X) is associated to h(S).
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In Section 5, by adapting some recent results by Vial [Vial 1] about motives of fibra-
tions with rational fibers, we showcase classes of cubic fourfolds with an associated
K3 surface - in a motivic sense. More precisely, thanks to [Has 1, Kuz, AHTV-A]
we know that there are loci inside C18 and C8 where cubic fourfolds admit fibrations
over P2 with rational fibers and a rational section. All those fourfolds are rational.
For cubic fourfolds inside these loci we show that X has a finite dimensional motive
if and only if h(S) is finite dimensional, with S a K3 surface.

In section 6 we consider the case of a cubic fourfold with a symplectic automorphism
σ and show that, if σ has order 3 and a fixed surface, then X is rational, its motive
is of abelian type, and there is an associated K3 surface S such that t2(S) '
t2(E1 × E2) where the Ei are elliptic curves. If σ is a symplectic involution then
t(X) ' t2(S)(1), where S is a K3 surface, a double cover of a cubic surface C ⊂ P3,
ramified along a a degree 6 curve.

2. The motive of a cubic fourfold

In this section we give a Chow-Künneth decomposition of the motive h(X) of a
cubic fourfold and show that its transcendental part htr4 (X) = t(X) is isomorphic
to the (twisted) transcendental motive htr2 (F (X))(1) coming from a suitable Chow-
Künneth decomposition of the motive of the Fano variety of lines F (X) (see Thm.
2.5). Note that, by a result of R.Laterveer [Lat 1], if h(X) is finite dimensional
then also h(F (X)) is finite dimensional. Then we show that

A1(X)hom = A1(X)alg ' A1(t(X)) ' A0(Σ2)0

where Σ2 is the surface of lines of second type (i.e. such thatNl/X ' O(1)2⊕O(−1))
in F (X). For a general X the surface Σ2 is of general type with pg > 0, see [Am],
and hence the group A1(X)alg is not representable.

Every cubic fourfold X is rationally connected and hence CH0(X) ' Z. Ratio-
nal, algebraic and homological equivalences all coincide for cycles of codimension
2 on X. Hence the cycle map CH2(X) → H4(X,Z) is injective and A2(X) =
CH2(X)⊗Q is a vector subspace of dimension ρ2(X) of H4(X,Q). By the results
in [TZ, Rk. 6.4] we have A1(X)hom = A1(X)alg. Moreover homological equivalence
and numerical equivalence coincide for algebraic cycles on X, because the standard
conjecture D(X) holds true. Therefore A1(X)hom = A1(X)num.
A cubic fourfold X has no odd cohomology and H2(X,Q) ' NS(X)Q ' A1(X),
because H1(X,OX) = H2(X,OX) = 0. Let γ ∈ A1(X) be the class of a hyperplane
section. Then H2(X,Q) = A1(X) ' Qγ and H6(X,Q) = Q[γ3/3]. Here <
γ2, γ2 >= γ4 = 3, where < , > is the intersection form on H4(X,Q).
Let π0 = [X×P0], π8 = [P0×X], where P0 is a closed point and π2 = (1/3)(γ3×γ),
π6 = πt2 = (1/3)(γ × γ3). Then

h(X) ' 1⊕ h2(X)⊕ h4(X)⊕ h6(X)⊕ L4

where 1 ' (X,π0), L4 ' (X,π8), h2(X) = (X,π2), h6(X) = (X,π6) and h4(X) =
(X,π4), with π4 = ∆X −π0−π2−π6−π8. The above decomposition of the motive
h(X) is in fact integral, because

γ3 = 3|l|
for a line l ∈ F (X), see [SV 2, Lemma A3].
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Let ρ2 be the dimension of A2(X), i.e. the rank of the algebraic part in H4(X).
Choosing 2−cycles {D1, D2 · · · , Dρ2} and their Poincare’ dual cycles {D′1, D′2 · · · , D′ρ2}
we get a splitting

h4(X) = halg4 (X)⊕ htr4 (X)

where πalg4 =
∑

1≤i≤ρ2 [Di, D
′
i] and halg4 (X) ' (L2)ρ2 . Therefore we get a refined

Chow-Künneth decomposition of the motive h(X)

(2.1) h(X) = 1⊕ L⊕ (L2)⊕ρ2 ⊕ t(X)⊕ L3 ⊕ L4

where t(X) = htr4 (X) and H∗(t(X)) = H4(t(X)) = T (X)Q where T (X) is the
transcendental lattice. All the motives in (2.1), different from t(X), are isomorphic
to a multiple of Li, for some i. Therefore in the decomposition (2.1) all motives,
but possibly t(X), are finite dimensional. It follows that the motive h(X) is finite
dimensional if and only if t(X) is evenly finite dimensional.

Lemma 2.2. Let X be a cubic fourfold and let t(X) be the transcendental motive
in the Chow-Künneth decomposition (2.1). Then Ai(t(X)) = 0 for i 6= 3 and
A3(t(X)) = A1(X)hom

Proof. The cubic fourfold X is rationally connected and hence A4(X) = A0(X) =
Q that implies A4(t(X)) = 0. Also from the Chow-Künneth decomposition in
(2.1) we get A0(t(X)) = 0 and A1(t(X)) = πtr4 A

1(X) = 0, because A1(h2(X)) =
π2(A1(X)) = A1(X).

We first show that A2(t(X)) = 0. Let α ∈ A2(X), with α 6= 0. Then α is not
homologically trivial, because A2(X)hom = 0.

πtr4 (α) = α− π0(α)− π2(α)− πalg4 (α)− π6(α)− π8(α),

where π0(α) = π8(α) = 0. We also have

π2(α) = (1/3)[γ3 × γ]∗(α) = (1/3)(p2)∗((α×X) · [γ3 × γ])

where p2 : X ×X → X and γ3 ∈ A3(X). Therefore π2(α) = 0 in A2(X). Similarly

π6(α) = (1/3)[γ × γ3]∗(α) = (1/3)(p2)∗((α×X) · [γ × γ3])

where α · γ ∈ A1(X)/A1(X)hom ' Q[γ3/3] and hence α · γ = (a/3)[γ3] with a ∈ Q.
Therefore π6(α) = 0 in A2(X). Let {D1, · · · , Dρ2} be a Q-basis for A2(X) and let

α =
∑

1≤i≤ρ2 miDi,with mi ∈ Q. Then πalg4 (α) =
∑

1≤i≤ρ2 π4,i(α) = α, because

(π4,i)∗(Di) = Di. We get πtr4 (α) = α− πalg4 (α) = 0 and hence

A2(t(X)) = (πtr4 )∗A
2(X) = 0.

Therefore we are left to show that A1(t(X)) = A1(X)hom. Let β ∈ A1(X) = A3(X).
From the Chow-Künneth decomposition in (2.1) we get

πtr4 (β) = β − π0(β)− π2(β)− πalg4 (β)− π6(β)− π8(β),

where π0(β) = πalg4 (β) = π8(β) = 0. We also have π2(β) = 0 because π2 =
(1/3)(γ3 × γ). Therefore

πtr4 (β) = β − π6(β) = β − (1/3)(γ × γ3)∗(β) = β − (1/3)(β · γ)γ3 ∈ A3(X)

and hence
(πtr4 (β) · γ) = (β · γ)− (1/3)(β · γ)(γ3 · γ) = 0



RATIONALITY QUESTIONS AND MOTIVES OF CUBIC FOURFOLDS 7

because γ4 = 3. Since γ is a generator of A1(X) it follows that the cycle πtr4 (β) is
numerically trivial. Therefore we get

A1(t(X)) = πtr4 A1(X) = A1(X)num = A1(X)hom.

�

The following Lemma follows from the results in [Vial 1, Thm. 3.18] and [GG,
Lemma 1].

Lemma 2.3. Let f : M → N be a morphism of motives in Mrat(C) such that
f∗ : Ai(M)→ Ai(N) is an isomorphism for all i ≥ 0. Then f is an isomorphism.

Proof. Let M = (X, p,m) and N = (Y, q, n) and let k ⊂ C be a field of definition of
f , which is finitely generated . Then Ω = C is a universal domain over k. By [Vial 1,
Thm. 3.18] the map f has a right inverse, because the map f∗ : Ai(M)→ Ai(N) is
surjective. Let g : N →M be such that f ◦ g = idN . Then g has an image T which
is a direct factor of M and hence f induces an isomorphism of motives inMrat(C)

f : M ' N ⊕ T

From the isomorphism Ai(M) ' Ai(N), for all i ≥ 0, we get Ai(T ) = 0 and hence
T = 0, by [GG, Lemma 1]. �

Let X be a cubic fourfold and let F (X) = F be its Fano variety of lines , which
is a smooth fourfold. Let

(2.4)

P
q−−−−→ X

p

y
F

be the incidence diagram, where P ⊂ X × F is the universal line over X. Let
p∗q
∗ : H4(X,Z) → H2(F,Z) be the Abel-Jacobi map. Let α1, · · · , α23 be a basis

of H4(X,Z) and let α̃i = p∗q
∗(αi). Then, by a result of Beauville-Donagi in [BD],

α̃i = p∗q
∗(αi) form a basis of H2(F,Z). The lattice H2(F,Z) is endowed with

the Beauville-Bogomolov bilinear form qF , see [SV 2, Sect 19] . The Abel-Jacobi
map induces an isomorphism between the primitive cohomology of H4(X,Z)prim
and the primitive cohomology H2(F,Z)prim. Here H2(F,Z)prim =< g >⊥, with
g ∈ H2(F,Z) the restriction to F (X) ⊂ Gr(2, 6) of the class on Gr(2, 6) defining
the Plücker embedding. In particular g = p∗q

∗(γ2). The Abel-Jacobi map induces
an isomorphism between the Hodge structure of H4(X,C)prim and the (shifted)
Hodge structure of H2(F,C)prim.
The next result shows that the Abel-Jacobi map induces an isomorphism between
t(X) and the transcendental motive htr2 (F ) in a suitable Chow-Künneth decompo-
sition for h(F ).

