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A VARIATION ON A CONJECTURE OF FABER AND FULTON

MICHELE BOLOGNESI AND ALEX MASSARENTI

Abstract. In this paper we study the geometry of GIT configurations of n ordered
points on P1 both from the the birational and the biregular viewpoint. In particular,
we prove the analogue of the F-conjecture for GIT configurations of points on P1, that
is we show that every extremal ray of the Mori cone of effective curves on the quotient
(P1)n//PGL(2), taken with the symmetric polarization, is generated by a one dimensional
boundary stratum of the moduli space. On the way to this result we develop some technical
machinery that we use to compute the canonical divisor and the Hilbert polynomial of
(P1)n//PGL(2) in its natural embedding.
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Introduction

In one of the most celebrated papers [DM69] in the history of algebraic geometry Deligne
and Mumford proved that there exists an irreducible scheme Mg,n coarsely representing
the moduli functor of n-pointed genus g smooth curves. Furthermore, they provided a
compactification Mg,n of Mg,n adding the so-called Deligne-Mumford stable curves as
boundary points. Afterwards other compactifications of Mg,n have been introduced, see
for instance [Has03].

In this paper we are interested in the compactification ofM0,n given by the GIT quotient
Σm := (P1)m+3//PGL(2) of configurations of n = m+ 3 ordered points on P1 with respect
to the symmetric polarization on (P1)n. The aim of our notation is to stress the dimension
of the space. In particular, for m = 3 we obtain the celebrated Segre cubic 3-fold Σ3 ⊂ P4

[Do15].
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2 MICHELE BOLOGNESI AND ALEX MASSARENTI

The moduli spaces Mg,n are among the most studied objects in algebraic geometry.
Despite this, many natural questions about their biregular and birational geometry remain
unanswered.

The F-conjecture, where as far as we know F stays for Fulton and Faber, forMg,n is one
of the long-standing conjectures in the field. Its statement is the following:

Conjecture. [GKM02, Conjecture 0.2] A divisor on Mg,n is ample if and only if it has
positive intersection with all 1-dimensional strata. In other words, any effective curve in
Mg,n is numerically equivalent to an effective combination of 1- strata.

In other words, as we stated in the abstract, any extremal ray of the Mori cone of effective
curves NE(Mg,n) is generated by a one dimensional boundary stratum. In [GKM02] A.
Gibney, S. Keel and I. Morrison managed to reduce the conjecture for any genus g to the
genus zero case, that isM0,n. Anyway, so far the conjecture is known up to n = 7 [KMc96,
Thm. 1.2(3)] (see [FGL16] for a more recent general account), and the very intricate
combinatorics of the moduli space M0,n for higher n seem an obstacle pretty difficult to
avoid if one wants to try his chance.

In this paper we go in a somewhat orthogonal direction. Instead of trying to show the
conjecture for n > 7, we modify it slighlty by allowing a little coarser moduli space into
the picture. In fact, we consider the GIT quotient Σm. This quotient offers an alternate
compactification of M0,n, which is a little coarser than M0,n on the boundary, and in fact

it is the target a birational morphism M0,n → Σm, that we will recall in the body of the
paper, see also [Bo11].

Nevertheless, also Σm has a stratification of its boundary locus, similar to that ofM0,n,
and one can ask exactly the same question of Conjecture . We tackle this problem taking
advantage of the fact that Σm is a Mori Dream Space, while we know that M0,n is not
a Mori Dream Space for n ≥ 10 [CT15, Corollary 1.4], [GK16, Theorem 1.1], [HKL16,
Addendum 1.4]. Mori Dream Spaces, introduced by Y. Hu and S. Keel [HK00], form a
class of algebraic varieties that behave very well from the point of view of the minimal
model program. In particular, their cones of curves and divisors are polyhedral and finitely
generated.

By Proposition 2.7 if n = m + 3 is even then Pic(Σm) ∼= Z and its cones of curves and
divisors are 1-dimensional. On the other hand, if n = m+ 3 is odd then Pic(Σm) ∼= Zm+3

and the birational geometry of Σm gets more interesting. In this case we manage to describe
the cones of nef and effective divisors of Σm and their dual cones of effective and moving
curves. The first main result of this paper says that the analogue of the F-conjecture for
GIT configurations of points holds.

Theorem 1. If n = m + 3 is odd then the Mori cone NE(Σm) is generated by classes of
1-dimensional boundary strata.

In Theorem 2.33 we will also describe precisely what are these 1-dimensional strata. The
main ingredients of the proof of Theorem 1 is a construction of our GIT quotients as images
Σm ⊂ PN of rational maps induced by certain linear systems on the projective space Pm,
due to C. Kumar [Ku00, Ku03], a careful analysis of the Mori chamber decomposition of the
movable cone of certain blow-ups of the projective space and some quite refined projective
geometry of the GIT quotients. More precisely C. Kumar realized Σm as the closure of the
image of the rational map induced by the linear system L2g−1 of degree g hyersurfaces of
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P2g−1 having multiplicity g − 1 at 2g + 1 general points if m = 2g − 1 is odd, and as the
closure of the image of the rational map induced by the linear system L2g of degree 2g + 1
hyersurfaces of P2g having multiplicity 2g− 1 at 2g+ 2 general points if m = 2g is even. In
particular, N = h0(P2g−1,L2g−1) if m = 2g − 1 is odd, and N = h0(P2g,L2g) if m = 2g is
even.

The tools developed turn out to be useful in resolving a couple of other problems related
to GIT quotients of configuration of points on P1. Furthermore, thanks to recent results
on the dimension of linear system on the projective space due to M. C. Brambilla, O.
Dumitrescu and E. Postinghel [BDP15, BDP16], we obtain some explicit formulas for the
Hilbert polynomial of Σm ⊂ PN . These results are resumed in Corollaries 3.4, 3.5. We
would like to mention that an inductive formula for the degree of these GIT quotients
had already been given in [HMSV09], while a closed formula for the Hilbert function of
GIT quotients of evenly weighted points on the line had been given in [HH14]. The main
results on the geometry of Σm ⊂ PN in Sections 2.1, 2.9, 4, and Corollaries 3.4, 3.5 can be
summarized as follows.

Theorem 2. Let us consider the GIT quotient Σm ⊂ PN . If m = 2g − 1 is odd we have

Pic(Σ2g−1) ∼= Z, KΣ2g−1
∼= OΣ2g−1(−2),

and the the Hilbert polynomial of Σ2g−1 ⊆ PN is given by

hΣ2g−1(t) =

(
gt+ 2g − 1

2g − 1

)
+

g−2∑
r=0

(−1)r+1

(
2g + 1

r + 1

)(
t(g − r − 1) + 2g − 1− r − 1

2g − 1

)
.

In particular

deg(Σ2g−1) = g2g−1 +

g−2∑
r=0

(−1)r+1

(
2g + 1

r + 1

)
(g − r − 1)2g−1.

If m = 2g is even we have

Pic(Σ2g) ∼= Z2g+3, KΣ2g
∼= OΣ2g(−1),

and the the Hilbert polynomial of Σ2g ⊆ PN is given by

hΣ2g(t) =

(
(2g + 1)t+ 2g

2g

)
+

b 2g−1
2
c∑

r=0

(−1)r+1

(
2g + 2

r + 1

)(
t(2g − 2r − 1) + 2g − r − 1

2g

)
.

In particular

deg(Σ2g) = (2g + 1)2g +

b 2g−1
2
c∑

r=0

(−1)r+1

(
2g + 2

r + 1

)
(2g − 2r − 1)2g.

Furthermore, the automorphism group of Σm is isomorphic to the symmetric group on
n = m+ 3 elements Sn for any m ≥ 2.
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Plan of the paper. The paper is organized as follows. In Section 1 we recall some well-
known facts and prove some preliminary results on GIT quotient, moduli spaces of weighted
pointed rational curves and we clarify the relations between them. In Section 2 we prove
the analogue of the F-conjecture for Σm with m = 2g even. In Section 3 we work out
explicit formulas for the Hilbert polynomial a the degree of Σm ⊂ PN . Finally, in Section
4 we compute the automorphism groups of Σm.

Acknowledgments. We thank Carolina Araujo, Cinzia Casagrande, Han-Bom Moon and
Elisa Postinghel for useful conversations.

The authors are members of the Gruppo Nazionale per le Strutture Algebriche, Geo-
metriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica ”F. Severi”
(GNSAGA-INDAM).

1. GIT quotients of (P1)n

The main characters of the paper are the GIT quotients (P1)n//PGL(2), that we review
now very quickly. For details there are plenty of very good references on this subject
[MFK94, Do03, Do12, HMSV09, Bo11, DO88].

Let us consider the diagonal PGL(2)-action on (P1)n. An ample line bundle L endowed
with a linearization for the PGL(2)-action is called a polarization. Such a polarization on
(P1)n is completely determined by an n-tuple b = (b1, ..., bn) of positive integers:

L = �ni=1OP1(bi).

Now let us set |b| = b1 + ... + bn. A point x ∈ (P1)n is said to be b-semistable if for

some k > 0, there exists a PGL(2)-invariant section s ∈ H0((P1)n, L⊗k)PGL(2) such that
Xs := {y ∈ (P1)n : s(y) 6= 0} is affine and contains x. A semistable point x ∈ (P1)n is stable
if its stabilizer under the PGL(2) action is finite and all the orbits of PGL(2) in Xs are
closed. A categorical quotient of the open set ((P1)n)ss(b) of semistable points exists, and
this is what we normally denote by X(b)//PGL(2). We will omit to specify the polarization

when it is (1, ..., 1). If b is odd, then H0((P1)n, L⊗k)PGL(2) = 0 for odd k, and

(1.0) (P1)n(b)//PGL(2) = (P1)n(2b)//PGL(2).

Therefore, by replacing b by 2b if necessary, we assume that b is even.

1.1. Linear systems on Pn. Throughout the paper we will denote by Ln,d(m1, ...,ms) the
linear system of hypersurfaces of degree d in Pn passing through s general points p1, ..., ps ∈
Pn with multiplicities respectively m1, ...,ms. It was pointed out by Kumar [Ku03, Section
3.3] that the GIT quotients (P1)n(b)//PGL(2) can be obtained as the images of certain
rational polynomial maps defined on Pn−3.

Theorem 1.2. [Ku03, Theorem 3.4] Let us assume that bi <
∑

j 6=i bj for any i = 1, ..., n,

and let p1, ..., pn−1 ∈ Pn−3 be general points.

- If |b| = 2b is even let

L = Ln−3,b−bn(b− bn − b1, ..., b− bi − bn, ..., b− bn − bn)

be the linear system of degree b−bn hypersurfaces in Pn−3 with multiplicity b−bi−bn
at pi.
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- If |b| is odd let

L = Ln−3,b−2bn(b− 2bn − 2b1, ..., b− 2bi − 2bn, ..., b− 2bn − 2bn)

be the linear system of degree b − 2bn hypersurfaces in Pn−3 with multiplicity b −
2bi − 2bn at pi.

Finally, let φL : Pn−3 99K P(H0(Pn−3,L)∗) be the rational map induced by L. Then φL
maps birationally Pn−3 onto (P1)n(b)//PGL(2). In other words (P1)n(b)//PGL(2) may be
realized as the closure of the image φL in P(H0(Pn−3,L)∗).

Example 1.3. For instance, if n = 6 and b1 = ... = b6 = 1 then b = 3, and L = L3,2(1, ..., 1).
In this case the rational map φL is given by the quadrics in P3 passing through five general
points, and (P1)n(b)//PGL(2) ⊂ P4 is the Segre cubic 3-fold. This is a very well-known
classical object, see [Do15, AB15, BB12] for some historic perspective and applications.

If n = 5 and b1 = ... = b5 = 1 then L = L2,3(1, ..., 1) that is the linear system of plane
cubics through four general points. In this case the quotient is a del Pezzo surface of degree
five.

1.4. Moduli of weighted pointed curves. In [Has03], Hassett introduced moduli spaces
of weighted pointed curves. Given g ≥ 0 and rational weight data A[n] = (a1, ..., an),
0 < ai ≤ 1, satisfying 2g − 2 +

∑n
i=1 ai > 0, the moduli space Mg,A[n] parametrizes genus

g nodal n-pointed curves {C, (x1, ..., xn)} subject to the following stability conditions:

- each xi is a smooth point of C, and the points xi1 , . . . , xik are allowed to coincide

only if
∑k

j=1 aij ≤ 1,

- the twisted dualizing sheaf ωC(a1x1 + · · ·+ anxn) is ample.

In particular, Mg,A[n] is one of the compactifications of the moduli space Mg,n of genus g
smooth n-pointed curves.