Theorem 2.5. Let X be cubic fourfold and let F (X) be its Fano variety of lines.
Then there exists a Chow-Künneth decomposition

h(F ) = h0(F )⊕ h2(F )⊕ h4(F )⊕ h6(F )⊕ h8(F )

with h2(F ) ' halg2 (F )⊕ htr2 (F ). The Abel-Jacobi map gives an isomorphism

htr2 (F )(1) ' htr4 (X) = t(X).
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Proof. The hyperkähler manifold F (X) is of K32-type, i.e. it is deformation equiv-
alent to the Hilbert scheme of length-2 subschemes on a K3 surface. By the results
in [SV 2, Sect. 19] there exists a cycle L ∈ CH2(F × F ) whose cohomology class
in H4(F × F,Q) is the Beauville-Bogomolov class B, i.e. the class corresponding
to q−1

F . Let us set l := (i∆)∗L ∈ CH2(F ), where i∆ : F → F × F is the diag-
onal embedding. By [SV 2, Thm. 2] the Chow groups of the variety F have a
Fourier decomposition. In particular the group A4(F ) = A0(F ) has a canonical
decomposition

A4(F ) = A4(F )0 ⊕A4(F )2 ⊕A4(F )4

with A4(F )0 =< l2 >, A4(F )2 = l · L∗A4(F ) and A4(F )4 = L∗A
4(F ) · L∗A4(F ).

Here < l2 >= QcF , with cF a special degree 1 cycle coming from a surface W ⊂ F
such that any two points on W are rationally equivalent on F , see [SV 2, Lemma
A.3].

The Fourier decomposition of the Chow groups A∗(F ) is compatible with a
Chow-Künneth decomposition of the motive h(F ) given by projectors

{π0(F ), π2(F ), π4(F ), π6(F ), π8(F )},

as in [SV 1, Thm. 8.4]. Here π2(F ) = πalg2 ⊕ πtr2 , π6(F ) = πalg6 ⊕ πtr6 and

π4 = ∆F − (π0 − π2 − π6 − π8)

We have h(F ) = M ⊕N where

N = (F, π0)⊕ (F, πalg2 )⊕ (F, πalg4 )⊕ (F, πalg6 )⊕ (F, π8)

and N is isomorphic to a direct sum of Li, for i ≥ 0. We also have A∗(F )hom =

A∗(M). Let us set h2(F ) = halg2 (F ) ⊕ htr2 (F ), where htr2 (F ) = (F, πtr2 (F )), with
πtr2 (F ) ∈ EndMrat

M and H∗(htr2 (F )) = H2
tr(F ). Then

A2(F ) = Im(π4)∗ ⊕ Im(π2)∗ = Im(π4)∗ ⊕ Im(πtr2 )∗

because πalg2 (F ) acts as 0 on A2(F ).
Let us denote A = I∗A

4(F ) ⊂ A2(F ), with I the incidence correspondence, i.e.
I = (p× p)∗(q × q)∗∆X . The group Ahom is generated by the classes [Sl1 ]− [Sl2 ]
where, for a line l on X, Sl denotes the surface in F (X) of all lines meeting l, see
[SV 2, Thm. 21.9]. By [SV 2, Prop. 21.10] the group Ahom coincides with the
subgroup A2(F )2 in the Fourier decomposition A2(F ) = A2(F )0 ⊕A2(F )2.
The Abel-Jacobi map q∗p

∗ : Ai(F ) → Ai−1(X) induces a surjective map Ψ0 :
A4(F ) → A3(X) = A1(X), where A1(X) is generated by the classes of lines, see
[TZ]. The map induced by Ψ0 on the subgroup A4(F )hom has a kernel isomorphic
to F 4A4(F ) = Ahom ⊗ Ahom, see [SV 2, Thm 20.2], where F 4A4(F ) = Ker{I∗ :
A4(F )→ A2(F )}. The maps I∗ and Ψ0 yield two exact sequences

0 −−−−→ F 4A4(F ) −−−−→ A4(F )hom
I∗−−−−→ Ahom −−−−→ 0

0 −−−−→ F 4A4(F ) −−−−→ A4(F )hom
Ψ0−−−−→ A1(X)hom −−−−→ 0

where (A4(F ))hom = (A4(F )2)hom ⊕ (A4(F )4)hom, with (A4(F )2)hom ' Ahom and
(A4(F )4)hom ' Ahom · Ahom. Therefore we get the following isomorphisms

Ahom ' A4(F )2 ' A1(X)hom;

Ahom ' A2(F )2 ' A1(X)hom.
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By [SV 1, Proposition 7.7] we also have

A2(F )hom ' Ahom ⇐⇒ Im(π2)∗ = A2(F )hom.

Therefore A2(F )hom = Im(πtr2 ) and we get an isomorphism

A2(htr2 (F )) ' A1(X)hom.

The universal line P , viewed as a correspondence in A5(F × X), yields a map in
Mrat(C)

P∗ : h(F )(1)→ h(X).

Therefore, by composing with the projection h(X) → t(X) and the inclusion
htr2 (F )(1) ⊂ h(F )(1), the correspondence P yields a map of motives

P̄∗ : htr2 (F )(1)→ t(X)

The above map induces a map of Chow groups

Ai(htr2 (F )(1)→ Ai(t(X))

that is an isomorphism for all i ≥ 0 because

A3(htr2 (F )(1) = A2(htr2 (F )) ' A1(X)hom = A3(t(X))

and Ai(htr2 (F )) = Ai(t(X)) = 0 for i 6= 3. By Lemma 2.3 we get htr2 (F )(1) '
t(X). �

Remark 2.6. If the motive h(F (X)) is finite dimensional then, by Theorem 2.5,
also t(X) is finite dimensional and hence h(X) is finite dimensional. Conversely if
h(X) is finite dimensional then, by [Lat 1], also h(F (X)) is finite dimensional .

Let X be a cubic fourfold and let l ∈ F (X) be a general line. There exists a
unique plane Pl ⊂ P5 containing l and which is everywhere tangent to X along l.
Then

Pl ·X = 2[l] + [l0]

A line l on X is said to be of the second type if

Nl/X ' O(1)2 ⊕O(−1).

In this case there is a linear P3
l containing the line l and which is tangent to X along

l and hence a family of planes {Πt/t ∈ P1} containing l such that each Πt is tangent
to X along l. Let Σ2 be the surface of the lines of second type in F = F (X). For a
general X the surface Σ2 is smooth and is the indeterminacy locus of the rational
map, defined by C.Voisin

φ : F 99K F.

The map φ sends a general line l ⊂ X to its residual line with respect to the unique
plane P2 ⊂ P5 tangent to X along l. The class of Σ2 in the Chow group A2(F )
is given by 5(g2 − c), where g = Φ(γ2) ∈ A1(F ) and c = [ΣY ], with ΣY = F (Y )
for a smooth hyperplane section Y of X. Here Φ = p∗q

∗ : Ai(X)→ Ai−1(F ) is the
Abel-Jacobi map and Ψ : Ai(F ) → Ai−1(X) is the cylinder homomorphism. We
have Ψ(g2) = 21γ, with g2 ∈ A2(F ) and A1(X) ' Qγ, see [SV 2, A.4].

Let Sl ⊂ F be the surface of lines meeting a general line l. Then Sl is a smooth
surface and there is a natural involution σ : Sl → Sl. If [l′] ∈ Sl is a point different
from [l] then σ([l′]) is the residue line of l ∪ l′, while σ([l]) = [l0]. The involution σ
has 16 isolated fixed points and the quotient Yl = Sl/σ is a quintic surface in P3

with 16 ordinary double points, see [Shen, Remark 4.4]. Also, by [Shen, Lemma
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4.5] q(Sl) = 0. Let X̃ be the blow-up of X along l. Then the projection from the

line l defines a conic bundle π : X̃ → P3. The surface Sl parametrizes lines in the
singular fibers, the discriminant divisor D ⊂ P3 is the quintic surface Yl and the
induced map Sl → D is the double cover fl : Sl → Yl associated to the involution
σ. The map fl : Sl → Yl induces a commutative diagram

S̃l
gl−−−−→ Sl

f̄l

y fl

y
Ỹl −−−−→ Yl

where S̃l is the blow-up of the set of isolated fixed points of σ and Ỹl is a
desingularization of Yl. Since t2(−) is a birational invariant for smooth projective
surfaces the above diagram yields a map

θ : t2(S̃l) = t2(Sl)→ t2(Ỹl)

which is a projection onto a direct summand. Since q(Sl) = 0 the motive t2(Sl)
splits as follows, see [Ped, Prop. 1],

t2(Sl) ' t2(Sl)
+ ⊕ t2(Sl)

−,

where t2(Sl)
+ and t2(Sl)

− are the direct summand of t2(Sl) on which the invo-
lution σ acts as +1 and −1 respectively . We also have

A2(t2(Yl)) = A2(t2(Sl))
+ = A0(Sl)

+
0 ; A2(t2(Sl))

− = A0(Sl)
−
0 ;

where A0(Sl)0 = A0(Sl)
+
0 ⊕ A0(Sl)

−
0 . Here A0(Sl)0 is the group of 0-cycles of

degree 0 (with Q-coefficients) and A0(Sl)
+
0 is the subgroup fixed by σ.

The surface Sl, for a general line l, has a class 1/3(g2 − c) in A2(F ). Therefore
[Σ2] = 15[Sl] in A2(F ). For a general fourfold X any Lagrangian surface in F has
a cohomology class proportional to c. Therefore both the surfaces Σ2 and Sl are
not Lagrangian and hence pg(Σ2) > 0 and pg(Sl) > 0.

Lemma 2.7. Let Sl be the surface of lines meeting a general line l ⊂ X. Then
A0(Sl)

+
0 = 0 and hence t2(Yl) = 0 , t2(Sl) = t2(Sl)

−.

Proof. The group A0(Sl)0 is generated by classes α of the form [l1] − [l2] where
li ∈ Sl. If li 6= l, for i = 1, 2, then li ∩ l 6= ∅ and there are planes P1, P2 ⊂ P5 such
that

P1 ·X = [l] + [l1] + σ([l1]) = γ3 ; P2 ·X = [l] + [l2] + σ([l2]) = γ3,

where γ ∈ A1(X) is the class of a hyperplane section. Therefore [l1]−[l2] = σ([l2])−
σ([l1]) and hence [l1]− [l2] ∈ A0(Sl)

−
0 . Similarly if α = [l]− [l1], then there exists a

plane Pl such that Pl ·X = 2[l]+σ([l]) = γ3 and hence [l]+[l1]+σ([l1]) = 2[l]+σ([l]).
Therefore we have

[l]− [l1] = σ([l1])− σ([l]) ∈ A0(Sl)
−
0 .

This in turn implies that A0(Sl)0 = A0(Sl)
−
0 and A0(Sl)

+
0 = A2(t2(Yl)) = 0. Since

Ai(t2(Yl)) = 0, for i 6= 2, we get t2(Yl) = 0. �

The following result shows the relation between the transcendental motive t(X)
and the transcendental motives of the surfaces Σ2 and Sl.
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Proposition 2.8. Let X be a cubic fourfold and let Sl be the surface of lines
meeting a general line l ⊂ X. Then

(i) t(X) is isomorphic to t2(Σ2)(1)⊕ h3(Σ2)(1), where

h(Σ2) ' 1⊕ h1(Σ2)⊕ L⊕ρ(Σ2) ⊕ t2(Σ2)⊕ h3(Σ2)⊕ L2

is a reduced Chow-Künneth decomposition.
(ii) t(X) ' t2(Sl)(1)
(iii) A0(Sl)0 ' A0(Σ2)0 ' A1(X)hom.

Proof. (i) Let Z = Σ2 and let

PZ
qZ−−−−→ X

pZ

y
Z

be the incidence diagram in (2.4) restricted to Z ⊂ F (X), where PZ is the universal
line over Z. Then, as a correspondence in A3(Z ×X), PZ gives a map of motives

(PZ)∗ : h(Z)(1)→ h(X)

that composed with the inclusion t2(Z)(1) ⊕ h3(Z)(1), coming from the C-K de-
composition of h(Z), and the projection h(X)→ t(X), gives a map

(PZ)∗ : t2(Z)(1)⊕ h3(Z)(1)→ t(X)

We claim that the above map induces an isomorphism on all Chow groups.
For a general X the surface Z = Σ2 is smooth, see [Am], and, by [SV 2, Prop. 19.5]

A4(F )0 ⊕A4(F )2 = Im{φ∗ : A0(Z)→ A4(F )}.

We get

(A4(F )2) = Im{φ∗ : A0(Z)0 → A4(F )hom},
because (A4(F )0)hom = 0. The map φ∗ : A0(Z)0 → A4(F )hom is injective because
φ∗(z − z′) = −2(z − z′), by [SV 2, Lemma 18.3]. Therefore A0(Z)0 ' A4(F )2 and
hence

(2.9) A0(Z)0 ' A4(F )2 ' A1(X)hom

By [KMP, Prop. 7.2.3] we obtain

A3(h(Z)(1)) = A3(t2(Z)(1)⊕h3(Z)(1)) = A2(t2(Z)⊕h3(Z)) = T (Z)⊕Alb(Z) ' A0(Z)0,

where T (Z) is the Albanese kernel. We also have

A3(h(X)) = A1(h(X)) = A1(X)hom ⊕Q[γ3/3],

where A1(X)hom = A3(t(X)). Since Ai(t(X)) = 0 for i 6= 3 and Ai(t2(Z)(1) ⊕
h3(Z)1)) = 0 for i 6= 3, by (2.9) we get an isomorphism Ai(t2(Z)(1) ⊕ h3(Z)1)) '
Ai(t(X)), for all i ≥ 0.

By Lemma 2.3 (PZ)∗ is an isomorphism of motives.

(ii) Let l be general line and let Sl be the surface of lines meeting l. Let Cl be
the total space of lines meeting l and let
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Cl
ql−−−−→ X

pl

y
Sl ⊂ F

be the incidence diagram. Then the Abel-Jacobi map Φ and the cylinder homo-
morphism Ψ induce homomorphisms

Φl : Ai(X)→ Ai−1(Sl) ; Ψl : Ai(Sl)→ Ai+1(X)

By [Shen, Thm. 4.7] the composition Φl ◦Ψl equals σ − id and Ψl ◦Φl = −2. The
Abel-Jacobi map Φl induces an isomorphism between A1(X) and Pr(A0(Sl)0, σ),
where Pr(A0(Sl)0, σ) = A0(Sl)

−
0 = A3(t2(Sl)

−(1)) [Shen, Def. 3.6]. By Lemma 2.7
we get A0(Sl)

−
0 = A0(Sl)0. Therefore the map

Φl : A1(X) ' Q[γ3/3]⊕A1(X)hom → A0(Sl)0

yields an isomorphism between A1(X)hom and A0(Sl)0 = A0(Sl)hom.
In the incidence diagram Cl is a P1-bundle over Sl and hence h(Cl) ' h(Sl) ⊕
h(Sl)(1). Therefore we get a map of motives

g : t2(Sl)(1)→ t(X)

which induces a map of Chow groups (g)∗ : Ai(t2(Sl)(1)) → Ai(t(X)). We
have A3(t2(Sl)(1)) = A0(Sl)0 = A0(Sl)

−
0 and Ai(t2(Sl)(1)) = 0 for i 6= 3. Also

A3(t(X)) = A1(X)hom and Ai(t(X)) = 0 for i 6= 3. Therefore g induces a map

g− : t2(Sl)(1)→ t(X)

such that g∗ : Ai(t2(Sl)(1)) → Ai(t(X)) is an isomorphism for all i ≥ 0 and hence
g− is an isomorphism in Mrat(C).

(iii) follows immediately from the isomorphisms

A1(X)hom ' A0(Sl)0 ' A0(Σ2)0.

�

Remark 2.10. (1) The isomorphism in (ii) answers a question raised by M.Shen
in a private communication. For a smooth projective surface S, with q(S) = 0
and pg(S) > 0, equipped with an involution σ, we can define the Prym motive
Prym(S, σ) to be the motive

Prym(S, σ) = t2(S)−

where, as in [Ped, Prop 1], t2(S)− is the direct summand of t2(S) where the
involution σ acts as −1. The action of σ on t2(S) is defined via the homomorphism

ΨS : A2(S × S)→ EndMrat(t2(S))

which sends the correspondence Γσ ∈ A2(S × S) to πtr2 ◦ Γσ ◦ πtr2 . Here t2(S) =
(S, πtr2 ) and hence the projector πtr2 corresponds to the identity in EndMrat

(t2(S)).

(2) If l ∈ X is a general line then the blow-up X̃ of X along l is a conic bundle

π : X̃ → P3 and Yl = Sl/σ is the discriminant divisor. Therefore (ii) may be viewed
as a generalization of a result appearing in [N-S] for a conic bundle f : X → P2. In
[N-S] it is proved that the transcendental part of h(X) is given by the Prym motive
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Prym(C̃/C), where the curve C is the discriminant of f and C̃ → C is a double
cover.

Remark 2.11. In the case pg(S) = 1 (e.g. S a K3 surface) then t2(S) is inde-
composable if h(S) is finite dimensional. Therefore the Prym motive of S is either
0 or it coincides with t2(S). If S is a K3 surface and σ is a symplectic involution
then t2(S) ' t2(S/σ) and hence σ acts as the identity on t2(S), i.e Prym(S, σ) = 0.
If σ is non-symplectic then the quotient surface S/σ is either an Enriques surface
or a rational surface. In any case t2(S/σ) = 0 and ΨS(Γσ) = −idt2(S). Therefore
Prym(S, σ) = t2(S). By Lemma 2.7 the same result holds for t2(Sl).

3. Special cubic fourfolds

In this section we prove (see Thm.3.2) that, if F (X) is isomorphic to S[2], with
S a K3 surface, then t(X) is isomorphic to t2(S)(1). Therefore h(X) is finite
dimensional if and only if h(S) is finite dimensional.
Recall that a cubic fourfold X is special if it contains a surface Z such that its co-
homological class ζ in H4(X,Z) is not homologous to any multiple of γ2. Therefore
ρ2(X) > 1. The discriminant d is defined as the discriminant of the intersection
form <,>D on the sublattice D of H4(X,Z) generated by ζ and γ2. B.Hassett in
[Has 1] proved that special cubic fourfolds of discriminant d form an irreducible di-
visor Cd in the moduli space C of cubic fourfolds if and only if d > 0 and d ≡ 0, 2(6).

Definition 3.1. Let X be a special cubic fourfold and let D be the sublattice
of H4(X,Z) generated by ζ and γ2. A polarized K3 surface S is associated to
X if there is an isomorphism of lattices K ' H2(S,Z)prim(−1), where K = D⊥

and H2(S,Z)prim denotes primitive cohomology with respect to a polarization l ∈
H2(S,Z).

IfX is a generic special cubic fourfold with discriminant of the form d = 2(n2+n+1),
where n is an integer ≥ 2, then the Fano variety of X is isomorphic to S[2], with
S a K3 surface associated to X. Special cubic fourfolds of discriminant d > 6 have
associated K3 surface S if and only if d is not divisible by 4 or 9 or any odd
prime p ≡ 2(3). In this case the transcendental lattice T (X) is Hodge isometric to
T (S)(−1), see [Add].
In the case d = 14 the special surface is a smooth quartic rational normal scroll.
By the results in [BD] and in [BRS] all the fourfolds X in C14 are rational (see also
[ABBV] for details on the derived categories approach). Moreover if X ∈ (C14−C8),
then F (X) ' S[2], where S is the K3 surface of degree 14 and genus 8, parametrizing
smooth quartic rational normal scrolls contained in X.

More generally, suppose that X is special and F (X) ' S[2], with S a K3 surface.
Then the homomorphism H2(S,Q)→ H2(F,Q) induces an orthogonal direct sum
decomposition with respect to the Beauville-Bogomolov form

H2(F,Q) ' H2(S,Q)⊕Qδ,

with qF (δ, δ) = −2 and qF restricted to H2(S,Q) is the intersection form, see [SV 2,
Rmk. 10.1]. Therefore

H4
tr(X,Q) ' H2

tr(S,Q)

where dimH4
tr(X,Q) = 23− ρ2(X). Here ρ2(X) ≥ 2 and hence we get

dimH2
tr(F,Q) = dimH2

tr(S,Q) = 22− ρ(S) = 23− ρ2(X) ≤ 21,
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where ρ(S) is the rank of NS(S).