1.5. For fixed g, n, consider two collections of weight data A[n], B[n] such that ai ≥ bi for
any i = 1, ..., n. Then there exists a birational reduction morphism

ρB[n],A[n] :Mg,A[n] →Mg,B[n]

associating to a curve [C, s1, ..., sn] ∈Mg,A[n] the curve ρB[n],A[n]([C, s1, ..., sn]) obtained by
collapsing components of C along which ωC(b1s1 + ...+ bnsn) fails to be ample, where ωC
denotes the dualizing sheaf of C.

1.6. Furthermore, for any g, consider a collection of weight data A[n] = (a1, ..., an) and a
subset A[r] := (ai1 , ..., air) ⊂ A[n] such that 2g − 2 + ai1 + ...+ air > 0. Then there exists
a forgetful morphism

πA[n],A[r] :Mg,A[n] →Mg,A[r]

associating to a curve [C, s1, ..., sn] ∈Mg,A[n] the curve πA[n],A[r]([C, s1, ..., sn]) obtained by
collapsing components of C along which ωC(ai1si1 + ...+ airsir) fails to be ample.

One of the most elegant aspects of the theory of rational pointed curves is the relation
with rational normal curves and their projective geometry. This has been outlined by
Kapranov in [Ka93]. Here below we briefly recall this, and his construction of M0,n as an
iterated blow-up of Pn−3.
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Kapranov’s blow-up construction. We follow [Ka93]. Let (C, x1, ..., xn) be a genus zero
n-pointed stable curve. The dualizing sheaf ωC of C is invertible, see [Kn83]. By [Kn83,
Corollaries 1.10 and 1.11] the sheaf ωC(x1+...+xn) is very ample and has n−1 independent
sections. Then it defines an embedding φ : C → Pn−2. In particular, if C ∼= P1 then
deg(ωC(x1 + ... + xn)) = n − 2, ωC(x1 + ... + xn) ∼= φ∗OPn−2(1) ∼= OP1(n − 2), and φ(C)
is a degree n− 2 rational normal curve in Pn−2. By [Ka93, Lemma 1.4] if (C, x1, ..., xn) is
stable the points pi = φ(xi) are in linear general position in Pn−2.

This fact combined with a careful analysis of limits in M0,n of 1-parameter families
contained in M0,n are the key for the proof of the following theorem [Ka93, Theorem 0.1].

Theorem 1.8. Let p1, ..., pn ∈ Pn−2 be points in linear general position, and let V0(p1, ..., pn)
be the scheme parametrizing rational normal curves through p1, ..., pn. Consider V0(p1, ..., pn)
as a subscheme of the Hilbert scheme H parametrizing subschemes of Pn−2. Then

- V0(p1, ..., pn) ∼=M0,n.

- Let V (p1, ..., pn) be the closure of V0(p1, ..., pn) in H. Then V (p1, ..., pn) ∼=M0,n.

Kapranov’s construction allows to translate many questions aboutM0,n into statements
on linear systems on Pn−3. Consider a general line Li ⊂ Pn−2 through pi. There exists a
unique rational normal curve CLi through p1, ..., pn, and with tangent direction Li in pi.
Let [C, x1, ..., xn] ∈M0,n be a stable curve, and let Γ ∈ V0(p1, ..., pn) be the corresponding
rational normal curve. Since pi ∈ Γ is a smooth point, by considering the tangent line TpiΓ
we get a morphism

(1.9)
fi : M0,n −→ Pn−3

[C, x1, ..., xn] 7−→ TpiΓ

Furthermore, fi is birational and defines an isomorphism on M0,n. The birational maps

fj ◦ f−1
i

M0,n

Pn−3 Pn−3
fj◦f−1

i

fjfi

are standard Cremona transformations of Pn−3 [Ka93, Proposition 2.12]. For any i = 1, ..., n
the class Ψi is the line bundle on M0,n whose fiber on [C, x1, ..., xn] is the tangent line
TpiC. From the previous description we see that the line bundle Ψi induces the birational

morphism fi :M0,n → Pn−3, that is Ψi = f∗i OPn−3(1). In [Ka93] Kapranov proved that Ψi

is big and globally generated, and that the birational morphism fi is an iterated blow-up of
the projections from pi of the points p1, ..., p̂i, ...pn and of all strict transforms of the linear
spaces that they generate, in order of increasing dimension.

Construction 1.10. Fix (n− 1)-points p1, ..., pn−1 ∈ Pn−3 in linear general position:

(1) Blow-up the points p1, ..., pn−1,
(2) Blow-up the strict transforms of the lines 〈pi1 , pi2〉, i1, i2 = 1, ..., n− 1,

...
(k) Blow-up the strict transforms of the (k−1)-planes 〈pi1 , ..., pik〉, i1, ..., ik = 1, ..., n−1,

...
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(n− 4) Blow-up the strict transforms of the (n − 5)-planes 〈pi1 , ..., pin−4〉, i1, ..., in−4 =
1, ..., n− 1.

Now, consider the moduli spaces of weighted pointed curves Xk[n] := M0,A[n] for k =
1, ..., n− 4, such that

- ai + an > 1 for i = 1, ..., n− 1,
- ai1 + ...+ air ≤ 1 for each {i1, ..., ir} ⊂ {1, ..., n− 1} with r ≤ n− k − 2,
- ai1 + ...+ air > 1 for each {i1, ..., ir} ⊂ {1, ..., n− 1} with r > n− k − 2.

While apologizing for the new notation, we try to justify it by remarking that Xk[n]
is isomorphic to the variety obtained at the kth step of the blow-up construction. The
composition of these blow-up morphism here above is the morphism fn : M0,n → Pn−3

induced by the psi-class Ψn. Identifying M0,n with V (p1, ..., pn), and fixing a general
(n− 3)-plane H ⊂ Pn−2, the morphism fn associates to a curve C ∈ V (p1, ..., pn) the point
TpnC ∩H.

In [Has03, Section 2.1.2] Hassett considers a natural variation of the moduli problem of

weighted pointed rational stable curves by considering weights of the type Ã[n] = (a1, ..., an)
such that ai ∈ Q, 0 < ai ≤ 1 for any i = 1, ..., n, and

∑n
i=1 ai = 2.

By [Has03, Section 2.1.2] we may construct an explicit family of such weighted curves

C(Ã)→M0,n over M0,n as an explicit blow-down of the universal curve over M0,n.
Furthermore, if ai < 1 for any i = 1, ..., n we may interpret the geometric invariant theory
quotient (P1)n//PGL(2) with respect to the linearization O(a1, ..., an) as the moduli space

M
0,Ã[n]

associated to the family C(Ã).

Remark 1.11. Note that we may interpret the GIT quotient (P1)n(b)//PGL(2) as a mod-
uli space M

0,Ã[n]
by taking the weights ai = 2

|b|bi. Conversely, given the space M
0,Ã[n]

with (a1, ..., an) = (α1
β1
, ..., αnβn ) such that

∑n
i=1 ai = 2 we may consider the GIT quotient

(P1)n(b)//PGL(2) with bi = aiM , where M = LCM(βi).

Remark 1.12. LetM
0,Ã[n]

be a moduli space with weights ãi summing up to two, and let

M0,A[n] be a moduli space with weights ai ≥ ãi for any i = 1, ..., n. By [Has03, Theorem 8.3]

there exists a reduction morphism ρ
Ã[n],A[n]

:M0,A[n] →M0,Ã[n]
operating as the standard

reduction morphisms in 1.5.

Proposition 1.13. Let φL : Pn−3 99K (P1)n(b)//PGL(2) ⊂ P(H0(Pn−3,L)∗) be the rational
map in Theorem 1.2, and let fi : M0,n → Pn−3 in (1.9). Then there exits a reduction

morphism ρ :M0,n → (P1)n(b)//PGL(2) making the following diagram

M0,n

Pn−3 (P1)n(b)//PGL(2)

fn

φL

ρ

commutative.

Proof. As observed in [Ku03] via the theory of associated points, each point x ∈ Pn−3 which
is linearly general with respect to the n− 1 fixed points in Pn−3 defines a configuration of
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points on the unique rational normal curve of degree n−3 passing through the (n−1)+1 = n
points. Moreover, this configuration is the image of x in (P1)n(b)//PGL(2) via φL. Via the
identification V0(p1, . . . , pn) ∼=M0,n of Theorem 1.8, one easily obtains the claim. �

From the next section on, we will always omit the vector b of the polarization since it
will always be either (1, . . . , 1) or (2, . . . , 2) when we consider an odd number of points,
according to (1.0).

2. Birational geometry of GIT quotients of (P1)n and the F-conjecture

In this section we will study some birational aspects of the geometry of the GIT quotients
we introduced. In particular, we will describe their Mori cone and show that its extremal
rays are generated by 1-dimensional strata of the boundary.

Let us now fix a suitable notation for the GIT quotients. We will denote by Σm the GIT
quotient (P1)m+3//PGL(2).

2.1. The odd dimensional case. We start by studying the case where the GIT quotients
parametrize an even number of points, that is Σ2g−1, for g ≥ 2. This reveals to be less
complicated than the even dimensional one, that we will consider eventually. In any case it
is worth looking at it. In fact it will allow us to prove another interesting result in Theorem
2.7 that, as far as we know, does not seem to have appeared in the literature. First of all,
we need a preliminary result.

Let us define L2g−1 := L2g−1,g(g − 1, ..., g − 1) as the linear system of degree g forms on
P2g−1 vanishing with multiplicity g at 2g+ 1 general points p1, ..., p2g+1 ∈ P2g−1. In [Ku00,
Theorem 4.1] Kumar proved that L2g−1 induces a birational map

(2.2) σg : P2g−1 99K P(H0(P2g−1,L2g−1)∗)

and that the GIT quotient Σ2g−1, that is the Segre g-variety, in Kumar’s paper [Ku00], is
obtained as the closure of the image of σg in P(H0(P2g−1,L2g−1)∗).

Proposition 2.3. Let p1, ..., p2g+1 ∈ P2g−1 be points in general position, and let X2g−1
g−2 be

the variety obtained the step g of Construction 1.10. Then we have the following commu-
tative diagram

X2g−1
g−2

P2g−1 Σ2g−1 ⊂ PN .

f

σg

σ̃g

That is, the blow-up morphism f : X2g−1
g−2 → P2g−1 resolves the rational map σg.

Proof. By Construction 1.10 the blow-up X2g−1
g−2 may be interpreted as the moduli space

M0,A[2g+2] with A[2g + 2] =
(

1
g , ...,

1
g , 1
)

.

Furthermore, by Remark 1.11 Σ2g−1 is the singular moduli spaceM
0,Ã[2g+2]

with weights

A[2g+ 2] =
(

1
g+1 , ...,

1
g+1 ,

1
g+1

)
, and by Proposition 1.13 the morphism σ̃g : X2g−1

g−2 → Σg is

exactly the reduction morphism ρ
Ã[2g+2],A[2g+2]

: M0,A[2g+2] →M0,Ã[2g+2]
defined just by

lowering the weights. �
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This fairly simple result has some interesting consequences, that we will illustrate in the
rest of this section. Anyway, first we need a technical, and probably well-known, lemma.

Lemma 2.4. Let X be a normal projective variety and f : X 99K Y a birational map of
projective varieties not contracting any divisor. Then KX ∼ f−1

∗ KY .

Proof. Since X is normal f is defined in codimension one. Let U ⊆ X be a dense open
subset whose complementary set has codimension at least two where f is defined. Since f
does not contract any divisor then its exceptional set has at least codimension two, hence
we may assume that f|U is an isomorphism onto its image. Therefore KX|U ∼ (f−1

∗ KY )|U ,
and since U is at least of codimension two we get the statement. �

The first consequence of Proposition 2.3 is the following.

Lemma 2.5. The canonical sheaf of Σ2g−1 ⊂ PN is KΣ2g−1
∼= OΣ2g−1(−2).

Proof. Let X2g−1
1 be the blow-up of P2g−1 at 2g + 1 general points p1, ..., p2g+1, and let

fg : X2g−1
1 99K Σ2g−1 be the birational map induced by the morphism σ̃g : X2g−1

g−2 → Σ2g−1

in Proposition 2.3. We will denote by H the pull-back in X2g−1
1 of the hyperplane section

of P2g−1, and by E1, ..., E2g+1 the exceptional divisors.
The interpretation of σ̃g as a reduction morphism in the proof of Proposition 2.3 yields

that fg does not contract any divisor. Indeed fg contracts just the strict transforms of the
(g − 1)-planes generated by g of the blown-up points. Since σg is induced by the linear
system L2g−1, the pull-back via fg of a hyperplane section of Σ2g−1 is the strict transform
of a hypersurface of degree g in P2g−1 having multiplicity g − 1 at p1, ..., p2g+1. Since

−K
X2g−1

1
∼ 2gH − (2g − 2)

2g+1∑
i=1

Ei = 2

(
gH − (g − 1)

2g+1∑
i=1

Ei

)
we have that −K

X2g−1
1

∼ f∗gOΣ2g−1(2). Now, in order to conclude it is enough to apply

Lemma 2.4 to the birational map fg : X2g−1
1 99K Σ2g−1. �

Proposition 2.6. The divisor class group of Σ2g−1 is Cl(Σ2g−1) ∼= Z2g+2. Furthermore
Pic(Σ2g−1) is torsion free.

Proof. The classical case of the Segre cubic Σ3 ⊂ P4 has been treated in [Hu96, Section
3.2.2]. Hence we may assume that g ≥ 2.

Let Y = H∩Σ2g−1 be a general hyperplane section of Σ2g−1. Since dim(Sing(Σ2g−1)) = 0
by Bertini’s theorem, see [Har77, Corollary 10.9] and [Har77, Remark 10.9.2], Y is smooth.

Note that X = (σ̃g)
−1(Y ) ⊂ X2g−1

g−2 is the strict transform via f of a general element of the
linear system L2g−1 inducing σg. Therefore, X is smooth and σ̃g|X : X → Y is a divisorial
contraction between smooth varieties.

Since dim(X) > 2, the Grothendieck-Lefschetz theorem (see for instance [Ba78, Theorem

A]) yields that the natural restriction morphism Pic(X2g−1
g−2 )→ Pic(X) is an isomorphism.

Therefore Pic(X) ∼= Pic(X2g−1
g−2 ) ∼= Zh, with h = 1 + (2g + 1) +

(
2g+1

2

)
+ ... +

(
2g+1
g

)
. By

the interpretation of σ̃g as a reduction morphism in Proposition 2.3 we know that the
codimension one part of the exceptional locus of σ̃g consists of the exceptional divisors
the blown-up positive dimensional linear subspaces of P2g−1. Therefore, Pic(Y ) ∼= Z2g+2.
Indeed Pic(Y ) is generated by the images via σ̃g|X of the pull-back of the hyperplane section
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of P2g−1 and of the exceptional divisors over the 2g + 1 blown-up points. However, since
Σ2g−1 is not smooth we can not conclude by the Grothendieck-Lefschetz theorem that its
Picard group is isomorphic to Z2g+2 as well.

On the other hand, thanks to a version for normal varieties of the Grothendieck-Lefschetz
theorem [RS06, Theorem 1], we get that Cl(Σ2g−1) ∼= Cl(Y ), and since Y is smooth we have
Cl(Y ) ∼= Pic(Y ).

Finally, by [Kl66, Corollary 2] we have that, even when the ambient variety is singular,
the restriction morphism in the Grothendieck-Lefschetz theorem is injective. Therefore, we
have an injective morphism Pic(Σ2g−1) ↪→ Pic(Y ) ∼= Z2g+2, and hence Pic(Σ2g−1) is torsion
free. �

This allows us to compute the Picard group of Σ2g−1. By different methods, this com-
putation was also carried out in [MS16].

Proposition 2.7. The Picard group of the GIT quotient Σ2g−1 ⊂ PN is Pic(Σ2g−1) ∼=
Z 〈H〉, where H is the hyperplane class. In particular, we have that Nef(Σ2g−1) ∼= R≥0.

Proof. Let σ̃g : X2g−1
g−2 → Σ2g−1 ⊂ PN be the resolution of the birational map σg : P2g+1 99K

Σ2g−1 in Proposition 2.3. Note that Pic(X2g−1
g−2 ) ∼= Zρ(X2g−1

g−2 ), where ρ(X2g−1
g−2 ) = 1 + (2g +

1) +
(

2g+1
2

)
+ ...+

(
2g+1
g−1

)
, and that σ̃g contracts all the exceptional divisors of the blow-up

f : X2g−1
g−2 → P2g−1 over positive dimensional linear subspaces. Now, let Ei ⊂ X2g−1

0 be

the exceptional divisor over the point pi ∈ P2g−1, and let Ẽi its strict transform in X2g−1
g−2 .

Furthermore, denote by ei the class of a general line in Ei ⊂ X2g−1
0 .

By Proposition 2.3 we know that, besides the divisors over the positive dimensional linear
subspaces, σ̃g also contracts the strict transforms S1, ..., Sr, with r =

(
2g+1
g

)
, in X2g−1

g−2 of

the (g − 1)-planes
〈
pi1 , ..., pig

〉
. Note that the contraction of Si is given by the contraction

of the strict transforms of the degree g − 1 rational normal curves in
〈
pi1 , ..., pig

〉
passing

through pi1 , ..., pig . In fact, any degree g − 1 rational normal curve through pi1 , ..., pig is

contained in
〈
pi1 , ..., pig

〉
and a morphism contracts Si to a point if and only if it contracts

all these curves to a point. We may write the class in the cone N1(X2g−1
g−2 )R ∼= Rρ(X2g−1

g−2 ) of
the strict transform of such a rational normal curve as

(2.8) (g − 1)l − ei1 − ...− eig
where l is the pull-back of a general line in P2g−1. Note that the classes in (2.8) generate
the hyperplane gl +

2g+1∑
j=1

(g − 1)ei = 0


in N1(X2g−1

1 )R ∼= R2g+2, where X2g−1
1 is the blow-up of P2g−1 at p1, ..., p2g+1. Therefore, the

birational morphism σ̃g : X2g−1
g−2 → Σ2g−1 contracts the locus spanned by classes of curves

generating a subspace of dimension
(

2g+1
2

)
+ ...+

(
2g+1
g−1

)
+2g+1 of N1(X2g−1

g−2 )R ∼= Rρ(X2g−1
g−2 ),

and then

ρ(Σ2g−1) = ρ(X2g−1
g−2 )−

((
2g + 1

2

)
+ ...+

(
2g + 1

g − 1

)
+ 2g + 1

)
= 1.
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Since by Proposition 2.6 the Picard group of Σ2g−1 is torsion free and Σ2g−1 ⊂ PN contains
lines we conclude that Pic(Σ2g−1) = Z 〈H〉, where H is the hyperplane class. �

2.9. The even dimensional case. In this section we investigate the geometry of the
counterpart of Σ2g−1, that is the GIT quotient (P1)n(b)//PGL(2) with bi = 1 for i = 1, ..., n
and n odd. The quotient here has even dimension 2g, for a positive integer g, and hence
we will denote it by Σ2g. Of course, we have n = 2g + 3. Note that in this case all the
semistable points are indeed stable, and then Σ2g is smooth. Recall that, by Theorem
1.2, Σ2g ⊂ P(H0(P2g,L2g)

∗) is the closure of the image of the rational map induced by
the linear system L2g, where we define L2g as given by degree 2g + 1 hypersurfaces in P2g

with multiplicity 2g − 1 at pi for i = 1, ..., 2g + 2. We will denote by µg : P2g 99K Σ2g ⊂
P(H0(P2g,L2g)

∗) = PN this rational map.
This case is far more complicated and interesting than the odd dimensional one, and we

will need a good amount of preliminary results.

Proposition 2.10. Let X2g
g−1 be the variety obtained at the step g of Construction 1.10.

Then there exists a morphism µ̃g : X2g
g−1 → X(b)//PGL(2) making the following diagram

X2g
g−1

P2g Σ2g ⊂ PN

f

µg

µ̃g

commute, where f : X2g
g−1 → P2g is the blow-up morphism.

Proof. By Construction 1.10 X2g
g−1
∼= M0,A[2g+3] with A[2g + 3] =

(
2

2g+2 , ...,
2

2g+2 , 1
)

, and

by Remark 1.11 Σ2g
∼=M0,Ã[2g+3]

with Ã[2g+3] =
(

2
2g+3 , ...,

2
2g+3

)
. Therefore we may take

µ̃g = ρ
Ã[2g+3],A[2g+3]

: M0,A[2g+3] → M0,Ã[2g+3]
and argue as in the proof of Proposition

2.3. �

Remark 2.11. Note that arguing as in the proof of Proposition 4.3 we see that the stan-
dard Cremona transformation of P2g induces an automorphism of Σ2g ⊂ PN . Indeed
the automorphism induced by the Cremona and the group S2g+2 permuting the points
p1, ..., p2g+2 ∈ P2g generates the symmetric group S2g+3 acting on Σ2g by permuting the
marked points.

2.12. Linear subspaces of dimension g in Σ2g ⊂ PN . Let HI = Hi1,...,ig+1 be the g-plane

generated by pi1 , ..., pig+1 ∈ P2g. The linear system L2g|HI is given by the hypersurfaces of
degree 2g + 1 in HI

∼= Pg with multiplicity 2g − 1 at pi1 , ..., pi2g+2 . Now, let HJ ⊂ HI be a
(g − 1)-plane generated by the points indexed by a subset J ⊂ I with |J | = g. Then the
general element of L2g|HI must contain HJ with multiplicity g(2g−1)− (g−1)(2g+1) = 1.
This means that the divisor D equals

⋃
{J⊂I, | |J |=g}HJ . Note that deg(D) = g + 1 and

multpij D = g for any ij ∈ I. Therefore, L2g|HI is the linear system of hypersurfaces of

degree 2g+ 1− (g+ 1) = g in HI
∼= Pg having multiplicity 2g− 1− g = g− 1 at pij for any

ij ∈ I. This is the linear system of the standard Cremona transformation of Pg. Therefore,
µg|HI (HI) ⊂ Σ2g ⊂ PN is a linear subspace of dimension g.
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Now, let Eg−1
I be the exceptional divisor over the strict transform of a (g−1)-plane of P2g

generated by g of the pi’s. Note that the reduction morphism µ̃g : X2g
g−1
∼= M0,A[2g+3] →

Σ2g
∼=M0,Ã[2g+3]

in Proposition 2.10 contracts Eg−1
I to a g-plane µ̃g(E

g−1
I ) ⊂ Σ2g ⊂ PN .

2.13. We found
(

2g+2
g+1

)
+
(

2g+2
g

)
linear subspaces of dimension g in Σ2g ⊂ PN . We will

denote by

C = {γ1, ..., γc}, D = {δ1, ..., δd}
where c =

(
2g+2
g+1

)
and d =

(
2g+2
g

)
, the families of the g-planes coming from the HI ’s and

the Eg−1
I ’s respectively. Note that:

- on any δi we have g+2 distinguished points determined by the intersections with the
g−1 of the γj ’s coming from g-planes in P2g containing the (g−1)-plane associated
to δi,

- on any γi, say coming from HI , we have g+ 2 distinguished points as well: g+ 1 of
them coming from the exceptional divisors Eg−1

J with J ⊂ I, |J | = g, and another
one determined as the image of the point HI ∩HIc , where Ic = {1, ..., 2g + 2} \ I.

Note that the g+ 2 distinguished points on γi and δj are in linear general position. This
is clear for the γi’s. In order to see that it is true for the δj ’s as well, notice that way map
any δj to any γi just by acting with a suitable permutation in S2g+3 involving the standard
Cremona transformation as in Remark 2.11.

Finally note that on any γi we have g + 2 distinguished points and one of them is the
intersection point of γi with a γj . We call such a γj the complementary of γi, and we denote
it by γj = γic . Therefore γi and γic determine 2(g + 2) − 1 distinguished points for any

i = 1, ..., 1
2

(
2g+2
g+1

)
. Summing up we have

(2.14)
1

2

(
2g + 2

g + 1

)
(2(g + 2)− 1) =

(2g + 3)!

2((g + 1)!)2

distinguished points in the configuration of g-planes C ∪D.

Remark 2.15. Arguing as in 4.9 and using the description of the sections of L2g in [Ku03,
Section 3.3] we get that in Σ2g ⊂ P(H0(P2g,L2g)

∗) = PN there are N+2 of the distinguished
points described in 2.13 that are in linear general position in PN .

2.16. Let us consider the following diagram:

X2g
g−1

X2g
1

Σ2g

µ̃gh

ψ

where h : X2g
g−1 → X2g

1 is the composition of blow-ups in Construction 1.10. Note that, by
interpreting the varieties appearing in the diagram as moduli spaces of weighted pointed
curves, and h and µ̃g as reduction morphisms as in the proof of Proposition 2.10, we see

that the rational map ψ : X2g
1 99K Σ2g is a composition of flips of strict transforms of linear

subspaces generated by subsets of {p1, ..., p2g+2} up to dimension g−1. In particular, ψ is an
isomorphism in codimension one and Pic(Σ2g) ∼= Z2g+3 is the free abelian group generated
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by the strict transforms via ψ of H,E1, ..., E2g+2. The Picard groups was also computed in
[MS16]. Our computation has the advantage of showing explicit generators.

As Han-Bom Moon has observed in a personal communication, Σ2g−1 is not Q-factorial,
and many boundary divisors are just Weil divisors. This is basically the reason why the
rank of Pic(Σ2g−1) drops so dramatically from the rank of Pic(Σ2g).

Lemma 2.17. The effective cone Eff(X2g
1 ) ⊂ R2g+3 of X2g

1 is the polyhedral cone generated
by the classes of the exceptional divisors Ei and of the strict transforms H −

∑
i∈I Ei,

I ⊂ {1, ..., 2g + 2}, with |I| = 2g, of the hyperplanes generated by 2g of the pi’s.