Theorem 3.2. Let X be a cubic fourfold and let F = F (X) be the Fano variety of
lines. Suppose that F ' S[2], with S a K3 surface. Let p and q be the morphisms in
the incidence diagram (2.4). Then q induces a map of motives q̄ : t2(S)(1)→ t(X)
in Mrat(C) which is an isomorphism.

Proof. In (2.4) the universal line P is seen as a correspondence in A5(F ×X) and
gives a map

P∗ : h(F )(1)→ h(X)

By the results in [deC-M, Thm. 6.2.1] h(S) is a direct summand of h(S[2]) = h(F ).
Therefore we get a map

h(S)(1) −−−−→ h(F )(1)
P∗−−−−→ h(X)

Let

h(S) ' 1⊕ L⊕ρ(S) ⊕ t2(S)⊕ L2

be a refined Chow-Künneth decomposition, as in [KMP, Sect. 7.2.2]. By composing
with the inclusion t2(S)(1) → h(S)(1) and the surjection h(X) → t(X) we get a
map of motives in Mrat(C),

P̄ : t2(S)(1)→ t(X)

For two distinct points x, y ∈ S let us denote by [x, y] ∈ F = S[2] the point of F that
corresponds to the subscheme x ∪ y ⊂ S. If x = y then [x, x] denotes the element
in A4(F ) represented by any point corresponding to a non reduced subscheme of
length 2 on S supported on x. With these notations the special degree 1 cycle
cF ∈ A4(F ) (see [SV 2, Lemma A.3]), given by any point on a rational surface
W ⊂ F , is represented by the point [cS , cS ] ∈ F , where cS is the Beauville-Voisin
cycle in A0(S) such that c2(S) = 24cS . We also have (see [SV 2, Prop. 15.6])

(A4(F )2)hom =< [cS , x]− [cS , y] > .

We claim that the map φ : A0(S) → A0(S[2]) = A4(F ) sending [x] to [cS , x] is
injective and hence

A0(S)0 ' (A4(F )2)hom.

The variety S[2] is the blow-up of the symmetric product S(2) along the diagonal
∆ ∼= S. Let S̃ be the inverse image of ∆ in S[2]. Then S̃ is the image of the closed
embedding s → [cS , s]. By a result proved in [Ba, Thm. 2.1] the induced map of

0-cycles A0(S̃)→ A0(S[2]) is injective. Therefore the map φ is injective.
From the isomorphism A0(S)0 ' (A4(F )2)hom we get

A3(t2(S)(1) = A2(t2(S)) = A0(S)0 ' A1(X)hom ' A3(t(X))

Since Ai(t2(S)(1)) = Ai(t(X)) = 0 for i 6= 3 the map P̄ : t2(S)(1)→ t(X) gives an
isomorphism on all Chow groups .Therefore t2(S)(1) ' t(X) �

Remark 3.3. Let X be a cubic fourfold such that there exist K3 surfaces S1 and

S2 and isomorphisms r1 : F (X) → S
[2]
1 and r2 : F (X) → S

[2]
2 with r∗1δ1 6= r∗2δ2,

as in [Has 1, Def. 6.2.1], where H2(F,Q) ' H2(S1,Q)⊕Qδ1 ' H2(S2,Q)⊕Qδ2.
Then, by Thm. 3.2, we get t2(S1) ' t2(S2), and hence the motives h(S1) and h(S2)
are isomorphic.
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Corollary 3.4. Let X be a cubic fourfold and let F = F (X) be the Fano variety
of lines. Suppose that F ' S[2], with S a K3 surface. Then h(X) is finite dimen-
sional if and only if h(S) is finite dimensional in which case the motive t(X) is
indecomposable.

Proof. If h(X) is finite dimensional then also t(X) is finite dimensional and hence,
by Theorem 3.2, t2(S) is finite dimensional. Therefore h(S) is finite dimensional.
Conversely, if h(S) is finite dimensional then also t2(S) and t(X) are finite dimen-
sional, by Theorem 3.2. From the Chow-Künneth decomposition in (2.1) we get
that h(X) is finite dimensional. If h(S) is finite dimensional then the motive t2(S) is
indecomposable, see [Vois 1, Cor 3.10], and hence also t(X) is indecomposable. �

Remark 3.5. If the motive h(X) of a cubic fourfold is finite dimensional then
the transcendental part t(X) of h(X) is, up to isomorphisms in Mrat(C), in-
dependent of the Chow-Künneth decomposition h(X) =

∑
i hi(X) in (2.1). If

h(X) =
∑
i h̃i(X) is another Chow-Künneth decomposition, with h̃i(X) = (X, π̃i),

then, by [KMP, Thm. 7.6.9], there is an isomorphism h̃i(X) ' hi(X) and π̃i =
(1 + Z) ◦ πi ◦ (1 + Z)−1, where Z ∈ A4(X ×X)hom is a nilpotent correspondence.
In particular

π̃4 = (1 + Z) ◦ π4 ◦ (1 + Z)−1 = (1 + Z) ◦ (πalg4 + πtr4 ) ◦ (1 + Z)−1

and hence h̃4(X) contains as a direct summand a submotive t̃(X) = (X, (1 + Z) ◦
πtr4 ◦ (1 + Z)−1) isomorphic to t(X).
However, differently from the case of the transcendental motive t2(S) of a surface
S, the motive t(X) is not a birational invariant. In fact t(X) 6= 0 for a rational
cubic fourfold X such that F (X) ' S[2], with S a K3 surface, while P4

C has no
transcendental motive.

According to Cor. 3.4 if X is a special cubic fourfold with F (X) ' S[2], and h(X)
is finite dimensional, then t(X) is indecomposable. The following proposition shows
that, if X is not special and h(X) is finite dimensional, then t(X) is indecomposable.

Proposition 3.6. Let X be a very general cubic fourfold, i.e. ρ2(X) = 1. If h(X)
is finite dimensional the transcendental motive t(X) is indecomposable.

Proof. Let us define the primitive motive h(X)prim = (X,πprim, 0) as in [Ki, Sect.
8.4], where

πprim = ∆X − (1/3)
∑

0≤i≤4

(γ4−i × γi).

and

H∗(h(X)prim) = H4(X,Q)prim = P (X)Q

If X is very general then ρ2(X) = 1 and A2(X) is generated by the class γ2.
Therefore in the Chow-Künneth decomposition of h(X) in (2.1) we have h(X)prim =
htr4 (X) = t(X) and

h4(X) = halg4 (X) + htr4 (X) ' L⊕ h(X)prim.

If X is very general, then EndHS(H4(X,Q)prim) = Q[id], see [Vois 2, Lemma 5.1].

Let Mhom(C) be the category of homological motives and let M̃hom(C) be the
subcategory generated by the motives of all smooth projective varieties V such
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that the Künneth components of the diagonal in H∗(V × V ) are algebraic. The
Hodge realization functor

HHodge :Mrat(C)→ HSQ

to the Tannakian category of Q-Hodge structures induces a faithful functor M̃hom(C)→
HSQ. Let us denote h̄(X) := hhom(X) ∈ M̃hom(C) : then EndMhom

(h̄(X)prim) '
Q[id] and hence

EndMhom
(h̄tr4 ((X)) ' EndMhom

(h̄(X)prim) ' Q[id]

If h(X) is finite dimensional then the indecomposability of EndMhom
(h̄tr4 (X)) in

Mhom(C) implies the indecomposability in Mrat(C). Therefore

EndMrat(t(X)) ' EndMrat(h(X)prim) ' Q[id]

and the transcendental motive of X is indecomposable.
�

4. A motivic conjecture

Let X be a cubic fourfold.

Definition 4.1. We will say that the motive h(X) is associated to the motive of
a K3 surface S if there is an isomorphism between t2(S)(1) and t(X), inducing an
Hodge isometry between T (S)Q(1) and T (X)Q.

In this section we relate this isomorphism with a conjecture by Kuznetsov on
the rationality of X. Indeed, it was conjectured in [Kuz] that a cubic fourfold is
rational if and only if there exists a semi-orthogonal decomposition of the derived
category Db(X) of bounded complexes of coherent sheaves

Db(X) =< AX ,OX ,OX(1),OX(2) >,

such that AX is equivalent to the category Db(S) where S is a K3 surface. If X
has an associated K3 surface S , in the sense of Kuznetsov, then the motive h(S)
is uniquely determined, up to isomorphisms, by X. Let Db(S1) and Db(S2) be
equivalent. It was conjectured by Orlov that this implies that the motives h(S1)
and h(S2) are isomorphic. The conjecture has been proved in [DelP-P] in the
case h(S1) (and hence also h(S2)) is finite dimensional and recently extended by
D.Huybrechts in [Huy 2 ] to all K3 surfaces over an algebraically closed field.
Let us denote by C the moduli space of smooth cubic fourfolds. As it is customary,
we will denote by Cd ⊂ C the irreducible divisors that parametrize special cubic
fourfolds with an intersection lattice whose determinant is d. Let X be a general
cubic fourfold inside Cd, where d satisfies the following condition

(**) d is not divisible by 4,9 or a prime p ≡ 2(3).

Hassett [Has 1] has shown that X ∈ Cd has an associated K3 surface, in the sense of
Defn. 3.1, if and only if satisfies (**). Then Addington and Thomas in [AT] proved
that a general such X has an associated K3 surface in the sense of Kuznetsov.
Therefore, for a general cubic fourfold, Kuznetsov conjecture is equivalent to the
following conjecture, that has been certainly around for a while.