Proof. The faces of Eff(X2g
1 ) are described in [CT06, Lemma 4.24], and in [BDP16, Corol-

lary 2.5]. It is straightforward to compute the extremal rays of Eff(X2g
1 ) by intersecting its

faces. �

Lemma 2.18. The canonical sheaf of Σ2g ⊂ PN is isomorphic to OΣ2g(−1).

Proof. Let X2g
1 be the blow-up of P2g at 2g + 2 general points p1, ..., p2g+2, and let hg :

X2g
1 99K Σ2g be the birational map induced by the morphism µ̃g : X2g

g−1 → Σ2g in Propo-

sition 2.10. As usual we will denote by H the pull-back to X2g
1 of the hyperplane section

of P2g, and by E1, ..., E2g+2 the exceptional divisors. In order to conclude, it is enough to
note that

−K
X2g

1
∼ (2g + 1)H − (2g − 1)

2g+2∑
i=1

Ei

is an element of the linear system L2g inducing µg : P2g 99K Σ2g, and to argue as in the
proof of Lemma 2.5. �

As we have seen in 2.16,t Pic(Σ2g) ∼= Z2g+3. In the next section our aim will be to
describe the cones of curves and divisors of Σ2g.

2.19. Mori Dream Spaces and chamber decomposition. Let X be a normal projec-
tive variety. We denote by N1(X) the real vector space of R-Cartier divisors modulo numer-
ical equivalence. The nef cone of X is the closed convex cone Nef(X) ⊂ N1(X) generated
by classes of nef divisors. The movable cone of X is the convex cone Mov(X) ⊂ N1(X) gen-
erated by classes of movable divisors. These are Cartier divisors whose stable base locus has
codimension at least two in X. The effective cone of X is the convex cone Eff(X) ⊂ N1(X)
generated by classes of effective divisors. We have inclusions:

Nef(X) ⊂ Mov(X) ⊂ Eff(X).

We say that a birational map f : X 99K X ′ into a normal projective variety X ′ is a birational
contraction if its inverse does not contract any divisor. We say that it is a small Q-factorial
modification ifX ′ is Q-factorial and f is an isomorphism in codimension one. If f : X 99K X ′

is a small Q-factorial modification, then the natural pullback map f∗ : N1(X ′) → N1(X)
sends Mov(X ′) and Eff(X ′) isomorphically onto Mov(X) and Eff(X), respectively. In

particular, we have f∗(Nef(X ′)) ⊂ Mov(X).

Definition 2.20. A normal projective Q-factorial variety X is called a Mori dream space
if the following conditions hold:
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- Pic (X) is finitely generated,
- Nef (X) is generated by the classes of finitely many semi-ample divisors,
- there is a finite collection of small Q-factorial modifications fi : X 99K Xi, such that

each Xi satisfies the second condition above, and

Mov (X) =
⋃
i

f∗i (Nef (Xi)).

The collection of all faces of all cones f∗i (Nef (Xi)) above forms a fan which is supported
on Mov(X). If two maximal cones of this fan, say f∗i (Nef (Xi)) and f∗j (Nef (Xj)), meet
along a facet, then there exists a commutative diagram:

Xi Xj

Y
hi hj

ϕ

where Y is a normal projective variety, ϕ is a small modification, and hi and hj are small
birational morphisms of relative Picard number one. The fan structure on Mov(X) can be
extended to a fan supported on Eff(X) as follows.

Definition 2.21. Let X be a Mori dream space. We describe a fan structure on the effective
cone Eff(X), called the Mori chamber decomposition. We refer to [HK00, Proposition 1.11]
and [Ok16, Section 2.2] for details. There are finitely many birational contractions from
X to Mori dream spaces, denoted by gi : X → Yi. The set Exc(gi) of exceptional prime
divisors of gi has cardinality ρ(X/Yi) = ρ(X) − ρ(Yi). The maximal cones C of the Mori
chamber decomposition of Eff(X) are of the form:

Ci = Cone
(
g∗i
(

Nef(Yi)
)
, Exc(gi)

)
.

We call Ci or its interior C◦i a maximal chamber of Eff(X).

Let m > 1 be an integer. Let Xm
m+2 be the blow-up of Pm at m+ 2 general points. It is

well-known that Xm
m+2 is a Mori Dream Space [CT06, Theorem 1.3], [AM16, Theorem 1.3].

In what follows we will describe the cones of divisors of Xm
m+2, as well as its Mori chamber

decomposition. Once this will be done, we will concentrate on the case where m = 2g
in order to use these results to compute the cone of curves of Σ2g. We will consider the
standard bases of Pic(Xm

m+2)R ∼= Rm+3 given by the pull-back H of the hyperplane section
and the exceptional divisors E1, ..., Em+2.

Theorem 2.22. Let Xm
m+2 be the blow-up of Pm at m+ 2, and write the class of a general

divisor D ∈ Pic(Xm
m+2)R as D = yH +

∑m+2
i=1 xiEi. Then

- The effective cone Eff(Xm
m+2) is defined by{

y + xi ≥ 0 i ∈ {1, ...,m+ 2},
my +

∑m+2
i=1 xi ≥ 0.

- The Mori chamber decomposition of Eff(Xm
m+2) is defined by the hyperplane ar-

rangement
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(2.23)

{
(2− k)y −

∑
i∈I xi = 0 if I ⊆ {1, ...,m+ 2}, |I| = k − 1,

(m− k + 1)y −
∑

i∈I xi +
∑m+2

i=1 xi = 0 if I ⊆ {1, ...,m+ 2}, |I| = k,

with 2 ≤ k ≤ m+3
2 .

- The movable cone Mov(Xm
m+2) is given by

(m− 1)y −
∑

i∈I xi +
∑m+2

i=1 xi ≥ 0 if I ⊆ {1, ...,m+ 2}, |I| = 2,
xi ≤ 0 i ∈ {1, ...,m+ 2},
y + xi ≥ 0 i ∈ {1, ...,m+ 2},
my +

∑m+2
i=1 xi ≥ 0.

- All small Q-factorial modifications of X are smooth. Let C and C′ be two adjacent
chambers of Mov(X), corresponding to small Q-factorial modifications of X, f :

X 99K X̃ and f ′ : X 99K X̃ ′, respectively. These chambers are separated by a
hyperplane HI in (2.23), with 3 ≤ k ≤ m+3

2 and |I| ∈ {k − 1, k}. Assume that

ϕ(C) ⊂ (HI ≤ k) and ϕ(C′) ⊂ (HI ≥ k). Then the birational map f ′◦f−1 : X̃ 99K X̃ ′

flips a Pk−2 into a Pm+1−k.

- Let C be a chamber of Mov(X), corresponding to small Q-factorial modification X̃

of X. Let σ ⊂ ∂C be a wall such that σ ⊂ ∂Mov(X), and let f : X̃ → Y be the
corresponding elementary contraction. Then either σ is supported on a hyperplane of

the form (y+xi = 0) or (my−
∑m+2

i=1 xi = 0) and f : X̃ → Y is a P1-bundle, or σ is

supported on a hyperplane of the form (xi = 0) or (m−1)y−
∑

i∈I xi+
∑m+2

i=1 xi = 0,

I ⊆ {1, ...,m + 2}, |I| = 2, and f : X̃ → Y is the blow-up of a smooth point, and

the exceptional divisor of f is the image in X̃ of either an exceptional divisor Ei or
a divisor of the form H −

∑
i∈I Ei with I ⊂ {1, ...,m+ 2}, |I| = m.

Proof. The statement about the effective cone is in Lemma 2.17. By [Ok16, Theorem 1.2]
the inequalities for the movable cones and for the Mori chamber decomposition follow by
removing from the analogous systems of inequalities for the blow-up of Pm in m+ 3 points
in [AM16, Theorem 1.3] the inequalities involving the exceptional divisor Em+3. Similarly,
by [Ok16, Theorem 1.2] the last two claims follow easily from the last two items in [AM16,
Theorem 1.3]. �

Remark 2.24. Theorem 2.22 allows us to find explicit inequalities defining the cones

Eff(Xm
m+2), Mov(Xm

m+2), and Nef(X̃), for any small Q-factorial modification X̃ of Xm
m+2.

For instance, Nef(Xm
m+2) is given by{

xi ≤ 0 i ∈ {1, ...,m+ 2},
y + xi + xj ≥ 0 i, j ∈ {1, ...,m+ 2}, i 6= j.

2.25. The Fano model of Xm
m+2. First, let us consider the case when m = 2g is even.

Then the anti-canonical divisor

−K
X2g

2g+2
∼ (2g + 1)H − (2g − 1)

2g+2∑
i=1

Ei
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lies in the interior of the chamber CFano defined by

(2.26)

{
(1− g)y −

∑
i∈I xi = 0 if I ⊆ {1, ...,m+ 2}, |I| = g,

gy −
∑

i∈I xi +
∑m+2

i=1 xi = 0 if I ⊆ {1, ...,m+ 2}, |I| = g + 1,

that is the chamber in (2.23) of Theorem 2.22 for k = g+ 1. By Theorem 2.22 the chamber

CFano corresponds to a smooth small Q-factorial modification X2g
Fano of X2g

2g+2 whose nef

cone is given by (2.26). By Lemma 2.18 we get that

(2.27) X2g
Fano

∼= Σ2g.

If m = 2g − 1 is odd the class

−K
X2g−1

2g+1
∼ 2gH − (2g − 2)

2g+1∑
i=1

Ei

lies in the intersection of the hyperplanes

(2.28)

{
(1− g)y −

∑
i∈I xi = 0 I ⊆ {1, ..., 2g + 1}, |I| = g,

(g − 1)y −
∑

i∈I xi +
∑2g+1

i=1 xi = 0 I ⊆ {1, ..., 2g + 1}, |I| = g + 1.

The variety corresponding to the intersection (2.28) is a small non Q-factorial modification

of X2g−1
2g+1 , and by Lemma 2.5 we can identify this variety with the GIT quotient Σ2g−1.

Corollary 2.29. The Mori cone NE(X2g
Fano) of X2g

Fano has
(

2g+2
g

)
+
(

2g+2
g+1

)
=
(

2g+3
g+1

)
extremal

rays.

Proof. Since X2g
Fano is a Mori Dream Space, NE(X2g

Fano) is polyhedral and finitely generated.

Furthermore, NE(X2g
Fano) is dual to Nef(X2g

Fano). Therefore, the number of extremal rays

of NE(X2g
Fano) is equal to the number of faces of Nef(X2g

Fano). Now, the statement follows
from (2.26). �

2.30. Fibrations on X2g
Fano. Let us stick to the situation where m = 2g is the dimension

of the GIT quotient. By the isomorphism (2.27) we may identify the Fano model X2g
Fano

with the GIT quotient Σ2g, which in turn, by Remark (1.11) is isomorphic to the moduli

space M
0,Ã[2g+3]

with weights Ã[2g + 3] =
(

2
2g+3 , ...,

2
2g+3

)
. Now, let us consider the

moduli space M
0,B̃[2g+3]

with weights B̃[2g + 3] =
(

2
2g+2 , ...,

2
2g+2

)
, and the reduction

morphism ρ
Ã[2g+3],B̃[2g+3]

: M
0,B̃[2g+3]

→ M
0,Ã[2g+3]

. Note that k 2
2g+2 > 1 if and only if

k ≥ g + 1, and k ≥ g + 2 implies that k 2
2g+3 > 1. Therefore, [Has03, Corollary 4.7] yields

that ρ
Ã[2g+3],B̃[2g+3]

is an isomorphism, and we may identify X2g
Fano with the moduli space

M
0,B̃[2g+3]

.

Recall that by Remark 1.11 we may interpret Σ2g−1 as the Hassett space M
0,B̃[2g+2]

with B̃[2g + 2] =
(

2
2g+2 , ...,

2
2g+2

)
. Therefore, for any i = 1, ..., 2g + 3 we have a forgetful

morphism

πi :M
0,B̃[2g+3]

∼= X2g
Fano →M0,B̃[2g+2]

∼= Σ2g−1.
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Now, consider the g-planes in X2g
Fano described in (2.13). Note that in C ∪D we have

(2.31)

(
2g + 2

g + 1

)
+

(
2g + 2

g

)
=

(
2g + 3

g + 1

)
g-planes. From the modular point of view these g-planes parametrize configurations of
2g + 3 points (P1, x1, ..., x2g+3) in P1 with g + 1 points coinciding. Let us fix a marked
point, say x2g+3. For any choice of g + 1 points in (x1, ..., x2g+2) we get a g-plane H in
C ∪D and its complementary g-plane Hc. For instance, if H is given by (x1 = ... = xg+1)
then Hc is defined by (xg+2 = ... = x2g+2). Note that H and Hc intersects a point
representing the configuration (x1 = ... = xg+1, xg+2 = ... = x2g+2, x2g+3), and that the

morphism π2g : M
0,B̃[2g+3]

∼= X2g
Fano → M

0,B̃[2g+2]
∼= Σ2g−1 contracts H ∪ Hc to the

singular point of Σ2g−1 representing the configuration (x1 = ... = xg+1, xg+2, ..., x2g+2) =
(x1, ..., xg+1, xg+2 = ... = x2g+2, x2g+3).

Thanks to the modular interpretation of π2g+3 we see that π−1
2g+3(p) ∼= P1 for any p ∈

Σ2g−1 \ Sing(Σ2g−1), while π−1
2g+3(pj) is the union of two g-planes in C ∪D intersecting in

one point for any pj ∈ Sing(Σ2g−1). Indeed

1

2

(
2g + 2

g + 1

)
=

(
2g + 1

g

)
is exactly the number of singular points of Σ2g−1. More generally for any i = 1, ..., 2g + 3
we may consider the set {x1, ..., xi−1, xi+1, ..., x2g+3}, and for any subset I of cardinal-
ity g + 1 of {x1, ..., xi−1, xi+1, ..., x2g+3} we have a g-plane HI defined by requiring the
points marked by I to coincide, and the complementary g-plane HIc defined as the locus
parametrizing configurations where the marked points in Ic coincide. Then the morphism
πi :M

0,B̃[2g+3]
∼= X2g

Fano →M0,B̃[2g+2]
∼= Σ2g−1 contracts the unions H∪Hc to the singular

points of Σ2g−1.
For any g-plane HI in C ∪D we will denote by LI the class of a line in HI . Note that

LI is the class of 1-dimensional boundary stratum of Σ2g corresponding to configurations
where the points in I coincide, other g points coincide as well, and the remaining two points
are different.

Proposition 2.32. The classes LI , LIc of lines in HI , HIc
∼= Pg described above generate

the extremal rays of NE(X2g
Fano).

Proof. From the above discussion we have that for any LI there is a complementary class
LIc , and a forgetful morphism πi : M

0,B̃[2g+3]
∼= X2g

Fano → M0,B̃[2g+2]
∼= Σ2g−1, such that

the fibers of πi over Σ2g−1 \ Sing(Σ2g−1) are isomorphic to P1, and HI ∪HIc is contracted
by πi onto a singular point of Σ2g−1. Our aim is to compute the relative Mori cone NE(πi)

of the morphism πi. Let C ⊂ X2g
Fano be a curve contracted by πi. Then C is either a fiber

of πi over a smooth point of Σ2g−1 or a curve in HI ∪HIc . In the latter case the class of C
may be written as a combination with non-negative coefficients of the classes LI and LIc .

Now, for simplicity of notation assume that i = 2g + 3, and consider the surface S ⊆
X2g
Fano parametrizing configurations of points of the type (x1 = ... = xg, xg+1, xg+2 = ... =

x2g+1, x2g+2, x2g+3). Then the image of π2g+3|S : S → Σ2g−1 is the line Γ passing through a
singular point p ∈ Σ2g−1 parametrizing the configurations (x1 = ... = xg, xg+1, xg+2 = ... =
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x2g+1, x2g+2, x2g+3). Furthermore, π−1
2g+3|S(q) ∼= P1 for any q ∈ Γ \ {p}, and π−1

2g+3|S(q) =

LI ∪ LIc . Therefore, the general fiber of π2g+3 is numerically equivalent to LI + LIc .
This means that NE(πi) is generated by the classes LI , LIc for {x1, ..., xi−1, xi+1, ..., x2g+3}

with |I| = g+1. Finally, since by [De01, Proposition 1.14] the subcone NE(πi) of NE(X2g
Fano)

is extremal, we get that LI , LIc generate extremal rays of NE(X2g
Fano). �

We are now in the position to claim and prove the F-conjecture for Σ2g.

Theorem 2.33. The Mori cone of the GIT quotient Σ2g is generated by the classes LI , LIc
of 1-dimensional boundary strata.

Proof. By Proposition 2.32 the classes LI , LIc generate extremal rays of NE(Σ2g). By

(2.31) these are
(

2g+3
g+1

)
rays which by Corollary 2.29 is exactly the number of extremal rays

of NE(Σ2g). �

Remark 2.34. Consider the Mori chamber decomposition in Theorem 2.22. Note that in
order to go from the chamber corresponding to Nef(X2g

2g+2) to the chamber corresponding

to Nef(X2g
Fano) we must cross the walls in (2.23) for any 3 ≤ k ≤ 2g + 1. Indeed by the

modular description of the small modification ψ : X2g
2g+2 99K X

2g
Fano we see that it factors

as:

X0 = X2g
2g+2

ψ1
99K X1

ψ2
99K X2

ψ3
99K ...

ψg−1
99K Xg−1 = X2g

Fano

where ψi : Xi−1 99K Xi is the flip of the strict transform in Xi−1 of the i-planes in P2g

generated by i+1 among the blown-up points. These strict transforms are disjoint i-planes
in Xi−1, while the flipped locus in Xi is a disjoint union of (2g−1− i)-planes. In particular

the
(

2g+2
g+1

)
+
(

2g+2
g

)
=
(

2g+3
g+1

)
extremal rays in (2.31) correspond to the

(
2g+2
g+1

)
g-planes

coming as strict transforms of the g-planes in Pm generated by g+ 1 of the marked points,
plus the g-planes that are the flipped loci of the (g − 1)-planes in Pn generated by g of the
marked points.

2.35. The cone of moving curves of Σ2g. In this section we describe extremal rays
of the cone of moving curves Mov1(Σ2g) of Σ2g. Recall that an irreducible curve C on
a projective variety X is called a moving curve if C is a member of an algebraic family
of curves covering a dense subset of X. By [BDPP13, Theorems 2.2 and 2.4] the cone of
moving curves is dual to the cone of pseudoeffective divisor classes which is spanned by
classes that appear as limits of sequences of effective Q-divisors.

By Theorem 2.22 we have that Eff(Σ2g) is closed and therefore Mov1(Σ2g) is the dual

cone of Eff(Σ2g). In particular, by the description of Eff(X2g
2g+2) in Theorem 2.22 we get

that Mov1(Σ2g) has exactly 2g + 3 extremal rays.

Theorem 2.36. The cone of moving curves Mov1(Σ2g) of Σ2g is generated by the the
classes of the fiber of the forgetful morphisms πi : Σ2g → Σ2g−1 for i = 1, ..., 2g + 3.

Proof. By the description of the faces of Eff(X2g
2g+2) in Theorem 2.22 we see that the

2g+ 3 extremal rays of Mov1(X2g
2g+2) = Eff(X2g

2g+2)∨ are generated by the class of the strict

transform Li of a line through the blown-up point pi ∈ P2g for i = 1, ..., 2g + 2, and by the
class of the strict transform of a degree 2g rational normal curve C through p1, ..., p2g+2.

Now, consider the following diagram
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where ψ : X2g
2g+2 99K Σ2g is the sequence of flips in Remark 2.34, ρ : M0,2g+3 → Σ2g

is the reduction morphism, f : M0,2g+3 → X2g
2g+2 is the Kapranov’s blow-up morphism in

Construction 1.10, πi : Σ2g → Σ2g−1 is a forgetful morphism, and π̃i :M0,2g+3 →M0,2g+2

is the corresponding forgetful morphism on M0,2g+3. Now, by [Ka93] the fibers of the

forgetful morphism π̃i : M0,2g+3 → M0,2g+2 are either the strict transforms of the lines
through a point pi or the strict transforms of the degree 2g rational normal curves through
p1, ..., p2g+2. Now, note that ρ, and hence ψ, map a general fiber of π̃i onto a general fiber
of πi.

Finally, to conclude it is enough to observe that since the Li’s and C generate extremal
rays of Mov1(X2g

2g+2) and ψ : X2g
2g+2 99K Σ2g is a sequence of flips of small elementary

contractions [Bar08, Proposition 3.14] yields that the fibers of the forgetful morphisms
πi : Σ2g → Σ2g−1 generates extremal rays of Mov1(Σ2g). �

2.37. Analogy with the geometric invariant theory of moduli of weighted pointed
curves. Finally, we would like to stress another link between the GIT quotients we are
studying and moduli of weighted curves. Consider the map:

(2.38)
φ : Eff(X2g

2g+2) ⊂ Pic(X2g
2g+2)Q −→ Q2g+3

(y, x1, ..., x2g+2) 7−→ (a1, ..., a2g+3),

where

aj =
y + xj

(2g + 1)y +
∑2g+2

i=1 xi
, for j = 1, ..., 2g + 2,

and

a2g+3 = 2−
2g+2∑
i=1

ai.

Note that φ maps Eff(X2g
2g+2) onto the hypercube [0, 1]2g+3 ⊂ R2g+3. Furthermore, via

φ the walls of the Mori chamber decomposition in (2.23) translate into
∑

i∈I ai = 1 for

I ⊂ {1, ..., 2g + 3}, with |I| ∈ {k − 1, k} and 2 ≤ k ≤ 2g+3
2 . These walls are exactly the

ones used in [Has03, Section 8] to describe variations of some GIT quotients of products
of P1 in terms of moduli of weighted curves. Therefore, interpreting the rational numbers
(a1, ..., a2g+3) as the weights of pointed curves, we have that the map φ in (2.38) translates
the Mori chamber decomposition of Theorem 2.22 into the GIT chamber decomposition
from [Has03, Section 8].

For instance, φ(−KX3
5
) = φ(4,−2, ...,−2) =

(
1
3 , ...,

1
3

)
and by Remark 1.11 these are the

weights of the Segre cubic threefold. Similarly, taking D = 3H − E1 − ... − E5, which is
ample on X3

5 , we have that φ(D) = φ(3,−1, ...,−1) =
(

2
7 , ...,

2
7 ,

4
7

)
, and by Construction

1.10 the moduli space with these weights is isomorphic to X3
5 itself.

3. Degrees of projections of Veronese varieties

In this section, we use part of the preliminary results developed in the preceding ones to
describe some projective geometry of the GIT quotients. In particular we make massive use
once again of the linear systems on the projective space of Theorem 1.2, in order to compute
the Hilbert polynomial and the degree of Σ2g−1 and Σ2g in their natural embeddings in the
spaces of invariants. A formula for the degree of the GIT quotients already appeared in



20 MICHELE BOLOGNESI AND ALEX MASSARENTI

[HKL16]. Our formula has the advantage of not being recursive, as it is that in [HKL16].
Similar methods allow us to show that M0,6 is a weak Fano variety.

For any integer 0 ≤ r ≤ s − 1 and for any multi-index I(r) = {i1, ..., ir+1} ⊆ {1, ..., s}
set

(3.1) kI(r) = max{mi1 + ...+mir+1 − rd, 0}.

In [BDP15, Definition 3.2] the authors define the linear virtual dimension of the linear
system Ln,d(m1, ...,ms) on Pn as the number

(3.2)

(
n+ d

d

)
+

s−1∑
r=0

∑
I[r]⊆{1,...,s}

(−1)r+1

(
n+ kI[r] − r − 1

n

)
Furthermore, they define the linear expected dimension of Ln,d(m1, ...,ms), denoted by
ldim(L), as follows: if the linear system Ln,d(m1, ...,ms) is contained in a linear system
whose linear virtual dimension is negative then we set ldim(L) = −1; otherwise we define
ldim(L) to be the maximum between the linear virtual dimension of Ln,d(m1, ...,ms) and
−1.

Proposition 3.3. Let φL : X 99K P(H0(Pn,L)∗) be the rational map induced by the linear

system L := Ln,d(m1, ...,ms). Assume that φL is birational, and let XL = φL(Pn). If
s ≤ n+ 2 then the Hilbert polynomial of XL is given by

hXL(t) =

(
dt+ n

n

)
+

s−1∑
r=0

∑
I[r]⊆{1,...,s}

(−1)r+1

(
n+ tkI[r] − r − 1

n

)
.

In particular

deg(XL) = dn +

s−1∑
r=0

∑
I[r]⊆{1,...,s}

(−1)r+1knI[r].

Proof. Polynomials of degree t ∈ N on P(H0(Pn,L)∗) correspond to degree td polynomials
on Pn vanishing with multiplicity mi at pi. Therefore, the Hilbert polynomial of XL is
given by

hXL(t) = h0(Pn, tL).

Now, since tL is effective for any t ≥ 0, and s ≤ n+ 1 [BDP15, Theorem 4.6] yields that

h0(Pn, tL) = ldim(tL)

where ldim(tL) is the linear expected dimension of tL defined by (3.2). To get the formula
for the Hilbert polynomial it is enough to observe that, in the notation of (3.1), for the
linear system tLg we have

kI[r](tL) = max{t(mi1 + ...+mir+1 − rd), 0} = tkI[r](L).