Conjecture 4.2. A cubic fourfold X ⊂ P5 is rational if and only if it is contained
in Cd, with d satisifying (**).
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Proposition 4.3. Let X be a general cubic fourfold in Cd. Assuming Kimura’s
conjecture, the motive h(X) is associated to the motive of a K3 surface, if d satisfies
(**). If d does not satisfy (**) there is no K3 surface S such that the motive h(X)
is associated to h(S)

Proof. If d satisfies (**) then by Theorem 1.2 in [AT] there exists a polarized K3
surface S of degree d and a correspondence Γ ∈ A3(S × X) which induces an
Hodge isometry between the (shifted) primitive cohomology of S and the lattice
< γ2, T >⊥ inside H4(X,Z). Here the class of T is not homologous to γ2. Let
PHSQ be the semisimple abelian category of polarized Hodge structures. Then
Γ induces an isomorphism between the polarized Hodge structures T (S)Q(1) and
T (X)Q in PHSQ, where T (S) and T (X) are the transcendental lattices of S and
X respectively. Let MB

hom(C) be the subcategory of Mhom(C) generated by the
homological motives hhom(X) of smooth complex projective varieties X satisfying
the standard conjecture B(X), that is satisfied by curves, surfaces, abelian vari-
eties and is stable under products and hyperplane sections. Since B(X) implies the
standard conjecture D(X), for smooth varieties over C, the categoryMB

hom is con-
tained in the category Mnum(C) of numerical motives and hence it is semisimple.
The Hodge realization functor

HHodge :Mrat(C)→ PHSQ,

factors trough MB
hom(C) and the induced functor HHodge : MB

hom(C) → PHSQ

is faithful and exact. Both the K3 surface S and the cubic fourfold X satisfy
B(X) and hence Mhom and Nhom belong to MB

hom(C), where Mhom and Nhom
are the images of t2(S)(1) and t(X) in Mhom(C), respectively. Then Mhom and
Nhom have isomorphic images in PHSQ because the polarized Hodge structures
T (S)Q(1) and T (X)Q are isomorphic. Therefore the correspondence Γ induces
an isomorphism between Mhom and Nhom in MB

hom(C). By Kimura’s conjecture
on the finite dimensionality of motives the functor F : Mrat(C) → MB

hom(C) is
conservative, i.e. it preserves isomorphisms, see [AK, Thm. 8.2.4]. Therefore the
correspondence Γ gives an isomorphism between t2(S)(1) and t(X) in Mrat(C)
that induces an Hodge isometry between T (S)Q(1) and T (X)Q.

Suppose now that d does not satisfy (**). Let Γ be a correspondence in A3(S ×
X), where S is a K3 surface. Then Γ is a Hodge cycle in H6(S ×X,Q) such that
Γ∗ : T (S)Q(1)→ T (X)Q is not an Hodge isometry, because, by the results in [AT,
Theorem 1.3] this would imply that X ∈ Cd for some d satisfying the condition
(**). Therefore there is no isomorphism between t2(S)(1) and t(X) inducing a
Hodge isometry. �

Proposition 4.3, and Conjecture 4.2 suggest the following motivic conjecture

Conjecture 4.4. A general cubic fourfold in Cd is rational if and only if its motive
is associated to the motive of a K3 surface.

5. Cubic fourfolds fibered over a plane

Let X be a cubic fourfold containing a surface T , with t2(T ) = 0 and such that

the blow-up X̃ of X at T admits a fibration π : X̃ → P2 whose fibers are rational.
Examples of such X are general elements of the divisor C8, in which case T is a
plane, π is a quadric bundle, and general X ∈ C18, where T is an elliptic ruled
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surface, and the fibers of π are del Pezzo surfaces of degree 6. According to [Vial 1,

(2)], the motive h(X̃) splits as follows

(5.1) h(X̃) ' h(P2)⊕ h(P2)(1)⊕ h(P2)(2)⊕ h(Z)(1)

where Z is a smooth projective surface. Moreover h(X̃) ' h(X)⊕h(T )(1), where
the motive of T has no transcendental part. Therefore the transcendental part t(X)

is isomorphic to t(X̃) and hence h(X) is finite dimensional if and only if the motive
h(Z) is finite dimensional.
In order to identify the surfaces Z appearing in (5.1) we will use the following
proposition, that comes from the results in [Vial 1, Prop. 6.7].

Proposition 5.2. Let X be a cubic fourfold containing a surface T with t2(T ) = 0

and such that the blow-up π : X̃ of X at T admits a fibration f : X̃ → P2. Let C
be the discriminant curve of the fibration f and let Bo = P2 − C. Assume that

(1) For all t ∈ Bo, the fibers X̃t are smooth rational surfaces.

(2)For all P ∈ C the map A1(X̃P )→ A1(X̃)hom is the 0-map.

Then there are a finite number of smooth surfaces B̃i, for i = 1 · · ·n, with surjec-
tive and genericallyy finite maps ri : B̃i → P2, such that the transcendental motive
t(X) is isomorphic to a direct summand of h(B̃), where B̃ =

∐
i B̃i.

Proof. Let t ∈ Bo and let ft : X̃t → X̃ be the inclusion. The induced map on Chow
groups (ft)∗ : A1(X̃t)→ A1(X̃) fits into the following diagram

A1(X̃t)
(ft)∗−−−−→ A1(X̃)

'
y cl

y
H2(X̃t)

j∗−−−−→ H6(X̃,Q)

Here H6(X,Q) ' Q[γ3/3], with γ ∈ A1(X) a hyperplane section and therefore

H6(X̃,Q) ' Q[γ3/3]⊕Q, where the second summand is generated by the class of
any exceptional curve contained in the exceptional divisor E, over a point P ∈ T .
Therefore the image of (ft)∗ lies in A1(X̃)hom. In the exact sequence of Chow

groups, associated to the blow-up π : X̃ → X

0→ A1(T )→ A1(X)⊕A1(E)→ A1(X̃)→ 0

We have A1(T ) ⊂ H2(T,Q), because pg(T ) = 0 and hence A1(T )hom = 0. Also

A1(X̃)hom ' A1(X)hom, because the transcendental part t(X) is isomorphic to

t(X̃). Therefore A1(E)hom = 0 and hence every class in A1(X̃)hom comes from the

class of a line in A0(F̃ ) lying in a fiber X̃t. Here F̃ = F (X̃) is the Fano variety of

lines of X̃ and A0(F̃ ) ' A0(F ), because F̃ is birational to F . It follows that the
map

(5.3)
⊕
t∈P2

A1(X̃t)→ A1(X̃)hom = A1(X)hom

is surjective.
Let H = Hilb1(X̃/P2) be the relative Hilbert scheme whose fibers parametrize
curves on the fibers of f . Let
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C q−−−−→ X̃

p

y
Hy
P2

be the incidence diagram, where C is the universal family over H, i.e. C =
{(C, x)/x ∈ X̃} ⊂ H × X̃. Then the map

p∗q∗ : A0(H)→ A1(X̃)hom ' A1(X)hom

factors trough A0(H) → A1(X̃t) and ft : A1(X̃t) → A1(X̃)hom ' A1(X)hom,

for every fiber X̃t. By [Vial 1, Lemma 6.6] there is finite set E = {H1, · · · ,Hn} of

irreducible components of Hilb1(X̃/P2), such that they obey the following technical
condition:

∀t ∈ Bo, the set {cl(q∗[p−1(u)]/u ∈ Hi, t = π(u)} span H2(X̃t,Q). (∗) .

Let fi : H̃i → Hi be a resolution. By [Vial 1, Prop. 6.7], for all i there is a

smooth surface B̃i → H̃i, such that, for every i ∈ (1, · · · , n) the following map is
surjective and generically finite

ri : B̃i → H̃i
fi−−−−→ Hi → P2

Moreover , for every point P ∈ P2, r−1(P ) contains at least a point in every

connected component of the fiber of Hi over P . Let B̃ =
∐

1≤i≤n B̃i be the disjoint

union of the surfaces B̃i. Again by [Vial 1, Prop. 6.7], there is a correspondence

Γ ∈ A3(B̃ × X̃) such that Γ = ⊕iΓi where Γi ∈ A3(B̃i × X̃) and Γ̃i is the class of

the image of Ci inside B̃i × X̃ in the incidence diagram

(5.4)

Ci
qi−−−−→ X̃

pi

ỹ
Bi

Then , by [Vial 1, Prop. 6.7],

(5.5) Im(
⊕
t∈Bo

A1(X̃t)→ A1(X̃)hom) ⊆ Im(Γ∗ : A0(B̃)0 → A1(X̃)hom)

From the assumption in (2) it follows that the map
⊕

P∈C A1(X̃P )→ A1(X̃)hom
is the 0-map and hence the map Im(

⊕
t∈Bo A1(X̃t)→ A1(X̃)hom), having the same

image as the map in (5.3), is surjective. Therefore the map

A0(B̃)0 → A1(X̃)hom

is surjective. The correspondence Γ induces a map of motives h(B̃)(1)→ h(X̃). Let

h(B̃) =
∑

0≤i≤4 hi(B̃) be a reduced Chow -Künneth decomposition, with h2(B̃) =
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halg2 (B̃)⊕ t2(B̃) . We get a map

Γ∗ : t2(B̃)(1)⊕ h3(B̃)(1)→ t(X̃) ' t(X)

which induces a map of Chow groups

A3(t2(B̃)(1)⊕ h3(B̃)(1))→ A3(t(X̃)) = A1(X̃)hom,

that is surjective because

A3(t2(B̃)(1)⊕ h3(B̃)(1)) = A2(t2(B̃)⊕ h3(B̃)) ' A0(B̃)0.

Since Ai(t2(B̃)(1)⊕h3(B̃)(1)) = 0 and Ai(t(X)) = 0, for i 6= 3, the map Γ∗ induces
a surjective map on all Chow groups. Therefore the motive t(X) is isomorphic to
a direct summand of the motive

t2(B̃)(1)⊕ h3(B̃)(1) =
⊕
i

(t2(B̃i)(1)⊕ h3(B̃i)(1)

�

5.1. Cubic fourfolds containing a plane. Let X ⊂ P5 be a cubic fourfold
containing a plane P . Call X̃ the blow-up of X along P and π : X̃ → P2 the
morphism that resolves the projection off P . The morphism π is a fibration in
quadric surfaces, whose fibers degenerate along a plane sextic C, which is smooth
in the general case. The double cover S → P2 ramified along C is a K3 surface.
We will assume that the quadric bundle has simple degeneration and a rational
section and hence X is rational. The first is an open condition inside the divisor C8
whereas the second is verified on a countable infinity of codimension two loci inside
C8 [Has 1, Kuz].
Recall that the relative Hilbert scheme of lines H(0, 1) of the morphism π is an
étale projective bundle over S. To such an object one can associate a Brauer class
β ∈ Br(S). If the quadric bundle has a section then β is trivial and the projective
bundle is the projectivized space P(E) of a vector bundle E .

H(0, 1)

P1

y
Sy
P2

Proposition 5.6. Under the above hypotheses on the quadric bundle π : X̃ → P2,
the transcendental motive t(X) is isomorphic to the motive t2(S)(1). Therefore If
the motive of S is finite dimensional then also h(X) is finite dimensional .