Finally, note that hXL(t) may be written as

hXL(t) =
dn +

∑s−1
r=0

∑
I[r]⊆{1,...,s} k

n
I[r]

n!
tn + P (t)
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where P (t) is a polynomial in t of degree deg(P ) ≤ n− 1. Therefore, the volume of the big
linear system L is given by

Vol(L) = lim sup
t7→+∞

hXL(t)

tn/n!
= dn +

s−1∑
r=0

∑
I[r]⊆{1,...,s}

knI[r]

and Vol(L) is exactly the degree XL ⊆ P(H0(Pn,L)∗). �

Recall from Section 2.1 the we define L2g−1 = L2g−1,g(g − 1, ..., g − 1) as the linear
system of degree g forms on P2g−1 vanishing with multiplicity g at 2g + 1 general points
p1, ..., p2g+1 ∈ P2g−1 and that it induces a birational map σg : P2g−1 99K P(H0(P2g−1,L2g−1)∗).
The GIT quotient Σ2g−1 is the closure of the image of σg in P(H0(P2g−1,L2g−1)∗).

Corollary 3.4. The Hilbert polynomial of Σ2g−1 ⊆ P(H0(P2g−1,L2g−1)∗) is given by

hΣ2g−1(t) =

(
gt+ 2g − 1

2g − 1

)
+

g−2∑
r=0

(−1)r+1

(
2g + 1

r + 1

)(
t(g − r − 1) + 2g − 1− r − 1

2g − 1

)
.

In particular

h0(P2g−1,L2g−1) =

(
3g − 1

2g − 1

)
+

g−2∑
r=0

(−1)r+1

(
2g + 1

r + 1

)(
3g − 2r − 3

2g − 1

)
and

deg(Σ2g−1) = g2g−1 +

g−2∑
r=0

(−1)r+1

(
2g + 1

r + 1

)
(g − r − 1)2g−1.

Proof. By Theorem 1.2 Σ2g−1 = σg(P2g−1), where σg is the map in (2.2). Then polynomials
of degree t ∈ N on P(H0(P2g−1,L2g−1)∗) correspond to degree tg polynomials on P2g−1

vanishing with multiplicity t(g − 1) at p1, ..., p2g+1. Note that in the notation of (3.1) for
the linear system tL2g−1 we have

kI[r] =

{
t(g − r − 1) if r ≤ g− 2,
0 if r ≥ g− 1.

Furthermore, note that in (3.2) we have(
n+ kI[r] − r − 1

n

)
=

(
2h− 1 + t(g − r − 1)− r − 1

2g − 1

)
6= 0

for t� 0 if and only if r ≤ g − 2.
Now, in order to conclude it is enough to observe that for any r = 0, ..., g − 2 we have(

2g+1
r+1

)
subsets of {1, ..., 2g+1} of the form I[r]. Then the formulas for the Hilbert polynomial

and the degree of Σ2g−1 follow from Proposition 3.3. In particular, the dimension of the
linear system L2g−1 is then given by h0(P2g−1,L2g−1) = hΣ2g−1(1). �

Corollary 3.5. Let us consider the GIT quotient Σ2g and let n = 2g + 3 be the number of
points on P1 that it parametrizes.The Hilbert polynomial of Σ2g is given by

hΣ2g(t) =

(
(2g + 1)t+ 2g

2g

)
+

b 2g−1
2
c∑

r=0

(−1)r+1

(
2g + 2

r + 1

)(
t(2g − 2r − 1) + 2g − r − 1

2g

)
.
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In particular

deg(Σ2g) = (2g + 1)2g +

b 2g−1
2
c∑

r=0

(−1)r+1

(
2g + 2

r + 1

)
(2g − 2r − 1)2g.

Proof. By Theorem 1.2 Σ2g ⊂ P(H0(P2g,L2g)
∗) is the closure of the image of the rational

map induced by the linear system L2g of degree 2g+1 hypersurfaces in P2g with multiplicity
2g− 1 at pi for i = 1, ..., 2g+ 2. Now, to conclude it is enough to observe that for the linear
system tL2g we have

kI[r] =

{
t(2g − 1− 2r) if r ≤ b2g−1

2 c,
0 if r > b2g−1

2 c.

and to argue as in the proof of Corollary 3.4. �

3.6. M0,6 is weak Fano. In this section we prove thatM0,6 is weak Fano that is −KM0,6

is nef and big.

Construction 3.7. For any effective divisor D in Ln,d(m1, ...,ms), we denote by Dh the
strict transform of D in the space Xn

h obtained as the blow-up of of Pn along the linear
base locus of D up to dimension h, with h ≤ n− 1. That is:

- Xn
0 is the blow-up Pn at the points p1, ..., ps;

- Xn
1 is the blow-up of Xn

0 along the strict transforms of the lines 〈pi1 , pi2〉;
...

- Xn
h is the blow-up of Xn

h−1 along the strict transforms of the h-planes
〈
pi1 , ..., pih+1

〉
.

Note that the number kI[r] defined in (3.1) is the multiplicity of a general element of

Ln,d(m1, ...,ms) along an r-plane
〈
pi1 , ..., pir+1

〉
. Therefore, the strict transform Dh of D

in Xn
h may be written as:

Dh = dH −
h∑
r=1

∑
I[r]⊆{1,...,s}

kI[r]EI[r]

where H is the pull-back of the hyperplane section of Pn, and EI[r], with I[r] = {i1, ..., ir+1},
is the exceptional divisor over the r-plane

〈
pi1 , ..., pir+1

〉
. Finally, let D̃ := Dn−1.

Proposition 3.8. Let us denote by φL : Pn 99K PN the birational map induced by L :=

Ln,d(m1, ...,ms) with image XL = φL(Pn). If D̃ is nef then

(3.9) deg(XL) = dn +
s−1∑
r=0

∑
I[r]⊆{1,...,s}

(−1)r+1knI[r]

In particular, if m1 = ... = ms = m and r is the maximal dimension of a linear subspace
contained in the base locus of L then

(3.10) deg(XL) = dn +

r∑
r=0

(−1)r+1

(
s

r + 1

)
((r + 1)m− rd)n
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Proof. Polynomials of degree t ∈ N on PN correspond to degree td polynomials on Pn
vanishing with multiplicity tmi at pi for i = 1, ..., s. Therefore, the Hilbert polynomial of
XL is given by

hXL(t) = h0(Pn, tL).

By [DP14, Theorem 1.5] we have that

h0(Pn, tL) = ldim(tD) +
n∑
i=1

(−1)ihi(Xn−1, tD̃)

Now, since by hypothesis D̃ is nef, the asymptotic Riemann-Roch theorem [La04, Theorem
1.4.40] yields that

hi(Xn−1, tD̃) = O(tn−i)

Now, we may compute the degree of XL as the volume of the big linear system L:

Vol(L) = lim sup
t7→+∞

ldim(tD) +
∑n

i=1O(tn−i)

tn/n!
= lim sup

t7→+∞

ldim(tD)

tn/n!

Now, in order to conclude is enough to note that by (3.2) we have

lim sup
t7→+∞

ldim(tD)

tn/n!
= dn +

s−1∑
r=0

∑
I[r]⊆{1,...,s}

(−1)r+1knI[r]

Finally, note that if m1 = ... = ms = m and r is the maximal dimension of a linear subspace
contained in the base locus of L then

kI[r] =

{
(r + 1)m− rd if r ≤ r,
0 if r > r.

Now, to get formula (3.10) in the statement, it is enough to plug these values of kI[r] in

formula (3.9), and to notice that we have exactly
(
s
r+1

)
r-planes of type

〈
pi1 , ..., pir+1

〉
in

the base locus of L. �

In Proposition 3.8, when L does not have fixed components and D̃ is base-point-free -

so in particular D̃ is nef - deg(XL) may be also computed as the top self-intersection of

D̃. In the rest of this section we will work out the case n = 3, and while doing this we
will get a simple and direct argument proving thatM0,6 is a weak Fano variety, that is the
anti-canonical divisor −KM0,6

is nef and big.

Let us recall Construction 1.10 for M0,6: let p1, ..., p5 ∈ P3 be points in linear general
position, and consider

- π1 : X → P3 the blow-up of p1, ..., p5,
- π2 : Y → X the blow-up of the strict transforms of the lines 〈pi, pj〉, i, j = 1, ..., 5,

Then Y ∼= M0,6, and the morphism f6 = π1 ◦ π2 : M0,6 → P3 is induced by the psi-class

Ψ6 on M0,6.

By [KMc96, Theorem 1.2] the Mori Cone NE(M0,6) of M0,6 is generated by classes of
vital curves. Let us denote by Ei and Ei,j the exceptional divisors over pi and the strict
transform of 〈pi, pj〉 respectively.
In the first blow-up X the strict transforms of the lines 〈pi, pj〉 intersects the exceptional
divisor Ei over pi in four points qj for j 6= i. Therefore, after blowing-up all the strict
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transforms of the lines, the divisor Ei in M0,6 is isomorphic to the blow-up of P2 in four
points. We denote by Lih,k the strict transform in Ei of the line spanned by qh and qk, and

by Rih the exceptional divisor over qh. So, in any exceptional divisor, we get 10 vital curves:
6 of type Lih,k and 4 of type Rih.

Now, for any line 〈pi, pj〉 ⊂ P3 we have three planes 〈pi, pj , pk〉 for k 6= i, j containing this
line. The strict transforms of the three planes intersects the exceptional divisor Ei,j in three

vital curves σki,j . Therefore, we have
(

5
2

)
· 3 = 30 of them.

Now remark that Ei,j is isomorphic to P1 × P1. Note moreover that Rij is numerically

equivalent to Rji for any i, j because they are fibers of the same ruling of Ei,j . Furthermore,

the σki,j ’s for k 6= i, j are all numerically equivalent because they are fibers of the other

ruling of Ei,j . We conclude that NE(M0,6) is a polyhedral cone generated by 50 extremal
rays.

Lemma 3.11. For any i we have H2Ei = HE2
i = 0, E3

i = 1. Furthermore, HE2
i,j = −1,

H2Ei,j = 0 for any i, j, and

EiE
2
h,k =

{
−1 if i ∈ {h, k},
0 if i /∈ {h, k}.

Finally E2
i Eh,k = 0 for any i, h, k, and E3

i,j = 2.

Proof. We will denote by Ei both the exceptional divisor over pi inX and its strict transform
in Y . Let Hi be the strict transform of a general plane through pi. Then Hi = H −Ei and
H3
i = H3 − 3H2Ei + 3HE2

i − E3
i , H3

i = H2Ei = HE2
i = 0 yield E3

i = H3 = 1.
Now, let us consider the following diagram, where Li,j is the strict transform of the line
〈pi, pj〉.

Ei,j Y

Li,j X

j

i

ππE

where πE = π|Ei,j . We have (H − Ei,j)2 = H3 −H2(H − Ei,j) = 0. Therefore,

HE2
i,j = π∗Hj∗E

2
i,j = j∗(E

2
i,jπ
∗
Ei∗H) = −1,

H2Ei,j = π∗H2j∗Ei,j = j∗(Ei,jπ
∗
Ei
∗H2) = 0,

EiE
2
i,j = π∗EiE

2
i,j = j∗(E

2
i,jπ
∗
Ei
∗Ei) = −1,

E2
i Ei,j = π∗E2

i Ei,j = j∗(Ei,jπ
∗
Ei
∗E2

i ) = 0.

Finally (H −Ei−Ej −Ei,j)3 = H3−E3
i −E3

j −E3
ij + 3HE2

ij − 3EiE
2
ij − 3EjE

2
ij = 0 yields

E3
i,j = 2. �

Proposition 3.12. The moduli space M0,6 is weak Fano.

Proof. The anti-canonical bundle is given by

−KM0,6
= 4H − 2

5∑
i=1

Ei −
5∑

i,j=1

Ei,j .
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First we consider the curves of type Lih,k. We have

Lih,kEt =

{
−1 if i = t,
0 if i 6= t.

Furthermore,

Lih,kEs,t =

{
1 if s = i and t ∈ {h,k},
0 otherwise.

Finally, Lih,kH = 0, and −KM0,6
Lih,k = −2(−1)− (1 + 1) = 0. Now, let us consider a curve

of type Rij . Then RijH = RijEk = 0 for any i, j, k, and

RijEh,k =

{
−1 if {i,j} = {h,k},
0 otherwise.

This yields −KM0,6
Rij = 1. Finally, we consider a curve of type σi,j . Note that the normal

bundle of the strict transform of a line Li,j = 〈pi, pj〉 is NLi,j = OP1(−1) ⊕ OP1(−1).
Therefore, OEi,j (Ei,j) = OEi,j (−1,−1). This yields

σi,jEh,k =

{
−1 if {i,j} = {h,k},
0 otherwise.

Furthermore σi,jH = 1 and

σi,jEh =

{
1 if h ∈ {i,j},
0 otherwise.