Proof. The incidence diagram in (2.4) yields
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CH
q−−−−→ Xy

H(0, 1)

p

y
S

where CH is the universal line over H(0, 1). Since H(0, 1) is the projectivized space
P(E) of a vector bundle E , there is an isomorphism of motives h(H(0, 1)) ' h(S)⊕
h(S)(1) and hence from the above diagram we get a map of motives h(S)(1)→ h(X)
which induces

q̄ : t2(S)(1)→ t(X)

By the results in [S-Y-Z, Theorem 3.6], the diagram above induces an isomorphism
between the Chow groups A0(S)0 and A0(F )2, where F = F (X) is the Fano variety
of lines. Since A0(F )2 ' A1(X)hom it follows that q̄ induces an isomorphism
between A3(t2(S)(1) = A0(S)0 and A3(t(X)) = A1(X)hom. Since the other Chow
groups of t2(S)(1) and t(X) vanish we get that q̄ is an isomorphism of motives. �

Remark 5.7. Note that the same result can be obtained by applying Proposition
5.2. First of all, since X̃ has a rational section, each quadric has a rational point t
and we can isolate one line for each ruling by imposing the condition that it passes
through t (one line inside the single ruling if the quadric is singular). This gives
a rational section π : S → H(0, 1). Since both S and H(0, 1) are smooth we can
resolve π to a regular section of the (pull-back of) the projective bundle to the

blow-up S̃ of S over a finite number of points. Call B the image of this regular
section. We remark that t2(S̃) = t2(S) = t2(B). In order to show that H(0, 1) is
the only component that we need to apply Prop. 5.2, we need to check that the
technical condition (∗) holds true for this Hilbert scheme. This is not hard to show,

since the H2(X̃t,Q) is generated by the classes of any line of the two rulings of the
quadric. In fact the two connected components of H(0, 1) over a point p ∈ P2 not
lying on the discriminant parametrize the lines in each ruling.

Let r : S → P2 be the double cover map. Then, also the condition (2) in
proposition 5.2 is satisfied because the curve D := r−1(C) ⊂ S is a constant
cycle curve, see [Huy 1, 7.1]. Let j : D → S be the inclusion. Since D is a
constant cycle curve, the map j∗ : A0(D)0 → A0(S)0 is the 0-map. Then the map⊕

P∈C A1(X̃P )→ A1(X̃) vanishes, because the map A0(D)0 → A1(X)hom, coming
from the diagram in (5.4), when restricted to C/D → D ⊂ S, factors through j∗.
Finally the injectivity of the map A0(S)0 → A1(X)hom ' A0(F )2, as proved in
[S-Y-Z, Theorem 3.6], gives an isomorphism t2(S)(1) ' t(X).

5.2. Cubic fourfolds fibered in del Pezzo sextics. Let X be a generic fourfold
in C18. The fourfold X contains an elliptic ruled surface T of degree 6 such that the
linear system of quadrics in P5 containing T is two dimensional. Let once again
r : X̃ → X be the blow-up of X at T and π : X̃ → P2 the (resolution of the)
map induced by the linear system of quadrics containing T . The generic fiber of
π is a del Pezzo surface of degree 6. The generic del Pezzo fibration π obtained
from a cubic fourfold in C18 is a good del Pezzo fibration in the sense of [AHTV-A,
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Def. 11]. The discriminant curve D of π has two irreducible components, a smooth

sextic C and a sextic C̃ with 9 cusps. As in the previous case the double cover
S → P2 branched on C is a smooth K3 surface of degree 2. The goal of this section
is to show that, if the del Pezzo fibration has a rational section (and hence X is
rational) then the motive t(X) is a direct summand of t2(S)(1). Therefore, if S has
a finite dimensional motive, there is an isomorphism t2(S)(1) ' t(X) and also h(X)
is finite dimensional. Exactly as in the case of C8 the existence of the section is
verified on a countable infinity of codimension two loci in the moduli space, clearly
all contained in C18. The main difference with the C8 case is that here the Picard
rank of the generic fiber is higher, so we will need to consider surfaces inside two
different Hilbert schemes of curves in order to obey the technical condition (∗) and
hence to apply the constructions of Prop. 5.2.

Associated to the good del Pezzo fibration π : X̃ → P2 there is a non-singular
degree 3 cover f : Z → P2 branched along a cuspidal sextic C̃ (see [AHTV-A])
where Z is a non singular surface. Let H(0, 2)→ P2 be the relative Hilbert scheme
of connected genus 0 curves of anti canonical degree 2 on the fibers. The Stein
factorization yields an étale P1-bundle H(0, 2)→ Z. It is easy to see that, on every
fiber, the P1-bundle is given by the strict transform of the lines through each of
the 3 blown-up points P1, P2, P3 ∈ P2 of the corresponding del Pezzo of degree 6.
This gives a diagram analogous to the one in the previous section

H(0, 2)

P1

y
Zy
P2

.

Proposition 5.8. The triple cover Z is an elliptic ruled surface and hence t2(Z) =
0 and A0(Z)0 ' AlbZ ' JacE, with E an elliptic curve.

Proof. Let C̃ ⊂ P2 be the ramification locus of the triple cover f : Z → P2. As it
has been observed in [AHTV-A], for a generic cubic X ∈ C18, C̃ is a cuspidal degree
6 curve with 9 cusps. It is well known [Mir] that such a triple cover is completely
determined by the Tschirnhausen rank two vector bundle on P2 and a section of (a
twist of) the relative O(3) on the associated projectivized P1-bundle. Let us denote
V the Tschirnhausen module. From Prop. 4.7 of [Mir] we see that D belongs to the
linear system | − 2c1(V )|, hence c1(V ) = OP2(−3). Then, by [Mir, Lemma 10.1],
the number of cusps is exactly 3c2, this means that c2(V ) = 3. With these data in
mind we can use [Mir, Prop. 10.3] to compute the invariants of Z and get

χ = 0, K2 = 0, e(Z) = 0.

Now, by [Shi, Cor 2.3] we see that that V ∼= ΩP2 , hence by [Mir, Cor 10.6] we
have pg(Z) = 0, and q(Z) = 1. This easily implies that the surface Z is again an
elliptic ruled surface. Note that such a triple plane being an elliptic ruled surface
was first observed by Du Val in [DV] by different methods. Since pg(Z) = 0 and
Z is not of general type we get t2(Z) = 0. The rest follows from the isomorphism
A0(Z)0 ' JacZ.
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�

Lemma 5.9. If the del Pezzo fibration π : X̃ → P2 has a rational section, then the
projective bundle H(0, 2)→ Z has a rational section as well.

Proof. Remark that by [AHTV-A, Prop. 8] we have that X̃ is rational over P2

(and hence over C). Hence we can assume that generically the image of the section
is not contained in the exceptional divisor. Then, since by construction the conics
are the proper transforms of lines through one of the 3 blown-up points, there exist
only one conic in each of the three pencils passing through the section. �

The same way as we did in Rmk. 5.1, we can resolve the rational section con-
structed here above to a regular section f defined on Z̃, the blow up of Z in a finite
number of points. The projective bundle H pulls back to a projective bundle H̃ on
Z̃:

H̃ −−−−→ Hy y
Z̃ −−−−→ Z,

and f : Z̃ → H̃ is a regular section of H̃. We will call B1 the image of this
section in H via the birational map H̃ → H and we have t2(Z̃) = t2(Z) = t2(B1).

Remark also that, as it was already remarked in [AHTV-A], this implies that

the Brauer class of the P1 bundle H(0, 2)→ Z is trivial whenever X̃ has a rational
section over P2.

As we have already anticipated, in this case, considering just one Hilbert scheme
will not be enough in order to apply Prop. 5.2, since the fibers of π have higher
Picard rank. Hence we need to consider also H(0, 3), the relative Hilbert scheme
of curves of genus zero and canonical degree 3 inside the fibers. There are two
2-dimensional families of such curves on a del Pezzo sextic. One is given by the
strict transforms of the lines in P2 that do not pass through any of the three base
points. The second is given by conics passing through the three base points. We
will call the former cubic curves of first type and the latter cubic curves of second
type. The Stein factorization of the natural projection p : H(0, 3) → P2 reflects
this difference and displays H(0, 3) as an étale P2-bundle over a smooth degree two
K3 surface S [AHTV-A]. It is straightforward to see that one P2 parametrizes the
curves of first type and the other those of second type.

Lemma 5.10. If the del Pezzo fibration π : X̃ → P2 has a rational section, then
the projective bundle H(0, 3)→ S has a rational section as well.

Proof. As we did before, we can assume that the rational section of π generically
does not intersect the exceptional divisors. If π has a rational section then X̃ is
rational over P2, hence we can choose a second rational section with the same
features of the first one. There exists only one (proper transform of a) line through
the two sections inside each fiber of π, and also only one (proper transform of a)
conic through the 3 base points and the two sections. This means that we also have
a rational section of the projective bundle H(0, 3) = H → S, its Brauer class is
trivial and it is hence a projectivized vector bundle. �
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As we did before one can resolve the rational section to a regular section defined
on S̃, the blow up in a finite number of points of S, of the pull-back H̃ in the
diagram, where H = H(0, 3)

H̃ −−−−→ Hy y
S̃ −−−−→ S.

Let f : S̃ → H be the composite section map. Then the image B2 of f is a
surface which has a surjective and generically finite map of degree 2 onto P2.

We also have t2(S) = t2(S̃) = t2(B2), because t2(−) is a birational invariant.

In order to apply Prop. 5.2 to the fibration X̃ → P2 we prove the following lemma.

Lemma 5.11. Let π : X̃ → P2 a del Pezzo fibration with a rational section and let
D ⊂ P2 be the discriminant curve. Then the two surfaces B1 and B2 in H(0, 2) =
H1 and H(0, 3) = H2 obey the technical condition (∗), i.e. ∀t ∈ Bo = P2 −D, the

set {cl(q∗[p−1(u)]/u ∈ Hi, t = π(u)} span H2(X̃t,Q).

Proof. Fix a point p ∈ P2, such that the fiber X̃p over p is a smooth del Pezzo
sextic. Its Picard rank is 4 and the generators are the proper transform of a line
and the three exceptional divisors. Let us denote H, E1, E2 and E3 these divisor
classes. Then, the fiber of B2 ⊂ H(0, 3) over p contains at least a curve from the
linear system |H| and a curve from the linear system |2H − E1 − E2 − E3|. On
the other hand, the fiber of B1 ⊂ H(0, 2) over p contain at least 3 curves from the
linear systems |H − E1|, |H − E2| and |H − E3|. It is straightforward to see that

linear combinations of these 5 divisor classes generate the whole H2(X̃p,Q).
�

Theorem 5.12. If the del Pezzo fibration π : X̃ → P2 has a rational section
then t(X) is isomorphic to a direct summand of t2(S)(1), where S a K3 surface.
If h(S) is finite dimensional then t(X) ' t2(S)(1) and hence also h(X) is finite
dimensional.

Proof. From Lemma 5.11 it follows that we can use the formula in (5.5), where

B̃ = B1 ⊕ B2 = Z̃ ⊕ S̃ and ri : Bi → Hi → P2. Let Γ ∈ A3(B̃ × X̃), with

Γ = Γ1 ⊕ Γ2. Here Γ1 ∈ A3(Z̃ × X̃) and Γ2 ∈ A3(S̃ × X̃). The correspondence Γ
induces a map of motives

Γ∗ : h(Z̃)(1)⊕ h(S̃)(1)→ h(X̃).

The surfaces Z̃ and S̃ have reduced Chow-Künneth decompositions with t2(Z̃) =

t2(Z) = 0, h3(S̃) = h3(S) = 0 and t2(S̃) = t2(S). Therefore Γ∗ gives a map

(5.13) Γ∗ : h3(Z)(1)⊕ t2(S)(1)→ t(X)

From (5.5) we also get

(5.14)

Im(
⊕

t∈P2−D

A1(X̃t)→ A1(X̃)hom) ⊆ Im(Γ∗ : A0(Z̃)0 ⊕A0(S̃)0 → A1(X̃)hom).
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where P2 −D = P2 − (C̃ ∪C) = (P2 − C̃) ∩ (P2 −C). We also have A0(Z̃)0 =

A0(Z)0 and A0(S̃)0 = A0(S)0.

The discriminant curve D has two irreducible components, the cuspidal sextic C̃
and the smooth sextic C. We first show, using the same argument as in Remark
5.1, that

Im(
⊕
P∈C

A1(X̃P )→ A1(X̃)hom) = 0.

The K3 surface S is a double cover of P2 ramified along C. Therefore the curve
R = r−1

2 (C), where r2 : S → P2, is a constant cycle curve in S. Let j : R → S;
then the map of Chow groups : A0(R)0 → A0(S)0 vanishes. Therefore the map⊕

P∈C A1(X̃P ) → A1(X̃)hom is 0, because the map j∗ : A0(R)0 → A1(X̃)hom,
coming from the diagram in (5.4), when restricted to C/R → D ⊂ S, factors
through j∗. From the above equality we get

(5.15) Im(
⊕
t∈P2

A1(X̃t)→ A1(X̃)hom) = Im(
⊕

t∈P2−C

A1(X̃t)→ A1(X̃)hom)

By (5.3) the left hand side in (5.15) equalsA1(X̃)hom and hence Im(
⊕

t∈P2−C A1(X̃t)→
A1(X̃)hom) = A1(X̃)hom.

The diagram in (5.4) gives

(5.16)

(C1)|C̄
q′1−−−−→ X̃

p′1

ȳ
C

r1

ỹ
C

where C̄ is a desingularization of r−1
1 (C̃) ⊂ Z̃ and p′1 : (C1)|C̄ → C̄ is the pull-

back of C1 in the diagram (5.4), along C̄ → r−1(C̃) → Z̃. The curve C̄ is smooth
of genus 1 and hence it is an elliptic curve birational (and hence isomorphic) to a

curve E, such that Z is birational to the product P1 × E. Let Γ′1 ∈ A2(C̄ × X̃)
be the correspondence induced by Γ1 . Then Γ′1 is the class of the image of (C1)|C̄
inside C̄ × X̃ and, from diagram (5.16), we get

(Γ′1)∗ = (q′1)∗(p
′
1)∗ : A0(C̄)0 → A1((C1)|C̄)→ A1(X̃)hom,

where A0(C̄)0 = A0(C̃)0. Since Z̃ is (birational to) an elliptic ruled surface we have

A0(C̃)0 = A0(C̄)0 ' JacE ' Alb(Z̃) ' A0(Z̃)0 = A0(Z)0.

Therefore the mapA0(C̄)0 → A1(X̃)hom factors through the isomorphismA0(C̄)0 '
A0(Z̃)0 and hence

Im((Γ1)∗ : A0(Z)0 → A1(X̃)hom) = Im((Γ′1)∗ : A0(C̃)0 → A1(X̃)hom)

Let us now prove the inclusion
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Im(
⊕
P∈C̃

A1(X̃P )→ A1(X̃)hom) ⊆ Im((Γ′1)∗ : A0(C̃)0 → A1(X̃)hom),

In order to show this, we will need to apply [Vial 1, Prop. 6.7] and hence we
have to check the technical condition (∗), for all the fibers of the Del Pezzo fibration

over the desingularized curve C̄. That is: for each degenerate Del Pezzo sextic X̃p

over p ∈ C̃ we need to check that linear combinations of the 5 divisor classes
H, 2H −E1 −E2 −E3, H −E1, H −E2, H −E3 given in Lemma 5.11 (1) generate

H2(X̃p,Q). These degenerate Del Pezzo are described in Sect. 5 of [AHTV-A]
and they are all obtained by blowing up three (non generic) points on P2 and
then blowing down some rational curves. It is straightforward to see that one can
obtain H,E1, E2, E3 form the five classes above. Then we observe that, in all the
possible degenerate cases, H2(X̃p,Q) will be a quotient of the Q⊕4 generated by
the 4 classes above. Hence the technical condition (∗) is verified by the two Hilbert
schemes H(0, 2) and H(0, 3).

The map in (5.3) is surjective, the map A1(X̃P ) → A1(X̃)hom vanishes, for all

P ∈ C ⊂ P2 and P2 = (P2−D)∪(C∪C̃). Hence, the equality in (5.14) and the in-

clusion Im(
⊕

P∈C̃ A1(X̃P )→ A1(X̃)hom) ⊆ Im((Γ1)∗ : A0(Z)0 → A1(X̃)hom) show

that every class α ∈ A1(X̃)hom belongs either to the image of (Γ1)∗ : A0(Z)0 →
A1(X̃)hom or to the image of Γ∗ : A0(Z)0 ⊕ A0(S)0 → A1(X̃)hom. The map (Γ1)∗
cannot be surjective, because otherwise we would get a surjective map

A0(Z)0 ' JacE → A1(X̃)hom = A1(X)hom

while the group A1(X)hom is not representable. Therefore the map Γ∗ : A0(Z)0 ⊕
A0(S)0 → A1(X̃)hom = A1(X)hom is surjective and hence the map of motives in
(5.13) induces a surjective map of Chow groups

A3(h3(Z)(1))⊕A3(t2(S)(1)) = A0(Z)0 ⊕A0(S)0 → A3(t(X) = A1(X)hom.

Since the other Chow groups, for i 6= 3, vanish on both sides, the transcendental
motive t(X) is isomorphic to a direct summand of h3(Z)(1)⊕t2(S)(1). We also have
h3(Z) ' h1(E)(1) with E an elliptic curve, because Z is an elliptic ruled surface .
Therefore t(X) is isomorphic to a direct summand of h1(E)(2)⊕ t2(S)(1). However
the same argument as before implies that the motive t(X) cannot be isomorphic to
a direct summand of h1(E)(2). Therefore t(X) is isomorphic to a direct summand
of t2(S)(1). If h(S) is finite dimensional then the motive t2(S) is indecomposable
and hence t(X) ' t2(S)(1).

�

Remark 5.17. In [AHTV-A, Remark 17 (c)], it is conjectured that the surface
Z identifies with the elliptic ruled surface T ⊂ X. If this is the case then from
the isomorphism A0(Z)0 ' A0(T )0 one gets that the map A0(Z)0 → A1(X̃)hom
vanishes, because every class in A1(X̃)hom comes from a class in a fiber X̃t, with

t ∈ P2. Therefore the image of A0(Z)0 ⊕A0(S)0 → A1(X̃)hom equals the image of

A0(S)0 = A0(S̃)0. Then, by applying the same argument as in the proof of [S-Y-Z,

Theorem 3.6], it is easy to show that the map A0(S̃)0 → A1(X̃)hom is also injective.
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The map A0(S̃)0 → A1(X̃)hom comes from the incidence diagram

C2
q2−−−−→ X̃

p2

y
H2y
P2

where S̃ ⊂ H2. If (q2)∗(p2)∗(α) = 0 in A1(X̃)hom, with α ∈ A0(S̃)0 = A0(S)0

then σ∗(α) = 0, with σ the involution on S coming from the double cover S →
P2.Therefore α = 0. From the isomorphism A0(S)0 ' A1(X)hom we get

t2(S)(1) ' t(X)

6. Cubic fourfolds with a symplectic automorphism

Let X ⊂ P5 be a cubic fourfold and let σ be a symplectic automorphism of X
inducing a polarized automorphism σF on F (X), i.e such that σF preserves the
Plücker polarization on F (X) (see [LFu 2, Sect 1]). Then σ comes from an auto-
morphism of finite order on P5. According to [LFu 1], σF acts as the identity on
A1(X)hom and on A2(F )hom. Assume that σF has prime order and fixes a codi-
mension 2 subvariety Z in F (X). Then, by [LFu 2], σF is either an automorphism
of order 3 or a symplectic involution. Here we show that, in the first case, the
fourfold X is rational, its motive h(X) is finite dimensional and of abelian type and
there exists a K3 surface S such that t(X) ' t2(S)(1). In the second case X is a
conic bundle over P3 with reducible discriminant, that is the union of a cubic and
a (singular) quadric surface. Moreover, there is a K3 surface S which parametrizes
the lines on F (X) fixed by σF , which is a double cover of the cubic surface in P3

ramified along a smooth sextic (in fact the intersection of the two components). In
Prop. 6.4 we show that t(X) ' t2(S)(1). Let us start with the order 3 case.