Therefore −KM0,6
σi,j = 4 − 2(1 + 1) − (−1) = 1. This means that −KM0,6

is nef. Now,

by the formulas in Lemma 3.11 we get that (−KM0,6
)3 > 0 which implies that −KM0,6

is

big. �

We would like to stress that by [KMc96] M0,n is not even log Fano for n ≥ 7.

Example 3.13. Under the hypothesis of Proposition 3.8 let us consider the case n = 3,
m1 = ... = ms = m then kI[0] = m, kI[1] = 2m− d and

D̃ = dH −
s∑
i=1

mEi −
∑
i 6=j

(2m− d)Eij

where Ei is the exceptional divisor over pi, and Eij is the exceptional divisor over the strict
transform Lij in X3

0 of the line 〈pi, pj〉 ⊂ P3. By Lemma 3.11 we have

D̃3 = d3H3+3d
∑
i 6=j

(2m−d)2HE2
ij−3

s∑
i=1

m(2m−d)2
∑
i 6=j

EiE
2
ij−

s∑
i=1

m3E3
i −
∑
i 6=j

(2m−d)3E3
ij

and then D̃3 = d3−sm3 +
(
s
2

)
(2m−d)3, which is exactly formula (3.10) for n = 3 and r = 1.

For instance, if d = 3, m = 2 and s = 4 then D̃3 = 1. Indeed, in this case L = L3,3(2, 2, 2, 2)
is the linear system inducing the standard Cremona transformation of P3.
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4. Symmetries of GIT quotients

In this section, in analogy with Section 2.12, we describe a special arrangement of linear
spaces contained in Σ2g−1, and exploiting these arrangements we manage to compute the
automorphism group of the GIT quotients Σ2g and Σ2g−1. In several cases, automorphisms
of moduli spaces tend to be modular, in the sense that they can be described in terms
of the objects parametrized by the moduli spaces themselves. See for instance, [BMe13],
[Ma14], [MaM14], [MaM16], [FM16], [Ma16], [FM17], [Lin04], [Lin11], [Ro71] for moduli
spaces of pointed and weighted curves, [BGM13] for moduli spaces of vector bundles over a
curve, and [BM16] for generalized quot schemes. We confirm this behavior also for the GIT
quotients Σ2g and Σ2g−1. We would like to stress that while the results in the above cited
paper relies on arguments coming from birational geometry and moduli theory, in this case
we use fairly different techniques based on explicit projective geometry.

4.1. The odd dimensional case. Let p1, ..., pn+1 ∈ Pn be general points, and Xn
n+1 be

the blow-up of Pn at p1, ..., pn+1. We may assume that p1 = [1 : 0 : ... : 0], ..., pn+1 = [0 :
... : 0 : 1]. Let us consider the standard Cremona transformation:

ψn : Pn 99K Pn
[x0 : ... : xn] 7−→ [ 1

x0
: ... : 1

xn
]

Note that ψn ◦ ψn = IdPn , and ψ−1
n = ψn. Let H1, ...,Hn+1 be the coordinate hyperplanes

of Pn. Then ψn is not defined on the locus
⋃

1≤i<j≤n+1Hi ∩ Hj . Furthermore, ψn is an

isomorphism off of the union
⋃

1≤i≤n+1Hi.

Now, ψn induces a birational transformation ψ̃n : Xn
n+1 99K X

n
n+1 and we have the

following commutative diagram:

Xn
n+1 Xn

n+1

Pn Pn

ψ̃n

ψn

Note that, since ψn contracts the hyperplane Hi spanned by the n points p1, ..., p̂i, ..., pn+1

onto the point pi, the map ψ̃n maps the strict transform of Hi onto the exceptional divisor

Ei. Therefore ψ̃n is an isomorphism in codimension one. Indeed, it is a composition of

flops. In particular ψ̃n induces an isomorphism Pic(Xn
n+1)→ Pic(Xn

n+1).
Now, the linear system on Pn associated to the standard Cremona transformation ψn is

H = OPn(n) ⊗ I(n−1)(p1+...+pn+1), that is H is the linear system of hypersurfaces in Pn of
degree n having points of multiplicity at least n − 1 in p1, ..., pn+1. Therefore, the inverse
image of a general hyperplane of Pn via ψn is an hypersurface of degree n with points of

multiplicity n− 1 in p1, ..., pn+1, and ψ̃∗nH = nH − (n− 1)(E1 + ...+ En+1).
Furthermore, since ψn contracts the hyperplaneHi spanned by the n points p1, ..., p̂i, ..., pn+1

onto the point pi we have ψ̃∗nEi = H − E1 − ...− Êi − ...− En+1.

Lemma 4.2. Let D ⊂ Pn be a hypersurface of degree d having points of multiplicities
m1, ...,mn+1 in p1, ..., pn+1, and let ψn : Pn 99K Pn be the standard Cremona transformation
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of Pn. Then

deg(ψn(D)) = dn−
n+1∑
i=1

mi

and

multpi ψn(D) = d(n− 1)−
∑
j 6=i

mj

for any i = 1, ..., n+ 1.

Proof. Let Xn
n+1 = Blp1,...,pn+1Pn, and ψ̃n : Xn

n+1 99K X
n
n+1 be the birational map induced

by ψn. The strict transform of D in Xn
n+1 99K X

n
n+1 can be written as D̃ ∼= dH−

∑n+1
i=1 miEi.

Now, since ψ̃n∗H = nH −
∑n+1

i=1 (n− 1)Ei, and ψ̃n∗Ei = H −
∑

j 6=iEi we get the formula

ψ̃n∗D = d(nH −
∑n+1

i=1 Ei)−
∑n+1

i=1 mi(H −
∑

j 6=iEj) =

dnH − d
∑n+1

i=1 (n− 1)Ei −
∑n+1

i=1 H +
∑n+1

i=1 mi
∑

j 6=iEj =

(dn−
∑n+1

i=1 mi)H −
∑n+1

i=1 (d(n− 1)−
∑

j 6=imj)Ej .

which gives exactly the statement. �

Proposition 4.3. The standard Cremona transformation ψ2g−1 : P2g−1 99K P2g−1 induces
an automorphism of the odd dimensional GIT quotient Σ2g−1.

Proof. Recall that Σ2g−1 is closure of the image of the map σg : P2g−1 99K P(H0(P2g−1,L2g−1)∗)
induced by the linear system L2g−1 of degree g hypersurfaces having multiplicity g − 1 at
p1, ..., p2g and p2g+1 = [1 : ... : 1]. Note that ψ2g−1(p2g+1) = p2g+1.

Now, let D ∈ H0(P2g−1,L2g−1) be a section. By Lemma 4.2 we get deg(ψ2g−1(D)) =

g(2g−1)−
∑2g

i=1mi = g(2g−1)−2g(g−1) = g and multpi ψ2g−1(D) = g(2g−2)−
∑

j 6=imj =

g(2g − 2)− (2g − 1)(g − 1) = g − 1 for i = 1, ..., 2g.
Furthermore, since ψ2g−1 is an isomorphism in a neighborhood of p2g+1 we have that

multp2g+1 ψ2g−1(D) = g − 1 as well.
Therefore, ψ2g−1 acts on the sections of L2g−1, and hence it induces an automorphism

ψ̃2g−1 of P(H0(P2g−1,L2g−1)∗) that keeps Σ2g−1 stable. �

Example 4.4. The famous Segre cubic 3-fold is the image of the map

σ : P3 99K P4

given by

σ(x0, x1, x2, x3) = [x0x2 − x0x1 : x0x3 − x0x1 : x1x2 − x0x1 : x1x3 − x0x1 : x2x3 − x0x1]

and the standard Cremona transformation of P3 may be written as

φ3(x0, x1, x2, x3) = [x0x1x2 : x0x1x3 : x0x2x3 : x1x2x3]

Let z0, ..., z4 be the homogeneous coordinates on P4. Then the equation of the Segre cubic
is

(4.5) z0z1z2 − z0z1z3 − z0z2z3 + z1z2z3 − z1z2z4 + z0z3z4 = 0
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and
φ3(z0) = φ3(x0x2 − x0x1) = x0x1x2x3(x0x2 − x0x1)
φ3(z1) = φ3(x0x3 − x0x1) = x0x1x2x3(x1x2 − x0x1)
φ3(z2) = φ3(x1x2 − x0x1) = x0x1x2x3(x0x3 − x0x1)
φ3(z3) = φ3(x1x3 − x0x1) = x0x1x2x3(x1x3 − x0x1)
φ3(z2) = φ3(x2x3 − x0x1) = x0x1x2x3(x2x3 − x0x1)

Therefore, ψ3 induces the automorphism ψ̃3(z0, z1, z2, z3, z4) = [z0 : z2 : z1 : z3 : z4] of P4

which clearly preserves Equation (4.5).

4.6. Linear subspaces of dimension g in Σ2g−1. In this section we will study a particu-
lar configuration of g-planes contained in Σ2g−1, and then we will exploit this configuration
to compute the symmetries of Σ2g−1.

4.7. Let HI = Hi1,...,ig+1 be the g-plane in P2g−1, linear span of the points pi1 , ..., pig+1 ,
and let L2g−1|HI be the restriction to HI of the linear system L2g−1 inducing σg. Then
L2g−1|HI is the linear system of degree g hypersurfaces in HI

∼= Pg having multiplicity
g − 1 at pi1 , ..., pig+1 . This means that σg|HI is the standard Cremona transformation of
Pg. Therefore, σg(HI) is a g-plane in Σg passing through the singular points given by the
contractions of the (g − 1)-planes generated by subsets of cardinality g of {pi1 , ..., pig+1}.
Now let ΠIc the (g − 1)-plane generated by the points in {p1, ..., p2g+1} \ {pi1 , ..., pig+1}.
Note that HIc intersects HI in one point, hence σg(HI) passes through the singular point
σg(HIc) as well. We conclude that there are g+ 1 + 1 = g+ 2 singular points of Σ2g−1 lying
on the g-plane σg(HI).

Now, let Eg−2
I ⊂ X2g−1

g−2 be the exceptional divisor over the (g−2)-plane Hg−2
I generated

by the pi’s for i ∈ I. Then Eg−2
I is a Pg-bundle over the strict transform of Hg−2

I in X2g−1
g−3 .

For any j /∈ I let Hg−1
I∪{j} be the (g − 1)-plane generated by the pi’s for i ∈ I and pj . Note

that the strict transform of Hg−1
I∪{j} intersects Eg−2

I along a section s which is mapped by

the blow-up morphism isomorphically onto Hg−2
I . Since the strict transform of Hg−1

I∪{j} is

contracted to a point by σ̃g, the section s must be contracted to a point as well. Therefore,

σ̃g(E
g−1
I ) is a g-plane passing through g + 2 singular points of Σ2g−1.

So far we have found
(

2g+1
g+1

)
+ 2g + 1 linear spaces of dimension g in Σ2g−1, and each of

them contains at least g + 2 of the
(

2g+1
g

)
singular points of Σ2g−1. We will divide the g-

planes inside Σ2g−1 passing through a singular point p ∈ Σ2g−1 into two families according
to their mutual intersection.

4.8. The singular locus of Σ2g−1 consists of
(

2g+1
g

)
points corresponding to the

(
2g+1
g

)
linear

subspaces
〈
pi1 , ..., pig

〉
with {i1, ..., ig} ⊂ {1, ..., 2g + 1} contracted by σg.

Now, let p ∈ Σ2g−1 be a singular point. So far, we found 2g + 2 linear subspaces of
dimension g in Σ2g−1 passing through p ∈ Σg. These g-planes may be divided in two
families:

Ap = {α1, ..., αg+1}, Bp = {β1, ..., βg+1}
with the following properties:

- αi ∩ αj = βi ∩ βj = {p} for any i, j = 1, ..., g + 1,
- αi ∩ βj = 〈p, qij〉 for any i, j = 1, ..., g + 1, where qij ∈ Σ2g−1 is a singular point
qij 6= p.
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The configuration is summarized in the following picture:

β1 β2 βj βg+1

α1

α2

αi

αg+1

qij

where the black dots should all be interpreted as representing the singular point p ∈ Σ2g−1.

4.9. Let R = {I ⊂ {1, ..., 2g}| |I| = g}, S = {J ⊂ {1, ..., 2g}| |J | = g−2}, and xI = xi1 ...xig
where I = {i1, ..., ig}, and the xi’s are homogeneous coordinates on P2g−1. By [Ku00,
Theorem 4.1] we have that

(4.10) H0(P2g−1,L2g−1) =

{∑
I∈R

aIxI |
∑

J⊂I∈R
aI = 0 ∀ J ∈ S

}
.

By Proposition 3.4 we have h0(P2g−1,L2g−1) =
(

2g
g

)
−
(

2g
g−2

)
. Now, set N =

(
2g
g

)
−
(

2g
g−2

)
−1,

and consider the expressions si =
∑

I∈R a
i
IxI for i = 0, ..., N . Let H1, ...,HN+2 be (g − 1)-

planes in P2g−1 generated by subsets of cardinality g of {[1 : 0 : ... : 0], ..., [0 : ... : 0 :
1]} ⊂ P2g−1. Note that imposing [s1(Hi) : ... : sN (Hi)] = [0 : ... : 0 : 1 : 0 : ... : 0], with
the non-zero entry in the i-th position, for i = 1, ..., N + 1 we get N(N + 1) equations.
Furthermore, by setting [s1(HN+2) : ... : sN (HN+2)] equal to [1 : ... : 1] we get N more

equations. Recall that by (4.10) for each i = 0, ..., N there are
(

2g
g−2

)
relations among the

aiI ’s. Therefore, we get
(

2g
g−2

)
(N+1) more constraints. Summing up we have a linear system

of N(N + 1) +N +
(

2g
g−2

)
(N + 1) homogeneous equations in the

(
2g
g

)
(N + 1) indeterminates

aiI . Note that (
2g

g

)
(N + 1)−

(
N(N + 1) +N +

(
2g

g − 2

)
(N + 1)

)
= 1,

hence there exists a non-trivial solution. Let s0, ..., sN be the sections of H0(P2g−1,L2g−1)
associated to such a solution. These sections yield an explicit realization of the map
σg : P2g−1 99K Σ2g−1 ⊂ P(H0(P2g−1,L2g−1)∗) = PN , σg(x) = [s0(x) : ... : sN (x)]. By
construction and by the description of the singular locus of Σ2g−1 in 4.8, we see that, with
respect to this expression for σg, the points [1 : 0 : ... : 0], ..., [0 : ... : 0 : 1], [1 : ... : 1] ∈ PN
are singular points of Σ2g−1.

Now we need two technical lemmas.

Lemma 4.11. Let p ∈ Σ2g−1 ⊂ PN be a singular point. The tangent cone of Σ2g−1 at p
is a cone with vertex p over the Segre product Pg−1 × Pg−1. In particular, Σ2g−1 has an

ordinary singularity of multiplicity (2g−2)!
((g−1)!)2

at p ∈ Σ2g−1.

Proof. The statement follows from [HMSV09, Lemma 4.3]. �
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Corollary 4.12. Any automorphism of the GIT quotient Σ2g−1 ⊂ PN is induced by an
automorphism of PN .

Proof. Recall that, by Proposition 2.6, Pic(Σ2g−1) is torsion free. Let φ be an automorphism
of Σ2g−1. Then φ∗KΣ2g−1 ∼ KΣ2g−1 . Lemma 2.5 yields that φ∗OΣ2g−1(1) ∼ OΣ2g−1(1), that

is φ is induced by an automorphism of PN . �

Theorem 4.13. The automorphism group of the GIT quotient Σ2g−1 is the symmetric
group on 2g + 2 elements:

Aut(Σg) ∼= S2g+2

for any g ≥ 2.

Proof. Let p ∈ Σ2g−1 ⊂ PN be a singular point, and H a g-plane inside Σ2g−1 passing
through p. Then H is contained in the tangent cone of Σ2g−1 at p, and by Lemma 4.11
H must be a linear space generated by p and (g − 1)-plane in the Segre embedding of
Pg−1×Pg−1, and such a (g− 1)-plane must be either of the form {pt}×Pg−1 or of the form
Pg−1 × {pt}.

Assume that H intersects the g-planes of the family Ap in the line 〈p, qij〉, where qi,j =
αi ∩ βj is a singular point of Σ2g−1, and the planes of the family Bp in p. Our aim is to
prove that then H must be one of the βj ’s.

By Proposition 2.3, the resolution σ̃g has a modular interpretation as the reduction

morphism ρ
Ã[2g+2],A[2g+2]

:M0,A[2g+2] →M0,Ã[2g+2]
. The only g-planes in Σ2g−1 that are

images of subvarieties contained in exceptional locus of the blow-up f :M0,A[2g+2] → P2g−1

are the σ̃g(E
g−1
I ) described in Section 4.7. Therefore, we may assume that H is the closure

of the image via σg of a g-dimensional variety Z ⊂ P2g−1. We may assume that p =
σg(〈p1, ..., pg〉), and consider Π = σg(〈pg+1, ..., p2g+1〉). Let ξi = σg(〈pg+1, ..., p̂i, ..., p2g+1〉)
be the other g + 1 singular points of Σ2g−1 lying on Π, and denote by πp : TCpΣg →
Pg−1 × Pg−1 the projection from the tangent cone of Σ2g−1 at p onto its base, and let
πi : Pg−1×Pg−1 → Pg−1 be the projection onto the factors for i = 1, 2. Then H must be of
the form (π1 ◦ πp)−1(ξi) for some i = 1, ..., g + 1. Therefore, Z is of the form 〈p1, ..., pg, pi〉
for some i = g+1, ..., 2g+1. Hence σg|Z : Z 99K H is the standard Cremona transformation
of Pg and H is one of the βi’s.

Now, assume that H is a g-plane inside Σ2g−1 through p intersecting the g-planes of the
family Bp in the line 〈p, qij〉, where qi,j = αi ∩ βj is a singular point of Σ2g−1, and that it
also intersects the planes of the family Ap in p. By Proposition 4.3, the standard Cremona
transformation of P2g−1 induces an automorphism φCr : Σ2g−1 → Σ2g−1, set q = φCr(p).
Note that φCr maps the family Ap to the family Bq, and the family Bp to the family
Aq. Since in our argument p is an arbitrary singular point of Σ2g−1, proceeding as in the
previous case we can show that H must be one of the αi’s.

Clearly, since Σ2g−1
∼=M0,Ã[2g+2]

with symmetric weightsA[2g+2] =
(

1
g+1 , ...,

1
g+1 ,

1
g+1

)
,

the symmetric group S2g+2 acts on Σ2g−1 by permuting the marked points. Our aim is now
to show that Σ2g−1 has at most (2g + 2)! automorphisms.

Now, let φ : Σ2g−1 → Σ2g−1 be an automorphism. If p ∈ Σ2g−1 is a singular point then

φ(p) must be a singular point as well. Therefore, we have at most |Sing(Σ2g−1)| =
(

2g+1
g

)
choices for the image of p.
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By Corollary 4.12 φ is induced by a linear automorphism of the ambient projective
space. Then φ must map g-planes through p to g-planes through φ(p). In particular, since
φ stabilizes Sing(Σ2g−1), it maps Ap ∪Bp to Aφ(p) ∪Bφ(p). In order to do this, we have the

following 2((g + 1)!)2 possibilities:{
αi,p 7→ αj,φ(p)

βi,p 7→ βk,φ(p)
or

{
αi,p 7→ βj,φ(p)

βi,p 7→ αk,φ(p)

Summing up, we have

2((g + 1)!)2

(
2g + 1

g

)
= (2g + 2)!

possibilities. Now, assume that φ(p) = p, and that φ maps αi,p to αi,p, and βi,p to βi,p for
any i = 1, ..., g + 1. Then φ must fix all the singular points qij determined by Ap ∪Bp.

Now, let us take into account one of these points, say qg+1,g+1. Since φ fixes g+ 2 nodes
in linear general position on αg+1, and g + 2 nodes in linear general position on βg+1 we
have that φ is the identity on both αg+1 and βg+1. On the other hand, αg+1 and βg+1

are elements of the configuration Aqg+1 ∪Bqg+1 , therefore all the singular points of Σ2g−1

determined by Aqg+1 ∪Bqg+1 are fixed by φ as well. Proceeding recursively this way, we see

that φ must then fix all the singular points of Σ2g−1 ⊂ PN .
Note that, with respect to the expression for σg given in 4.9, the points [1 : 0... : 0], [0 :

... : 0 : 1], [1 : ... : 1] ∈ Σ2g−1 ⊂ P(H0(P2g−1,L∗2g−1)) = PN are singular points.

Hence the automorphism of PN inducing φ fixes N + 2 points in linear general position.
Therefore, it is the identity and then φ = IdΣ2g−1 . �

This completes the proof for Σ2g−1, in the next section we will go through to case of Σ2g.

4.14. The even dimensional case. For the reader’s relief, in this section we will make
large use of results that we have already proven in the preceding sections. Let us recall
shortly the notation. Recall that Σ2g parametrizes ordered configurations of n = 2g + 3
points on P1, with the democratic polarization. By Theorem 1.2, Σ2g ⊂ P(H0(P2g,L2g)

∗)
is the closure of the image of the rational map induced by the linear system L2g, see also
Section 2.9. We denote by µg : P2g 99K Σ2g ⊂ P(H0(P2g,L2g)

∗) = PN the rational map
induced by this linear system.

Lemma 4.15. Any automorphism of Σ2g ⊂ PN is induced by an automorphism of PN .

Proof. Recall that by 2.16 Pic(Σ2g) ∼= Z2g+3. Then it is enough to argue as in the proof of
Corollary 4.12 using Lemma 2.18 instead of Lemma 2.5. �

Theorem 4.16. The automorphism group of the GIT quotient Σ2g is the symmetric group
on n elements:

Aut(Σ2g) ∼= S2g+3

for any g ≥ 1.

Proof. Let φ ∈ Aut(Σ2g) be an automorphism. By the discussion in 2.16, φ induces a
pseudo-automorphism, that is an automorphism in codimension two,

θ := ψ−1 ◦ φ ◦ ψ : X2g
1 99K X

2g
1 .

The pseudo-automorphism θ must preserve the set of the extremal rays of Eff(X2g
1 ). Let

D ⊂ X2g
1 be the union of the exceptional divisors Ei and of the strict transforms of the
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hyperplanes generated by 2g of the pi’s. By Lemma 2.17 any irreducible component of D
generates an extremal ray of Eff(X2g

1 ). Furthermore, any of these irreducible components
is the unique element in its linear equivalence class. Therefore, θ must keep D stable.

Set D̃ = ψ(D). Then the automorphism φ stabilizes D̃. As we did in Section 2.12, we
will now consider g-planes; check that section for the needed definitions. Note that any
g-plane γi ∈ C is the intersection of

(
g+1
g−1

)
divisors of type ψ(H −

∑
i∈I Ei), and that any

g-plane δi ∈ D is the intersection of g divisors of type ψ(Ei). Therefore φ stabilizes the
configuration of g-planes C ∪D.

Now, let p ∈ Σ2g be one of the distinguished points in 2.14. Then q = φ(p) must be a
distinguished point as well. Let us denote by H1, H2 the two g-planes intersecting in {p},
and by Π1,Π2 the two g-planes intersecting in {q}. Therefore, by 2.14 we have (2g+3)!

2((g+1)!)2

choices for the image of p.
Let p, p1

1, ..., p
1
g+1 and p, p2

1, ..., p
2
g+1 be the distinguished points on H1 and H2 respectively.

Similarly, we denote by q, q1
1, ..., q

1
g+1 and by q, q2

1, ..., q
2
g+1 the distinguished points on Π1

and Π2, respectively. Now, for the image of p1
1 we have 2(g + 1) possibilities, namely

q1
1, ..., q

1
g+1, q

2
1, ..., q

2
g+1. Once this choice is made, it is determined whether the image of

H1 via φ is either Π1 or Π2. Therefore, for the image of p1
2 we have g possibilities, for p1

3

we have g − 1 possibilities, and so on until we are left with just one possibility for p1
g+1.

Summing up, for the images of p1
1, ..., p

1
g+1 we have 2(g+1)! possibilities. Similarly, we have

also (g + 1)! possibilities for the images of p2
1, ..., p

2
g+1. Finally, we have

2(g + 1)!(g + 1)!
(2g + 3)!

2((g + 1)!)2
= (2g + 3)! = |S2g+3|

possibilities. Now, assume that φ fixes the points p, p1
1, ..., p

1
g+1, p

2
1, ..., p

2
g+1. Since by Corol-

lary 4.12 φ is induced by an automorphism of PN and the points p, p1
1, ..., p

1
g+1 ∈ H1,

p, p2
1, ..., p

2
g+1 ∈ H2 are in linear general position, then φ restricts to the identity on both

H1 and H2.
Then, by the description of the configuration C∪D in 2.13, φmust fix all the distinguished

points in C ∪ D, and then Remark 2.15 yields that the automorphism φ must be the
identity. �
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Niterói, Rio de Janeiro, Brazil

E-mail address: alexmassarenti@id.uff.br

http://arxiv.org/abs/alg-geom/9607009v1
http://arxiv.org/abs/alg-geom/9607009v1
http://arxiv.org/abs/math/0403120v3
http://arxiv.org/abs/1603.06991v1
http://arxiv.org/abs/1307.6828v2
http://arxiv.org/abs/1606.02232v2

	Introduction
	1. GIT quotients of (P1)n
	2. Birational geometry of GIT quotients of (P1)n and the F-conjecture
	3. Degrees of projections of Veronese varieties
	4. Symmetries of GIT quotients
	References