(1) By the results in [LFu 2] if σ is an automorphism of order 3 on P5 acting
on X, such that the fixed locus in F (X) is a surface, then σ is the automorphism
defined by

[x0, x1, x2, x3, x4, x5]→ [x0, x1, x2, ωx3, ωx4, ωx5],

with ω a primitive third root of 1, and the the cubic fourfold X has an equation of
the form

f(x0, x1, x2) + g(x3, x4, x5) = 0

where f and g are homogeneous of degree 3. The fixed locus in P5 is given by
two disjoint planes W1 = (x3 = x4 = x5 = 0) and W2 = (x0 = x1 = x2 = 0). The
fixed locus of σF in F (X) is the abelian surface E1 × E2, where Ei is an elliptic
curve. The surface E1 × E2 parametrizes all lines joining a point Q1 on the plane
W1 satisfying the equation f = 0 and a point Q2 on the plane W2 satisfying the
equation g = 0.
Let Z ⊂ P3 and T ⊂ P3 be the cubic surfaces defined by f(x0, x1, x2) − t3 = 0
and g(x3, x4, x5)− t3 = 0, respectively. By [CT, Prop. 1.2] there is a rational map
P3 ×P3 → P5 which induces a rational dominant map ψ : Z × T → X and whose
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locus of indeterminacy is E1 × E2. Let Y be the blow-up of S × T at C ×D. By
Manin’s formula there is an isomorphism

h(Y ) ' h(Z × T )⊕ h(E1 × E2)(1).

Hence the motive of the fourfold Z × T is finite dimensional and has no tran-
scendental part, since both the surfaces Z and T are rational. Therefore the motive
h(Y ) is finite dimensional and of abelian type because its transcendental part coin-
cides with the transcendental motive t2(E1 ×E2)(1), which lies in the subcategory
of Mrat generated by the motives of curves. The map ψ induces a finite mor-
phism ψ̃ : Y → X. It follows that also h(X) is finite dimensional and of abelian
type. Moreover the transcendental motive t(X) is isomorphic to the transcendental
motive of Y and hence

t(X) ' t2(E1 × E2)(1)

The fourfold X contains two skew planes P1 and P2 (see [CT, Rmk. 2.4]) and
therefore is rational. Let

ρ : P1 × P2 → X

be the birational map, as defined [Has 1], whose locus of indeterminacy is the K3
surface S parametrizing the lines l(p1, p2) joining two points p1 ∈ P1 and p2 ∈ P2 ,

which are contained in X. Let ρ̄ : Ỹ → X be the dominant morphism, induced by
ρ, where Ỹ is the blow-up of P1 × P2 at S. The motive of Ỹ splits as

h(Ỹ ) ' h(P1 × P2)⊕ h(S)(1)

and hence its transcendental part is isomorphic to t2(S)(1). The finite morphism

ρ̄ induces a map h(Ỹ ) → h(X) and an isomorphism between the transcendental
motive t(X) and t2(S)(1). Therefore t2(S) is isomorphic to t2(E1 ×E2) and hence
is of abelian type.

(2) Let σ be the involution on P5 defined by

[x0, x1, x2, x3, x4, x5]→ [x0, x1, x2, x3,−x4,−x5]

A cubic fourfold X fixed by σ has an equation of the form

(6.1) C(x0, x1, x2, x3) + x2
4L1 + x2

5L2 + x4x5L3 = 0

where C has degree 3 and L1, L2, L3 are linear forms in x0, x1, x2, x3. Camere
shows that this is the unique automorphism of P5 inducing a symplectic involution
on F (X) [Ca, Sect. 7]. The locus of fixed points of σ on P5 is the disjoint union
of a P3 defined by x4 = x5 = 0 and the line r joining the base points P4 and P5.
The line r is contained in X and the fixed locus on P3 is the cubic surface C = 0.
The symplectic involution σF on F (X) has 28 isolated points, i.e. the line r and
the 27 lines on the cubic surface, plus a K3 surface S, consisting of the lines joining
a fixed point Q1 on P3 and a point Q2 on r (see again [Ca]). Let us now project

with center the line r and let X̃ denote the blow-up of X along r. The projection
resolves into a morphism δ : X̃ → P3, which is well-known to be a conic bundle
with quintic degeneration locus D.
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Lemma 6.2. The quintic hypersurface D ⊂ P3 has a cubic and a quadric irre-
ducible components. For appropriate choices of the Li and of C the sextic intersec-
tion curve is smooth and parametrizes rank one conics. For general choices of the
Li the quadric has rank 3.

Proof. Let p := [a : b : c : d] ∈ P3, in order to study the conic over p we need
to study the intersection of X with the plane P2

p := 〈p, P4, P5〉 ⊂ P5, where 〈·〉
denotes as usual the linear span, and P4, P5 are the base points on r. Hence we
substitute inside equation 6.1 the values λ[0 : 0 : 0 : 0 : 1 : 0] + µ[0 : 0 : 0 : 0 : 0 :
1] + γ[a : b : c : d : 0 : 0], with λ, µ, γ ∈ C. Recall that in this plane the equation of
r is γ = 0. Then, dividing by γ the cubic equation in γ, λ and µ we obtain

(6.3) γ2C(a, b, c, d) + λ2L1(a, b, c, d) + µ2L2(a, b, c, d) + λµL3(a, b, c, d).

This is the conic obtained from the symmetric matrix C(a, b, c, d) 0 0
0 L1

1
2L3

0 1
2L3 L2

 .

Hence one easily sees that the equation of D is C · (L1L2 − 1
4L3). The mere

equation L1L2 − 1
4L3 shows that the quadric has at most rank 3 and that for

general Li this is the case. Let us denote by Q the quadric surface. Suppose now
L3 = x0 − x1 − x2, L1 = (t − z), L2 = (t + z) and C is the Fermat cubic. Then
the quadric has equation −(x − y − z)2 + t2 − z2 and rank 3. A quick Macaulay2
[Mac2] routine shows that the intersection with the Fermat cubic is a smooth sextic
curve Y , and from the matrix representing the conic one sees that the sextic curves
parametrizes conics of rank 1. �

The surface S is a double cover of the cubic surface C = 0 ramified along the
degree 6 curve Y . It is straightforward to see that S parametrizes irreducible
(linear) components of degenerate conics, that are fixed by the involution. If one

takes the double cover W
2:1→ Q, ramified along Y , this parametrizes the irreducible

components of degenerate conics that are not fixed by the involution (except for
double lines, parametrized by Y ). It is a classical construction that double covers
W of quadric cones, ramified along a smooth genus 4 sextic are del Pezzo surfaces
of degree 1, and the double cover is induced by the linear system | − 2KW |, where
KW is the canonical bundle. We observe that by Kodaira vanishing it is easy to
see that q(W ) = 0. The Abel-Jacobi map induces an isomorphism

H3,1(X) ' H2,0(F (X)) ' H2,0(S)

and hence H2
tr(F,Q) ' H2

tr(S,Q). By [Lat 2, Thm. 3.1] there is a correspon-
dence Γ ∈ A3(S ×X) inducing a surjective homomorphism

A2(S)0 → A1(X)hom

Let h(S) = 1 ⊕ halg(2) ⊕ t2(S) ⊕ L2 be a Chow-Künneth decomposition and let
Γ∗ : t2(S)(1)→ t(X) be the map of motives induced by Γ. We have

A3(t(X)) = A1(X)hom ; A3(t2(S)(1)) = A2(t2(S)) = A2(S)0
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and Ai(t(X)) = Ai(t2(S)(1)) = 0 for i 6= 3. Therefore Γ induces a surjective
map on all Chow groups and hence t(X) is a direct summand of t2(S)(1). The
following result shows that Γ∗ is in fact an isomorphism.

Proposition 6.4. Let Sr be the surface of lines meeting the fixed line r. Then the
following isomorphisms hold in Mrat(C)

t2(Sr)
− = t2(Sr) ' t2(S) ; t2(S)(1) ' t(X)

.

Proof. By the same argument as in the proof of 2.8 the conic bundle δ : X̃ → P3 is
obtained by the blow-up of the line r and the surface Sr parametrizes lines in the
singular fibers of δ. Let D̃ be the desingularization of the quintic surface D ⊂ P3

and let S̃r be the blow up of Sr in the finite set of points fixed by σ. In the
commutative diagram

S̃r −−−−→ Sry y
D̃ −−−−→ D

the surface D̃ is rational and hence t2(D̃) = 0. Also q(Sr) = 0. Therefore, by [Ped,
Prop 1 (iv)], A0(Sr)

+
0 = 0 and hence

A0(Sr)0 = A0(Sr)
−
0

The surface S parametrizes lines in the singular fibers of δ fixed by σF and W
parametrizes singular fibers which are not fixed by σF (except for the double lines ,
parametrized by the sextic Y ). The surface W being rational we have A0(W )0 = 0
and hence the inclusion S ⊂ Sr induces an equality

A0(S)0 = A0(Sr)0 = A0(Sr)
−
0

From Lemma 6.4 and Prop. 2.8, (ii) there is an isomorphism t2(Sr)
−(1) ' t(X).

Therefore the map Γ∗ : t2(S)(1) → t(X) is an isomorphism, because it induces an
isomorphisms on all Chow groups. �

References

[Am] E.Amerik, A computation of invariant of a rational self-map, Ann. Fac. Sci.Toulouse Math.
18 (2009),no.3 ,445-457

[ABBV] A.Auel, M.Bernadara, M.Bolognesi, A.Varilly-Alvarado,Cubic fourfolds containing a
plane and a quintic del Pezzo surface, Algebraic Geometry , Volume 1, Issue 2 (March 2014),

p. 181-193

[Add] N.Addington, On two rationality conjectures for cubic four folds. Math. Res. Letters 23
(1), (2016) , 1-13.

[AHTV-A] N.Addington,B.Hassett,Y.Tschinkel and A.Varilly-Alvarado,Cubic fourfolds fibered in

sextic del Pezzo surfaces, arXiv:1606.05321.
[AT] N.Addington and R.Thomas, Hodge theory and derived categories of cubic four folds, Duke

Math. J. 163(2014), no.10, 1885-1927.
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